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Abstract. In this paper, we study the explosive solutions to a class of par-

bolic stochastic semilinear differential equations driven by a Lévy type noise.

The sufficient conditions are presented to guarantee the existence of a unique
positive solution of the stochastic partial differential equation under investiga-

tion. Moreover, we show that positive solutions will blow up in finite time in
mean Lp-norm sense, provided that the initial data, the nonlinear term and the

multiplicative noise satisfies some conditions. Several examples are presented

to illustrate the theory. Finally, we establish a global existence theorem based
on a Lyapunov functional and prove that a stochastic Allen-Cahn equation

driven by Lévy noise has a global solution.

1. Introduction. Fujita [13] considered the initial-boundary problem for a semi-
linear parabolic equation

∂u

∂t
= ∆u+ u1+α, t > 0, x ∈ Rd,

u(x, 0) = a(x), x ∈ Rd,
(1)

Fujita showed that there does not exist a global solution for any nontrivial nonneg-
ative initial data when 0 < dα < 2, and there exists a global solution for sufficiently
small initial data when dα > 2. Hayakawa [17] proved that (1) has no global so-
lution for any nontrivial nonnegative initial data in the critical case dα = 2 if the
dimension d equals 1 or 2.

Fujita [14] studied the initial-boundary problem for a semilinear parabolic equa-
tion in domain D ⊂ Rd:

∂u

∂t
= ∆u+ f(u), t > 0, x ∈ D,

u(x, 0) = a(x), x ∈ D,
u(x, t) = 0, x ∈ ∂D,

(2)
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Denote λ0 as the smallest eigenvalue of −∆ and the corresponding eigenfunction
φ0 > 0, satisfies

∫
D
φ0(x)dx = 1 and{

−∆φ0 = λ0φ0 in D,

φ0|∂D = 0.

Assume that f satisfies the following
(f.1) f is locally Lipschitz continuous.
(f.2) f(0) ≥ 0 and f(r) > 0 for r > 0.
(f.3) 1/f is integrable at t = +∞.
(f.4) f is convex in [0,∞).
(f.5) f(r)− λ0r > 0 for r >

∫
D
a0φ0dx, where a0 = exp(−k|x|2), k > 0, x ∈ Rd.

Fujita [14] showed that if D is bounded, a(x) ≥ 0 in D and f satisfies (f.1)-
(f.5), then the solution of (2) blows up in finite time. As a special case that f(r) =
r1+α(α > 0), the solution of (2) blows up in finite time if∫

D

a(x)φ0(x)dx ≥ λ1/α
0 .

We refer to [15] about the many developments on solutions of nonlinear parabolic
equations may blow up in finite time.

In recent years, stochastic partial differential equations have attracted the at-
tention of many researchers. It is of interest to study the non-existence of global
solutions to parabolic stochastic partial differential equations perturbed by random
noise as follows: 

du = ∆u+ f(u) + σ(u)dWt, t > 0, x ∈ D,
u(x, 0) = g(x), x ∈ D,
u(x, t) = 0, x ∈ ∂D.

(3)

When f(u) ≡ 0, σ(u) = uγ (γ ≥ 1), Mueller [20] considered the equation
∂u

∂t
= ∆u+ uγẆ , γ ≥ 1, t > 0, 0 ≤ x ≤ J,

u(t, 0) = u(t, J) = 0,
(4)

where Ẇ = Ẇ (t, x) is 2-parameter white noise and u(x, 0) is nonnegative and
continuous. The conclusion is that for 1 ≤ γ < 3

2 , u exists for all time. Mueller [21]
showed that when u(x, 0) is a continuous nonnegative function on [0, J ], vanishing
at the endpoints, but not identically zero, then there is a positive probability that
the solution u of (4) blows up in finite time if γ > 3/2. When σ(u) ≡ 1 and the
Laplacian operator ∆ is replaced by the infinitesimal generator of a C0 semigroup,
Prato and Zabczyk [9] considered the stochastic semilinear equation{

du = (Au+ F (u))dt+ dW

u(0) = ξ,
(5)

where A is the generator of semigroup S(t) = eAt on a Banach space E, and F is
a mapping from E into E. W is a Wiener process defined on a probability space
(Ω,Ft, P ). ξ is an F0-measurable E-valued random variable. They assumed that F
satisfies the Lipschitz condition on bounded sets of E. This property of F together
with some other conditions ensure that (5) has a unique non-exploding solution.
When σ(u) = σ (positive constant), W is a 2-dimensional Brownian sheet, f is
a nonnegative, convex function such that

∫∞
0

1/f < ∞, Bonder and Groisman [3]
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proved that the solution to (3) blows up in finite time with probability one for every
nonnegative initial datum u(x, 0) ≥ 0. Dozzi and López-Mimbela [11] considered
the equation (3) with σ(u) = κu, where κ are given positive numbers, Wt is a
standard one-dimensional Brownian motion. They proved that the solution of (3)
blows up in finite time with positive probability if f(u) ≥ Cu1+β (u > 0, C, β > 0).

Chow [8, 5] considered the initial-boundary value problem for the parabolic Itô
equation 

∂u

∂t
= Au+ f(u, x, t) + σ(u,∇u, x, t)∂tW (x, t)

u(x, 0) = g(x), x ∈ D,
u(x, t) = 0, t ∈ (0, T ), x ∈ ∂D,

(6)

where D ⊂ Rd, A =
∑d
i,j=1

∂
∂xi

[aij(x) ∂
∂xj

] is a symmetric, uniformly elliptic op-

erator with smooth coefficients, f and σ are given functions. For x ∈ Rd, t ≥ 0,
W (x, t) is a continuous Wiener random field defined in a complete probability space
(Ω,F , P ) with a filtration Ft. W (x, t) has mean EW (x, t) = 0 and covariance func-
tion q(x, y) defined by

E{W (x, t)W (y, s)} = (t ∧ s)q(x, y), x, y ∈ Rd,

where t ∧ s = min{t, s} for 0 ≤ t, s ≤ T . Let H = L2(D), H1 = H1(D) be
the L2-Sobolev space of first order and H1

0 the closure in H1 of the space of C1-
functions with compact support in D. Under the usual conditions, such as coercivity
conditions, Lipschitz continuity and boundedness conditions, Eq.(6) has a a unique
global strong solution u ∈ C([0, T ];H) ∩ L2([0, T ];H1

0 ) for any T > 0 (see [7,
Theorem 3-7.2]). To consider positive (nonnegative) solutions, the author assume
that the following conditions hold:
(P1) There exists a constant δ ≥ 0 such that

1

2
q(x, x)σ2(r, ξ, x, t)−

d∑
i,j=1

aij(x)ξiξj ≤ δr2,

for all r ∈ R, x ∈ D, ξ ∈ Rd and t ∈ [0, T ].
(P2) The function f(r, x, t) is continuous on R×D × [0, T ] such that f(r, x, t) ≥ 0
for r ≤ 0 and x ∈ D, t ∈ [0, T ].
(P3) The initial datum g(x) on D is positive and continuous.

Chow [8] proved that the solution of Eq.(6) is positive. Under some suitable
conditions, Chow [8, 5] showed that the positive solutions of a class of stochastic
reaction-diffusion equations will blow up in the Lp-norm sense, p ≥ 1. Chow and
Liu [6] considered the problem of explosive solutions in mean Lp-norm sense of
semilinear stochastic functional parabolic differential equations of retarded type.

Lv and Duan [19] considered the Eq.(6) with A = 4, the Laplacian operator,
the nonlinear term f is assumed to be satisfied by an inequality, which is weaker
than the condition (P2), the noise intensity σ allows to be higher nonlinear than the
square nonlinear (see [19, formula (3.2)]). They proved that the noise could induce
finite time blow up of solutions.

Recently, great attention has been devoted to the study of stochastic partial
differential equations driven by Lévy noise (see, for example, [4, 25, 27, 18, 22, 10,
26, 23, 24]). But there are few results about the existence of explosive solutions to
stochastic partial differential equations with Lévy noise in the literature. Bao and
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Yuan [2] considered the stochastic reaction-diffusion equations with jumps
∂u

∂t
= Au+ b(t, u, x) + σ(t, u,∇u, x)∂tW (x, t)

+

∫
Y

Υ(t, u, x, y)∂tÑ(t, dy), t > 0,

u(x, 0) = φ(x), x ∈ O, u(t, x)|∂O = 0, t > 0,

(7)

where O ⊂ Rn is a bounded domain with C∞ boundary, A =
∑n
i,j=1

∂
∂xi

(aij(x) ∂
∂xj

)

is a symmetric, uniformly elliptic operator with smooth coefficients, W (x, t) is
a Wiener random defined on the completed probability space (Ω,F , {F}t≥0,P),

Ñ(dt, du) is the compensated Poisson measure. Under some conditions, they showed
that the solution of (7) blows up in finite time. It should be pointed out that the
nonlinear term b : [0,∞) × R × O 7→ R is assumed to be locally Lip-continuous
w.r.t the second variable such that b(t, r, x) ≥ 0 for any r ≤ 0, however, there are
many functions don’t satisfy this condition, for example, b(r) = r(1 − r2). And
O ⊂ Rn is assumed to be bounded, the proof of Theorem 2.1 in [2] depends on the
boundedness of volume of O. The results of [2] can’t be generalized to the case for
unbounded domain, such as O = Rn.

In this paper, we study the problem of explosive solutions to a class of semi-
linear stochastic parabolic differential equations driven by Lévy noise. The paper
is organized as follows. In Section 2, we recall some basic results for semilinear
stochastic parabolic equations with Lévy noise. In Section 3, under some assump-
tions, we prove that the existence of positive solutions of a semilinear stochastic
reaction-diffusion equation. In Section 4, under some suitable conditions on the
drift or diffusion term, we prove that the solutions of stochastic parabolic differen-
tial equations will blow up in a finite time in mean Lp-norm sense, p ≥ 1. Some
examples are presented to illustrate the theory. In Section 5, we establish a global
existence theorem based on a Lyapunov functional. We show that the existence of
global solution to stochastic Allen-Cahn equation driven by Lévy noise.

2. Preliminaries. Let D be a domain in Rd, which has a smooth boundary if it
is bounded. Denote L2(D) by H, the usual L2 real Hilbert space with the inner
product (·, ·) and norm ‖ · ‖, respectively. Let H1 = H1(D) be the L2-Sobolev
space of first order. Denote H1

0 the closure in H1 of the space of C1-functions
with compact support in D. Denote by D([0, T ], H) the space of all càdlàg paths
from [0, T ] into H. Let W (x, t) be a continuous Wiener random field defined on
a complete probability space (Ω,F ,P) with a filtration Ft. W (x, t) has mean zero
and covariance function q(x, y) such that

EW (x, t) = 0, E{W (x, t)W (y, s)} = (t ∧ s)q(x, y), s, t ∈ [0, T ], x, y ∈ Rd.

The associated covariance operator Q in H with kernel q(x, y) is defined by

(Qφ)(x) =

∫
D

q(x, y)φ(y)dy, x ∈ D, φ ∈ H.

In this paper, we assume that the covariance function q(x, y) is bounded, continuous
and there is q0 > 0 such that

sup
x,y∈D

|q(x, y)| ≤ q0 and Tr Q =

∫
D

q(x, x)dx <∞.
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Let (Z,B(Z)) be a measurable space. Denote by N(dt, dz) the Poisson random
measure with intensity measure dtν(dz) on R+ × Z, here R+ = [0,∞), dt is the
Lebesgue measure on R+, ν(dz) is a σ-finite measure on (Z,B(Z)). Denote by

Ñ(dt, dz) = N(dt, dz) − dtν(dz) the compensated Poisson measure. Assume that
W and N are independent.

Consider the initial-boundary problem of a semilinear stochastic reaction-diffusion
equation in domain D ⊂ Rd:

∂u

∂t
= Au+ f(u, x, t) + σ(u,∇u, x, t)∂tW (x, t)

+

∫
Z

ϕ(u, x, z, t)∂tÑ(t, dz),

u(x, 0) = g(x), x ∈ D,
u(x, t) = 0, t ∈ (0, T ), x ∈ ∂D,

(8)

where A =
∑d
i,j=1

∂
∂xi

[aij(x) ∂
∂xj

] is a symmetric, uniformly elliptic operator with

smooth coefficients, that is, there exists a constant c > 0 such that b(x, ξ) :=∑d
i,j=1 aij(x)ξiξj ≥ c|ξ|2 for all x ∈ D and ξ = (ξ1, . . . , ξd) ∈ Rd.
Let ut = u(·, t), Ft(u) = f(u, ·, t), Σt(u) = σ(u,∇u, ·, t), Γt(u, z) = ϕ(u, ·, z, t)

and Wt = W (·, t), then we can rewrite the equation (8) as dut = [Aut + Ft(ut)]dt+ Σt(ut)dWt +

∫
Z

Γt(ut, z)Ñ(dt, dz),

u0 = g,
(9)

where A is regarded as a linear operator from H1 into H−1 with domain D(A) =
H1

0 ∩H2, Ft : H → H is continuous. If A satisfies the coercivity condition, f and
σ satisfy the Lipschitz continuity and boundedness conditions, the equation (9) has
a unique global strong solution u ∈ L2([0, T ];H1

0 ) ∩D([0, T ];H) for any T > 0 (see
Theorem 3.2, [23]).

To consider the positive solutions, we assume that (8) has a unique (strong)
solution. In addition, we assume that

(A1)

f(u, x, t) ≥ a1u
β + a2u,

where a1, a2 ∈ R, β > 1, (−1)β ∈ R and

a1

{
> 0, if (−1)β = 1,

< 0, if (−1)β = −1.
(10)

(A2) There exist constants b1, b2 ≥ 0 such that

1

2
q(x, x)σ2(u, ξ, x, t)−

d∑
i,j=1

aij(x)ξiξj ≤ b1|u|m + b2u
2,

for all u ∈ R, x ∈ D, ξ ∈ Rd and t ∈ [0, T ], where 2 < m < β + 1.
(A3) There exist a a constant µ ∈ [2, β + 1) and mappings ψ : D → R+ with∫

Z
ψ(z)ν(dz) < +∞, such that

ϕ2(u, x, z, s) ≤ ψ(z)|u(x, s)|µ. (11)

(A4) the initial datum g(x) on D is positive and continuous.
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As in [8], let η(r) = r− denote the negative part of r for r ∈ R, or η(r) = 0, if
r ≥ 0 and η(r) = −r if r < 0. Set k(r) = η2(r) so that k(r) = 0 for r ≥ 0 and
k(r) = r2 for r < 0. For ε > 0, let kε(r) be a C2-regularization of k(r) defined by

kε(r) =


r2 − ε2

6
, r < −ε,

− r3

ε
(
r

2ε
+

4

3
), −ε ≤ r < 0,

0, r ≥ 0.

(12)

It is easy to see that kε(r) has the following properties.

Lemma 2.1. (see [8]). The first two derivatives k′ε, k
′′
ε of kε are continuous and

satisfy the conditions: k′ε(r) = 0 for r ≥ 0; k′ε(r) ≤ 0 and k′′ε (r) ≥ 0 for any r ∈ R.
Moreover, as ε→ 0, we have

kε(r)→ k(r), k′ε(r)→ −2η(r) and k′′ε (r)→ 2θ(r), (13)

where θ(r) = 0 for r ≥ 0, θ(r) = 1 for r < 0, and the convergence is uniform for
r ∈ R.

3. Positive solutions. In this section, we will consider the existence of positive
solution of Eq. (8).

Theorem 3.1. Suppose that the conditionss (A1)-(A4) hold. Then the solution of
initial-boundary value problem (8) with nonnegative and continuous data remains
positive so that u(x, t) ≥ 0, a.s. for almost every x ∈ D and for all t ∈ [0, T ].

Proof. Let ut = u(·, t) and

Φε(ut) = (1, kε(ut)) =

∫
D

kε(u(x, t))dx.

From Itô’s formula, it follows that

Φε(ut) = Φε(g) +

∫ t

0

∫
D

k′ε(u(x, s))Au(x, s)dxds

+

∫ t

0

∫
D

k′ε(u(x, s))f(u(x, s), x, s)dxds

+

∫ t

0

∫
D

k′ε(u(x, s))σ(u(x, s),∇u(x, s), x, s)dW (x, s)dx

+
1

2

∫ t

0

∫
D

k′′ε (u(x, s))q(x, x)σ2(u(x, s),∇u(x, s), x, s)dxds

+

∫ t

0

∫
Z

∫
D

(
kε(u(x, s) + ϕ(u, x, z, s))− kε(u(x, s))

)
dxÑ(dsdz)

+

∫ t

0

∫
Z

∫
D

(
kε(u(x, s) + ϕ(u, x, z, s))− kε(u(x, s))

− ϕ(u, x, z, s)k′ε(u(x, s)))dxν(dz)ds

= Φε(g) +

∫ t

0

∫
D

k′′ε (u(x, s))
(1

2
q(x, x)σ2(u(x, s),∇u(x, s), x, s)

− b(x,∇u(x, s))
)
dxds
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+

∫ t

0

∫
D

k′ε(u(x, s))f(u(x, s), x, s)dxds

+

∫ t

0

∫
D

k′ε(u(x, s))σ(u(x, s),∇u(x, s), x, s)dW (x, s)dx

+

∫ t

0

∫
Z

∫
D

(
kε(u(x, s) + ϕ(u, x, z, s))− kε(u(x, s))

)
dxÑ(dsdz)

+

∫ t

0

∫
Z

∫
D

(
kε(u(x, s) + ϕ(u, x, z, s))

− kε(u(x, s))− ϕ(u, x, z, s)k′ε(u(x, s)))dxν(dz)ds.

By taking expectations of both sides of the above equality, we have

EΦε(ut) = Φε(g) + E
∫ t

0

∫
D

k′′ε (u(x, s))
(1

2
q(x, x)σ2(u(x, s),∇u(x, s), x, s)

− b(x,∇u(x, s))
)
dxds

+ E
∫ t

0

∫
D

k′ε(u(x, s))f(u(x, s), x, s)dxds

+ E
∫ t

0

∫
Z

∫
D

(
kε(u(x, s) + ϕ(u, x, z, s))− kε(u(x, s))

− ϕ(u, x, z, s)k′ε(u(x, s)))dxν(dz)ds.

From (A1) and Lemma 2.1, it follows that

EΦε(ut) ≤ Φε(g) + E
∫ t

0

∫
D

k′′ε (u(x, s))
(
b1|u(x, s)|m + b2|u(x, s)|2

)
dxds

+ E
∫ t

0

∫
D

k′ε(u(x, s))(a1u
β(x, s) + a2u(x, s))dxds

+ E
∫ t

0

∫
Z

∫
D

(
kε(u(x, s) + ϕ(u, x, z, s))− kε(u(x, s))

− ϕ(u, x, z, s)k′ε(u(x, s)))dxν(dz)ds. (14)

By Taylor’s theorem, in view of the integral form of the remainder, we have

kε(u(x, s) + ϕ(u, x, z, s))− kε(u(x, s))− k′ε(u(x, s)ϕ(u, x, z, s)

=

∫ 1

0

(1− τ)k′′ε (ϕ(u, x, z, s)τ + u(x, s))ϕ2(u, x, z, s)dτ (15)

Substitute (15) into (14), we get

EΦε(ut) ≤ Φε(g) + E
∫ t

0

∫
D

k′′ε (u(x, s))
(
b1|u(x, s)|m + b2|u(x, s)|2

)
dxds

+ E
∫ t

0

∫
D

k′ε(u(x, s))(a1u
β(x, s) + a2u(x, s))dxds

+ E
∫ t

0

∫
Z

∫
D

∫ 1

0

(1− τ)k′′ε (ϕ(u, x, z, s)τ

+ u(x, s))ϕ2(u, x, z, s)dτdxν(dz)ds. (16)

Since limε→0 EΦε(ut) = E‖η(ut)‖2, taking the limits on both sides of (16) as ε→ 0,
by (13) we obtain
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E‖η(ut)‖2 ≤
∫
D

|η(g(x))|2dx+ 2E
∫ t

0

∫
D

θ(u(x, s))
(
b1|u(x, s)|m + b2|u(x, s)|2

)
dxds

− 2E
∫ t

0

∫
D

η(u(x, s))(a1u
β(x, s) + a2u(x, s))dxds

+ 2E
∫ t

0

∫
Z

∫
D

∫ 1

0

(1− τ)θ(ϕ(u, x, z, s)τ

+ u(x, s))ϕ2(u, x, z, s)dτdxν(dz)ds. (17)

By the definition of η, it follows that η(g) = 0. This together with (A4), Lemma
2.1 and (−1)βa1 = |a1| yield

E‖η(ut)‖2 ≤ 2E
∫ t

0

∫
D

[b1(u−)
m

(x, s) + b2(u−)
2
(x, s)]dxds

− 2E
∫ t

0

∫
D

[|a1|(u−)
β+1

(x, s)− a2(u−)
2
(x, s)]dxds

+

∫
Z

ψ(z)ν(dz) E
∫ t

0

∫
D

(u−)
µ
(x, s)dxds. (18)

It is known that the following Lp interpolation inequality and Young inequality hold
(see [16])

‖u‖Lr ≤ ‖u‖αLp‖u‖1−αLq , (19)

ab ≤ εaδ + ε−
ω
δ bω, (20)

where α ∈ (0, 1), ε > 0, δ > 0, ω > 0, a > 0, b > 0,

1

r
=
α

p
+

1− α
q

, 1 ≤ p ≤ r ≤ q ≤ ∞,

1

δ
+

1

ω
= 1.

Since 2 < m < β + 1, it follows that from (19) and (20)

2b1

∫
D

(u−)m(x, t)dx = 2b1‖u−‖mLm

≤ C‖u−‖mαL2 ‖u−‖m(1−α)

Lβ+1

≤ ε‖u−‖m(1−α) 2
2−mα

Lβ+1 + C(ε,m, β)‖u−‖2L2

= ε‖u−‖β+1
Lβ+1 + C(ε,m, β)‖u−‖2L2 , (21)

where α = 2(β+1−m)
m(β−1) .

Similarly, for µ ∈ [2, β + 1), we obtain∫
Z

ψ(z)ν(dz)

∫
D

(u−)
µ
(x, s)dxds ≤ C‖u−‖µLµ

≤ C‖u−‖µα
′

L2 ‖u−‖µ(1−α′)
Lβ+1

≤ ε‖u−‖
µ(1−α′) 2

2−µα′

Lβ+1 + C(ε, µ, β)‖u−‖2L2

= ε‖u−‖β+1
Lβ+1 + C(ε, µ, β)‖u−‖2L2 , (22)

where α′ = 2(β+1−µ)
µ(β−1) .
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Putting (21) and (22) into (18), we obtain

E‖η(ut)‖2 ≤
∫ t

0

(2ε− 2|a1|)E‖u−s ‖
β+1
Lβ+1ds+ (2b2 + 2a2

+ C(ε,m, β) + C(ε, µ, β))

∫ t

0

E‖u−s ‖2L2ds

Let ε ∈ (0, |a1|). Then

E‖η(ut)‖2 ≤ C
∫ t

0

E‖η(us)‖2ds,

From Gronwall’s inequality, it follows that E‖η(ut)‖2 = 0. This implies that η(ut) =
u−(x, t) = 0 a.s. for a.e. x ∈ D and t ∈ [0, T ]. The proof is complete.

Remark 1. The assumption (A1) is weaker than the assumption (H1) in [2]. For
example, if we consider the Allen-Cahn type equation, f(u) = u−u3 doesn’t satisfy
(H1), but f satisfies (A1).

Remark 2. Since A =
∑d
i,j=1

∂
∂xi

[aij(x) ∂
∂xj

] is more general than the Laplacian

operator 4, Theorem 3.1 is the generalization of Theorem 3.1 in [19].

Remark 3. If it is assumed that β ∈ (0, 1), for the case 1 + β ≤ m < 2 and
1 + β ≤ q < 2, by the Lp interpolation inequality and Young inequality, we can get
the corresponding results.

4. Explosive solutions. In this section, we consider the unbounded solutions of
the equation (8).

For the elliptic equation: {
Aϑ = −λϑ, in D,

ϑ = 0, on ∂D,
(23)

it is well known that all the eigenvalues of −A are strictly positive, increasing and
the eigenfunction φ corresponding to the smallest eigenvalue λ1 does not change
sign in the domain D (see p. 355, [12]). We can normalize it in such a way that

φ(x) ≥ 0,

∫
D

φ(x)dx = 1. (24)

Theorem 4.1. Suppose the initial-boundary value problem (8) has a unique local
solution and the conditions (A1)-(A4) hold. In addition, we assume that λ1 > a2,
a1 > 0, and ∫

D

g(x)φ(x)dx >
(λ1 − a2

a1

) 1
β−1 ,

and if λ1 < a2, we assume that
∫
D
g(x)φ(x)dx > 0, where λ1 is the smallest eigen-

value of −A and φ is the corresponding eigenfunction. Then, for any p ≥ 1, there
exists a constant Tp > 0 such that

lim
t→T−p

E‖ut‖Lp = lim
t→T−p

E
{∫

D

|u(x, t)|pdx
}1/p

=∞. (25)

That is, the solution explodes in mean Lp-norm sense.
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Proof. By Theorem 3.1, Eq. (8) has a unique positive solution. We will prove the
theorem by contradiction. We suppose (25) is false. Then there exists a global
positive solution u such that

sup
0≤t≤T

E
{∫

D

|u(x, t)|pdx
}1/p

<∞,

for any T > 0. Let φ be the the eigenfunction defined in (23). Define

û(t) :=

∫
D

u(x, t)φ(x)dx ≥ 0. (26)

By (24), φ can be regarded as the probability density function of a random variable
ξ in D, independent of Wt. The equality (26) can be interpreted as an expectation
û(t) = Eξ{u(ξ, t)}. From (8), (26) and the self-adjointness of A, it follows that

û(t) = (g, φ) +

∫ t

0

∫
D

[Au(x, s)]φ(x)dxds+

∫ t

0

∫
D

f(u, x, s)φ(x)dxds

+

∫ t

0

∫
D

σ(u,∇u, x, s)φ(x)dxdW (x, s)

+

∫ t

0

∫
Z

∫
D

ϕ(u, x, z, s)φ(x)dxÑ(ds, dz)

= (g, φ)− λ1

∫ t

0

∫
D

u(x, s)φ(x)dxds+

∫ t

0

∫
D

f(u, x, s)φ(x)dxds

+

∫ t

0

∫
D

σ(u,∇u, x, s)φ(x)dxdW (x, s)

+

∫ t

0

∫
Z

∫
D

ϕ(u, x, z, s)φ(x)dxÑ(ds, dz). (27)

Taking the expectation to both sides of (27) and by Fubini’s theorem, we have

Eû(t) = (g, φ)− λ1

∫ t

0

Eû(s)ds+

∫ t

0

E
∫
D

f(u, x, s)φ(x)dxds,

or, in the differential form,
dξ(t)

dt
= −λ1ξ(t) + E

∫
D

f(u, x, s)dx

ξ(0) = ξ0,

(28)

where ξ(t) = Eû(t), ξ0 = (g, φ). By (A1) and Jensen’s inequality, we obtain
dξ(t)

dt
≥ −λ1ξ(t) + a1ξ

β(t) + a2ξ(t),

ξ(0) = ξ0,
(29)

If λ1 ≥ a2, for ξ0 >
(
λ1−a2
a1

) 1
β−1 , we can show that ξ(·) is strictly increasing. It

follows from (29) that

T ≤
∫ ξ(T )

ξ0

ds

a1sβ − (λ1 − a2)s
≤
∫ ∞(

λ1−a2
a1

) 1
β−1

ds

a1sβ − (λ1 − a2)s
<∞. (30)

If λ1 < a2, for ξ0 > 0, we can show that ξ(·) is strictly increasing. We have
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T =

∫ T

0

dt ≤
∫ T

0

dξ(t)

a1ξβ(t)
=

∫ ξ(T )

ξ0

ds

a1sβ
<∞. (31)

Since T is arbitrary, either (30) or (31) results in a contradiction. Therefore, for

λ1 ≥ a2, ξ0 >
(
λ1−a2
a1

) 1
β−1 , ξ(t) must blow up at a time Tp ≤

∫ ξ(T )

ξ0
ds

a1sβ−(λ1−a2)s
.

For λ1 < a2, ξ(t) must blow up at a time Tp ≤
∫ ξ(T )

ξ0
ds
a1sβ

.

Since φ is bounded and continuous on D, by Hölder’s inequality, we have

ξ(t) ≤
( ∫

D

|φ(x)|qdx
)1/q(E∫

D

|u(x, t)|pdx
)1/p

, (32)

where q = p/(p− 1), p ≥ 1. So the positive solution explodes at some time T ′ ≤ Te
in the mean Lp-norm for each p ≥ 1. The proof is complete.

Example 4.1. Consider the following problem in a spherical domain D = B(R) in
R3: 

∂u

∂t
= 4u+ u4 − u+ γ0(u3 + |∇u|2)1/2∂tW (x, t)

+ c0

∫ ∞
0

zu3∂tÑ(t, dz), t > 0, x ∈ D,

u(x, 0) = a0e
−α|x|, x ∈ D,

u(x, t)||x|=R = 0, t > 0,

(33)

where Ñ(dt, dz) = N(dt, dz) − dtν(dz) is a compensated Poisson measure corre-
sponding to the Poisson random measure N(dt, dz), W (x, t) is a continuous Wiener
random field with the covariance function

q(x, y) = b0 exp{−ρ(x · y)}, x, y ∈ R3.

The constants σ0, c0, a0, α are strictly positive and x ·y =
∑3
i=1 xiyi. Here A = 4,

f = u4 − u, σ = γ0(u3 + |∇u|2)1/2, ϕ = c0zu
3, Z = (0,∞). It is obvious that

conditions (A1) and (A4) are satisfied. If 1
2b0γ

2
0 < 1, since

1

2
b0γ

2
0 exp{−ρ|x|2}(u3 + |ξ|2)− |ξ|2 ≤ (

1

2
b0γ

2
0 − 1)|ξ|2 +

1

2
b2γ2

0u
3.

then condition (A2) is satisfied. If
∫∞

0
z2ν(dz) < ∞, take µ = 6 and ψ(z) = c20z

2,
then the condition (A3) is satisfied. From Theorem 3.1, it follows that the solution
of Eq. (33) is positive. The smallest eigenvalue of the elliptic equation (23) is

λ1 = ( πR )2 and the corresponding normalized eigenfunction is φ(x) = 1
4R2|x| sin

π|x|
R ,

0 < |x| < R. If a0 is sufficiently large, then we have∫
D

g(x)φ(x)dx =

∫ R

0

a0e
−αr

4R2r
sin

πr

R
dr >

a0

4R3

∫ R

0

e−αr sin
πr

R
dr > (

π2

R2
+ 1)

3
5 ,

(34)

Therefore, by Theorem 4.1, the solutions to the Eq. (33) will blow up in finite time
in mean Lp-norm for any p ≥ 1. Note that Theorem 3.1 in [2] is not suitable for
Eq. (33).

To discuss the noise-induced explosion, we consider the following stochastic
reaction-diffusion equation:



5116 KEXUE LI, JIGEN PENG AND JUNXIONG JIA

∂u

∂t
= Au+ f(u, x, t) + σ(u, x, t)∂tW (x, t)

+

∫
Z

ϕ(u, x, z, t)∂tÑ(t, dz), t > 0, x ∈ D

u(x, 0) = g(x), x ∈ D,
u(x, t) = 0, t > 0, x ∈ ∂D,

(35)

which is a special case of Eq. (8), where σ is independent of ∇u. We assume that
the noise terms satisfy the following conditions:
(A1′) The correlation function q(x, y) is continuous and positive for x, y ∈ D such
that ∫

D

∫
D

q(x, y)v(x)v(y)dxdy ≥ κ
( ∫

D

v(x)dx
)2

for any non-negative v ∈ H and some constant κ > 0.
(A2′) The function f(u, x, t) is continuous on R×D× [0,∞) such that f(u, x, t) ≥ 0
for u ≥ 0 and x ∈ D, t ∈ [0,∞).
(A3′) There exist continuous functions σ0, G such that they are both positive,
convex and satisfy

σ(u, x, t) ≥ σ0(u), σ2
0(u) ≥ G(u2),

for x ∈ D, u ≥ 0, t ∈ [0,∞).
(A4′) There exist continuous functions ϕ0, K such that they are both positive,
convex and satisfy∫

Z

( ∫
D

ϕ(u, x, z, t)φ(x)dx
)2
ν(dz) ≥

∫
Z

( ∫
D

ϕ0(u, z)φ(x)dx
)2
ν(dz),∫

Z

ϕ2
0(u, z)ν(dz) ≥ K(u2),

for x ∈ D, z ∈ Z, u ≥ 0, t ∈ [0,∞).
(A5′) There exists a constant M > 0 such that κG(u) + K(u) > 2λ1u for u > M ,
and ∫ ∞

M

du

κG(u) +K(u)− 2λ1u
<∞.

(A6′) The initial datum satisfies the following

(g, φ) =

∫
D

g(x)φ(x)dx > M.

Theorem 4.2. Assume that the initial-boundary value problem (8) has a unique
positive local solution and the conditions (A1′)− (A6′) hold. Then for each p ≥ 2,
there exists a constant Tp such that

lim
t→T−p

E‖ut‖Lp = lim
t→T−p

E
{∫

D

|u(x, t)|pdx
}1/p

=∞. (36)

That is, the solution explodes in mean Lp-norm sense.

Proof. We assume the conclusion is false. Then there exists the solution u and for
some p ≥ 2, E‖ut‖p <∞, t ∈ [0, T ], for any T > 0. Let û(t) = (φ, ut) be defined as
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before. By (35),

û(t) = (g, φ) +

∫ t

0

∫
D

[Au(x, s)]φ(x)dxds+

∫ t

0

∫
D

f(u, x, s)φ(x)dxds

+

∫ t

0

∫
D

σ(u, x, s)φ(x)dW (x, s)dx

+

∫ t

0

∫
Z

∫
D

ϕ(u, x, z, s)φ(x)dxÑ(ds, dz)

= (g, φ)− λ1

∫ t

0

∫
D

u(x, s)φ(x)dxds+

∫ t

0

∫
D

f(u, x, s)φ(x)dxds

+

∫ t

0

∫
D

σ(u, x, s)φ(x)dW (x, s)dx

+

∫ t

0

∫
Z

∫
D

ϕ(u, x, z, s)φ(x)dxÑ(ds, dz). (37)

By (37), we apply the Itô’s formula to û2(t) to get

û2(t) = (g, φ)2 − 2λ1

∫ t

0

û2(s)ds+ 2

∫ t

0

∫
D

û(s)f(u, x, s)φ(x)dxds

+ 2

∫ t

0

∫
D

û(s)σ(u, x, s)φ(x)dxdW (x, s)

+

∫ t

0

∫
D

∫
D

q(x, y)φ(x)φ(y)σ(u, x, s)σ(u, y, s)dxdyds

+

∫ t

0

∫
Z

[(
û(s) +

∫
D

ϕ(u, x, z, s)φ(x)dx
)2 − û2(s)

]
Ñ(ds, dz)

+

∫ t

0

∫
Z

[(
û(s) +

∫
D

ϕ(u, x, z, s)φ(x)dx
)2 − û2(s)

− 2û(s)

∫
D

ϕ(u, x, z, s)φ(x)dx
]
ν(dz)ds. (38)

Let η(t) = Eû2(t). Taking expectations of both sides of (38), we obtain

η(t) = (g, φ)2 − 2λ1

∫ t

0

η(s)ds+ 2E
∫ t

0

∫
D

û(s)f(u, x, s)φ(x)dxds

+ E
∫ t

0

∫
D

∫
D

q(x, y)φ(x)φ(y)σ(u, x, s)σ(u, y, s)dxdyds

+ E
∫ t

0

∫
Z

( ∫
D

ϕ(u, x, z, s)φ(x)dx
)2
ν(dz)ds,

or, in the differential form,

dη(t)

dt
= −2λ1η(t) + 2Eû(t)

∫
D

f(u, x, t)φ(x)dx

+ E
∫
D

∫
D

q(x, y)φ(x)φ(y)σ(u, x, t)σ(u, y, t)dxdy

+ E
∫
Z

( ∫
D

ϕ(u, x, z, t)φ(x)dx
)2
ν(dz),

η(0) = η0 = (g, φ)2.

(39)
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By (A2′), we have Eû(t)
∫
D
f(u, x, t)φ(x)dx ≥ 0. By (A1′), (A3′), Jensen’s inequal-

ity, we have ∫
D

∫
D

q(x, y)φ(x)φ(y)σ(u, x, t)σ(u, y, t)dxdy

≥ κ
( ∫

D

φ(x)σ(u, x, t)dx
)2

≥ κ
( ∫

D

φ(x)σ0(u)dx
)2

≥ κσ2
0(û(t))

≥ κG(û2(t)). (40)

By (A4′), Jensen’s inequality, we get∫
Z

(

∫
D

ϕ(u, x, z, t)φ(x)dx)2ν(dz)

≥
∫
Z

( ∫
D

ϕ0(u, z)φ(x)dx
)2
ν(dz)

≥
∫
Z

ϕ2
0(û(t), z)ν(dz)

≥ K(û2(t)). (41)

From (40), (41), (39) and Jensen’s inequality, it follows that

dη(t)

dt
≥ −2λ1η(t) + κEG(û2(t)) + EK(û2(t))

≥ −2λ1η(t) + κG(η(t)) +K(η(t)). (42)

Similar to (30), for η0 > M , we obtain

T ≤
∫ η(T )

η0

du

κG(u) +K(u)− 2λ1u
≤
∫ ∞
M

du

κG(u) +K(u)− 2λ1u
<∞.

Since T is arbitrary, this results in a contradiction. Therefore, the mean square
η(t) = Eû2(t) must blow up at some finite time T∗ > 0. Applying the Hölder
inequality, we see that (36) holds for each p ≥ 2.

Remark 4. In [5], [6], the correlation function q(x, y) is assumed to satisfy the
inequality ∫

D

∫
D

q(x, y)v(x)v(y)dxdy ≥ q1

∫
D

v2(x)dx (43)

for any positive v ∈ H and for some q1 > 0.
In fact, this assumption is not suitable. If the domain D is bounded and q ∈ (0, 1],

by the Cauchy-Schwarz inequality, we have∫
D

∫
D

q(x, y)v(x)v(y)dxdy ≤
( ∫

D

v(x)dx
)2 ≤ µ(D)

∫
D

v2(x)dx, (44)

where µ(D) is the volume of D. By (43), (44), we have µ(D) ≥ q1. If the bounded
domain D is small enough, then we get a contradiction.

Remark 5. We consider the problem (35) with a Levy-type noise, and the coeffi-
cient operator A is more general than the Laplacian, it is easy to see that Theorem
4.2 is the generalization of Theorem 4.3 in [19].
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Example 4.2. Consider the following problem in a spherical domain D = B(R) in
R3:

∂u

∂t
= 4u+ u1+α + µu4∂tW (x, t) + c0

∫ ∞
0

zu6∂tÑ(t, dz), t > 0, x ∈ D,

u(x, 0) = a0e
−β|x|, x ∈ D,

u(x, t)||x|=R = 0, t > 0,

(45)

where Ñ(dt, dz) = N(dt, dz) − dtν(dz) is a compensated Poisson measure corre-
sponding to the Poisson random measure N(dt, dz), W (x, t) is a continuous Wiener
random field with the covariance function

q(x, y) = b0 exp{−ρ(x · y)}, x, y ∈ R3.

The constants µ, c0, a0, α, β are strictly positive and x · y =
∑3
i=1 xiyi. Here

A = 4, f = u1+α, σ = µu4, ϕ = c0zu
6, Z = (0,∞).

For x, y ∈ B(R), we have

q(x, y) ≥ κ = b0 exp{−ρR2}.

Then for any non-negative v ∈ H,∫
D

∫
D

q(x, y)v(x)v(y)dxdy ≥ κ
( ∫

D

v(x)dx
)2
.

The condition (A1′) holds. It is obvious that f = u1+α > 0 for u > 0, the condition
(A2′) holds. Let G(u) = µ2u4, σ0(u) = µu4. Then σ(u, x, t) = µu4 = σ0(u)
and σ2

0(u) = G(u2). σ0 and G are both continuous, positive and convex. The
condition (A3′) is satisfied. Let ϕ0(u, z) = c0zu

6. Assume
∫∞

0
z2ν(dz) < ∞, let

K(u) =
(
c0
∫∞

0
z2ν(dz)

)
u6. Then ϕ(u, x, z, t) = c0zu

6 = ϕ0(u, z). ϕ0 and K are

both positive and convex. The condition (A4′) holds. The smallest eigenvalue of
the elliptic equation (23) is λ1 = ( πR )2. If b0 or c0 is large enough, it is easy to see

that b0 exp{−ρR2}µ2u4 +
(
c0
∫∞

0
z2ν(dz)

)
u6 > 2( πR )2u for u > M , and∫ ∞

M

du

b0 exp{−ρR2}µ2u4 +
(
c0
∫∞

0
z2ν(dz)

)
u6 − 2( πR )2u

<∞.

The condition (A5′) is satisfied. If a0 is sufficiently large, simliar to (34),we have∫
D
g(x)φ(x)dx > M . By Theorem 4.2, the solution of (45) will blow up in finite

time in Lp-norm for any p ≥ 2.
Now we consider the explosive solution problem for (8), when the domain D is

unbounded, for example, D = Rd. Let B(R) = {x ∈ Rd : |x| < R}.

Theorem 4.3. Assume that the initial-boundary value problem (8) has a unique
local solution and the conditions (A1)-(A3) hold, where D = Rd. Then for any
R > 0, there exists a constant Tp(R) > 0 such that

lim
t→Tp(R)−

E
{∫

B(R)

|u(t, x)|p
}1/p

=∞,

provided that the conditions of Theorem 4.1 holds for p ≥ 1 or the conditions of
Theorem 4.2 holds for p ≥ 2, where D = Rd.

Proof. The proof follows the spirit of the one for Theorem 3.3 in [6]. For the sake
of completeness, we present it. We only consider the case under the conditions of
Theorem 4.1, since the proof under the conditions of Theorem 4.2 is similar.
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By restricting the solution u to B(R), let û(t) =
∫
B(R)

u(x, t)φ(x)dx ≥ 0 as

defined by (26). Since u ≥ 0 on the boundary ∂B(R), by Green’s identity,

(Aut, φ) = −λ1φ+

∫
∂B(R)

u(x, t)
(
− ∂φ(x)

∂ν

)
dS. (46)

Denote n = (n1, n2, . . . , nd) as the unit outward normal vector to the boundary

∂B(R). Since there exists a constant c > 0 such that
∑d
i,j=1 aij(x)ξiξj ≥ c|ξ|2 for

all x ∈ D and ξ = (ξ1, . . . , ξd) ∈ Rd. We have ν ·n =
∑d
i,j aijninj ≥ 0. This implies

that the conormal ν(x) is an exterior direction field. Since φ > 0 in B(R) and φ = 0
on ∂B(R), we have

∂φ(x)

∂ν
≤ 0. (47)

Putting (46) into (27), by (47), we obtain the inequality (29). The rest of proof can
be completed as in Theorem 4.1.

Remark 6. In [2], when the domain D = Rd, it seems impossible to consider the
existence of the position solution of initial-boundary value problem (8) and the
explosionn of the position solution. The reason is that the proof of Theorem 2.1
in [2] relies on the fact that the volume V (D) of domain D is bounded. In [2],
the proofs of Theorem 3.1 and Theorem 4.1 are both rely on Theorem 2.1. So for
D = Rd, they are not valid.

5. Global solutions for a stochastic Allen-Cahn equation driven by a Lévy
type noise. In this section, we consider the following stochastic Allen-Cahn equa-
tion driven by a Lévy type noise,

du = (4u+ u(1− u2))dt+ bumdWt + cun
∫
Z

zÑ(dt, dz), t > 0, x ∈ D,

u(x, 0) = h(x), x ∈ D,
u(x, t) = 0, t > 0, x ∈ ∂D,

(48)

where 1 < m < 2, 1 < n < 2, b, c ∈ R, D ⊂ R3, Z = (0,∞).
Let V be a real separable Hilbert space. We first consider the more general

equation dut = (Aut + Ft(ut)dt+ Σt(ut)dWt +

∫
Z

Γt(ut, z)Ñ(dt, dz), t ≥ 0,

u0 = h(x),

(49)

where the coefficients A, Ft, Σt and Γt are assumed to be non-random or determin-

istic. W (x, t) is a Wiener random field, (Z,B(Z)) is a measurable space. Ñ(dt, dz)
is the compensated Poisson measure. Here we say that an Ft-adapted V -valued
process ut is a strong solution, or a variational solution, of the equation (49) if
u ∈ L2([0, T ];V ), and for any ϕ ∈ V , the following equation

(ut, ϕ) = (h, ϕ) +

∫ t

0

(Aus, ϕ)ds+

∫ t

0

(Fs(us), ϕ)ds+

∫ t

0

(ϕ,Σs(us)dWs)

+

∫ t

0

(

∫
Z

Γs(us, z)Ñ(ds, dz), ϕ)

holds for each t ∈ [0, T ] a.s.
Denote L1(V ) the space of nuclear (trace class) operators on V . Let U ⊂ V be

a open set and let U × [0, T ] = UT . Here a functional Φ : UT → R is said to be a
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strong Itô functional if it satisfies the following (see [7, pp. 226]):
(1) Φ : UT → R is locally bounded and continuous such that its first two partial
derivatives ∂tΦ(v, t), Φ′(v, t) and Φ′′(v, t) exist for each (v, t) ∈ UT .
(2) The derivatives ∂tΦ and Φ′ ∈ V are locally bounded and continuous in UT .
(3) For any Γ ∈ L1(V ), the map: (v, t) → Tr[Φ′′(v, t)Γ] is locally bounded and
continuous in (v, t) ∈ UT .
(4) Φ′(·, t) : U → V is such that (Φ′(·, t), v) is continuous in t ∈ [0, T ] for any v ∈ V
and

‖Φ′(v, t)‖ ≤ κ(1 + ‖v‖), (v, t) ∈ U × [0, T ],

for some κ > 0.
In the following, we will present the definition of Lyapunov functional. Let U ⊂ V

be a neighborhood of the origin. Define the operator Lt as follows:

LtΦ(v, t) =
∂

∂t
Φ(v, t) +

1

2
Tr[Φ′′(v, t)Σt(v)QΣ∗t (v)] + (Av,Φ′(v, t))

+ (Ft(v),Φ′(v, t)) +

∫
Z

[Φ(v + Γt(v, z), t)− Φ(v, t)

−
(
Γt(v, z),Φ

′(v, t)
)
]ν(dz),

where Q is the covariance operator.
A strong Itô functional Φ : U ×R+ → R is said to be a Lyapunov functional for

the equation (49), if
(1) Φ(0, t) = 0 for all t ≥ 0, and, for any ε > 0, there is a δ > 0 such that

inf
t≥0,‖h‖≥ε

Φ(h, t) ≥ δ, and

(2) for any t ≥ 0 and v ∈ U ,

LtΦ(v, t) ≤ 0.

Let uht be a strong solution of the equation (48) with uh0 = h.

Definition 5.1. The solution uht is said to be nonexplosive if

lim
r→∞

P{ sup
0≤t≤T

‖uht ‖ ≥ r} = 0,

for any T > 0. If the above holds for T = ∞, the solution is said to be ultimately
bounded.

Lemma 5.2. Let Φ : U×R+ → R+ be a Lyapunov functional and let uht denote the
strong solution of (49). For r > 0, let Br = {h ∈ V : ‖h‖ < r} such that Br ⊂ U .
Define

τ = inf{t > 0 : uht ∈ Bcr , h ∈ Br},

with Bcr = V \Br. We put τ = T if the set is empty. Then the process φt =
Φ(uht∧τ , t ∧ τ) is a local Ft-supermartingale and the following Chebyshev inequality
holds

P{ sup
0≤t≤T

‖uht ‖ ≥ r} ≤
Φ(h, 0)

Φr
,

where

Φr = inf
0≤t≤T,h∈U∩Bcr

Φ(h, t).
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Proof. From Itô’s formula, it follows that

Φ(uht∧τ ) = Φ(h, 0) +

∫ t∧τ

0

LsΦ(uhs , s)ds+

∫ t∧τ

0

(Φ′(uhs , s),Σs(u
h
s ))dWs

+

∫ t∧τ

0

∫
Z

(Φ(v + Γs(v, z), s)− Φ(v, s))Ñ(ds, dz)

≤ Φ(h, 0) +

∫ t∧τ

0

(Φ′(uhs , s),Σs(u
h
s ))dWs

+

∫ t∧τ

0

∫
Z

(Φ(v + Γs(v, z), s)− Φ(v, s))Ñ(ds, dz),

therefore, φt = Φ(uht∧τ , t ∧ τ) is a local supermartingale and

Eφt ≤ Eφ0 = Φ(h, 0).

By definition,

EφT = EΦ(uhT∧τ , T ∧ τ)

≥ E{Φ(uhτ ; τ ≤ T )}
≥ inf

0≤t≤T,‖h‖=r
Φ(h, t)P{τ ≤ T}

≥ ΦrP{ sup
0≤t≤T

‖uht ‖ ≥ r},

the proof is complete.

Theorem 5.3. If there exists an Itô functional Ψ : V × R+ → R+ and a constant
α > 0 such that

LtΨ ≤ αΨ(v, t) for any v ∈ V,
and the infimum inft≥0,‖h‖≥r Ψ(h, t) = Ψr exists such that limr→∞Ψr = ∞, then

the solution uht does not explode in finite time.

Proof. Let Φ(v, t) = e−αtΨ(v, t). We have

LtΦ(v, t) =
∂

∂t
Φ(v, t) +

1

2
Tr[Φ′′(v, t)Σt(v)QΣ∗t (v)] + (Av,Φ′(v, t))

+ (Ft(v),Φ′(v, t)) +

∫
Z

[Φ(v + Γt(v, z), t)− Φ(v, t)

− Φ′(v, t)Γt(v, z)]ν(dz)

= −αe−αtΨ(v, t) + e−αt
∂

∂t
Ψ(v, t) + e−αt

(1

2
Tr[Ψ′′(v, t)Σt(v)QΣ∗t (v)]

+ (Av,Ψ′(v, t))

+ (Ft(v),Ψ′(v, t)) +

∫
Z

[Ψ(v + Γt(v, z), t)−Ψ(v, t)

−Ψ′(v, t)Γt(v, z)]ν(dz)
)

= −αe−αtΨ(v, t) + e−αtLtΨ ≤ 0.

Therefore Φ is a Lyapunov functional. By Lemma 5.2, we have

P{ sup
0≤t≤T

‖uht ‖ > r} ≤ Φ(h, 0)

Φr
=

Ψ(h, 0)

Ψr
→ 0

as r →∞, for any T > 0.
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Theorem 5.4. Let 1 < m < 2, 1 < n < 2 and the initial datum h(x) on D is
positive and continuous. Suppose that

∫∞
0
z2ν(dz) < ∞ and there is q0 > 0 such

that supx,y∈D |q(x, y)| ≤ q0. Then the equation (48) has a global strong solution.

Proof. In view of the proof of Theorem 3-6.5 in [7, pp. 86] and the proof of The-
orem 3.2 in [23], we can show that the equation (48) has a local strong solution.
By Theorem 3.1, the solution is positive. Define Φ(v, t) = ‖v‖2L2 . The infimum
inft≥0,‖h‖≥r Φ(h, t)→∞ as r →∞. We have

LtΦ(v, t) =
∂

∂t
Φ(v, t) +

b2

2
Tr[Φ′′(v, t)vmQvm] + (∆v,Φ′(v, t))

+ (v − v3,Φ′(v, t)) +

∫
Z

[Φ(v + cvnz, t)− Φ(v, t)

− (cvnz,Φ′(v, t))]ν(dz)

≤ b2
∫
D

q(x, x)v2m(x)dx− 2

∫
D

|∇v|2dx+ 2

∫
D

(v2 − v4)dx

+

∫ ∞
0

(cvnz, cvnz)ν(dz)

≤ b2q0‖v‖2mL2m + 2‖v‖2L2 − 2‖v‖4L4 + c2‖v‖2nL2n

∫ ∞
0

z2ν(dz). (50)

By (19) and (20), we have

‖v‖2mL2m ≤ ‖v‖2mαL2 ‖v‖2m(1−α)
L4

≤ ε‖v‖
2m(1−α)
1−mα

L4 + ε−
1−mα
mα ‖v‖2L2

≤ ε‖v‖4L4 + ε−
1−mα
mα ‖v‖2L2 , (51)

where α = 2−m
m . Similarly,

‖v‖2nL2n ≤ ε‖v‖4L4 + ε−
1−nβ
nβ ‖v‖2L2 , (52)

where β = 2−n
n . By (50), (51) and (52),

LtΦ(v, t) =
(
b2q0ε+ c2ε

∫ ∞
0

z2ν(dz)− 2
)
‖v‖4L4

+
(
b2q0ε

− 1−mα
mα + c2ε−

1−nβ
nβ

∫ ∞
0

z2ν(dz) + 2
)
‖v‖2L2 .

Choose ε small such that b2q0ε+ c2ε
∫∞

0
z2ν(dz)− 2 ≤ 0, we have

LtΦ(v, t) ≤ CΦ(v, t).

Therefore, by Theorem 5.3, the equation (48) has a global strong solution.
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