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1. Introduction

In [Kel76] Keller formulated the following very general definition of inverse problems, which
is often cited in the literature:

We call two problems inverses of one another if the formulation of each involves
all or part of the solution of the other. Often, for historical reasons, one of the
two problems has been studied extensively for some time, while the other is
newer and not so well understood. In such cases, the former problem is called
the direct problem, while the latter is called the inverse problem.

In many cases one of the two problems is not well-posed in the following sense:

Definition 1.1. (Hadamard) A problem is called well-posed if

1. there exists a solution to the problem (existence),

2. there is at most one solution to the problem (uniqueness),

3. the solution depends continuously on the data (stability).

A problem which is not well-posed is called ill-posed. If one of two problems which are
inverse to each other is ill-posed, we call it the inverse problem and the other one the direct
problem. All inverse problems we will consider in the following are ill-posed.

If the data space is defined as set of solutions to the direct problem, existence of a
solution to the inverse problem is clear. However, a solution may fail to exist if the data
are perturbed by noise. This problem will be addressed below. Uniqueness of a solution
to an inverse problem is often not easy to show. Obviously, it is an important issue. If
uniqueness is not guaranteed by the given data, then either additional data have to be
observed or the set of admissible solutions has to be restricted using a-priori information
on the solution. In other words, a remedy against non-uniqueness can be a reformulation
of the problem.

Among the three Hadamard criteria, a failure to meet the third one is most delicate
to deal with. In this case inevitable measurement and round-off errors can be amplified
by an arbitrarily large factor and make a computed solution completely useless. Until
the beginning of the last century it was generally believed that for natural problems the
solution will always depend continuously on the data (’natura non facit salti’). If this
was not the case, the mathematical model of the problem was believed to be inadequate.
Therefore, these problems were called ill- or badly posed. Only in the second half of the last
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1. Introduction 4

century it was realized that a huge number of problems aring in science and technology are
ill-posed in any reasonable mathematical setting. This initiated a large amount of research
in stable and accurate methods for the numerical solution of ill-posed problems. Today
inverse and ill-posed problems are still an active area of research. This is reflected in a
large number of journals (“Inverse Problems”, “Inverse and Ill-Posed Problems”, “Inverse
Problems in Engeneering”) and monographs ([BG95, Bau87, EHN96, Gla84, Gro84, Hof86,
Isa98, Kir96, Kre89, Lav67, Lou89, Mor84, Mor93, TA77, TGSY95]).

Let us consider some typical examples of inverse problems. Many more can be found
in the references above.

Example 1.2. (Numerical differentiation)
Differentiation and integration are two problems, which are inverse to each other. Although
symbolic differentiation is much simpler than symbolic integration, we will call differen-
tiation the inverse problem since it is ill-posed in the setting considered below. For this
reason differentiation turns out to be the more delicate problem from a numerical point of
view.

We define the direct problem to be the evalutation of the integral

(TDϕ)(x) :=

∫ x

0

ϕ(t) dt for x ∈ [0, 1]

for a given ϕ ∈ C([0, 1]). The inverse problem consists in solving the equation

TDϕ = g (1.1)

for a given g ∈ C([0, 1]) satisfying g(0) = 0, or equivalently computing ϕ = g′.
Obviously, (1.1) has a solution ϕ in C([0, 1]) if and only if g ∈ C1([0, 1]). The inverse

problem (1.1) would be well-posed if the data g were measured with the C1-norm. Although
this is certainly a natural setting, it is of no use if the given data contain measurement or
round-off errors which can only be estimated with respect to the supremum norm.

Let us assume that we are given noisy data gδ ∈ C([0, 1]) satisfying

‖gδ − g‖∞ ≤ δ

with noise level 0 < δ < 1. The functions

gδn(x) := g(x) + δ sin
nx

δ
, x ∈ [0, 1],

n = 2, 3, 4, . . . satisfy this error bound, but for the derivates

(gδn)
′(x) = g′(x) + n cos

nx

δ
, x ∈ [0, 1]

we find that
‖(gδn)′ − g′‖∞ = n.
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Hence, the error in the solutions tends blows up without bound as n → ∞ although the
error in the data is bounded by δ. This shows that (1.1) is ill-posed with respect to the
supremum norm.

Let us look at the approximate solution of (1.1) by the central difference quotients

(Rhg)(x) :=
g(x+ h) − g(x− h)

2h
, x ∈ [0, 1]

for h > 0. To make (Rhg)(x) well defined for x near the boundaries, we assume for
simplicity that g is periodic with period 1. A Taylor expansion of g yields

‖g′ − Rhg‖∞ ≤ h

2
‖g′′‖∞,

‖g′ − Rhg‖∞ ≤ h2

6
‖g′′′‖∞

if g ∈ C2([0, 1]) or g ∈ C3([0, 1]), respectively. For noisy data the total error can be
estimated by

‖g′ −Rhg
δ‖∞ ≤ ‖g′ − Rhg‖∞ + ‖Rhg − Rhg

δ‖∞ (1.2)

≤ h

2
‖g′′‖∞ +

δ

h

if g ∈ C2([0, 1]). In this estimate we have split the total error into an approximation error
‖g′−Rhg‖∞, which tends to 0 as h→ 0, and a data noise error Rhg

δ−Rhg, which explodes
as h → 0. To get a good approximation we have to balance these two error terms by a
good choice of the discretization parameter h. The minimum of the right hand side of the
error estimate is attained at h = (2/‖g′′‖)1/2δ1/2. With this choice of h the total error is
of the order

‖g′ −Rhg
δ‖∞ = O

(

δ1/2
)

. (1.3a)

If g ∈ C3([0, 1]), a similar computation shows that for h = (3/‖g′′′‖)1/3δ1/3 we get the
better convergence rate

‖g′ −Rhg
δ‖∞ = O

(

δ2/3
)

. (1.3b)

More regularity of g does not improve the order δ2/3 for the central difference quotient
Rh. It can be shown that even for higher order difference schemes the convergence rate is
always smaller than O (δ). This order can only be achieved for well-posed problems.

The convergence rate (1.3a) reflects the fact that stability can be restored to the inverse
problem (1.1) if the a-priori information

‖g′′‖∞ ≤ E (1.4)

is given. In other words, the restriction of the differentiaton operator to the set WE :=
{g : ‖g′′‖ ≤ E} is continuous with respect to the maximum norm. This follows from the



1. Introduction 6

estimate

‖g′1 − g′2‖∞ ≤ ‖( d
dx

− Rh)(g1 − g2)‖∞ + ‖Rh(g1 − g2)‖∞

≤ h

2
‖g′′1 − g′′2‖∞ +

‖g1 − g2‖∞
h

≤ 2
√

E‖g1 − g2‖∞,
which holds for g1, g2 ∈WE with the choice h =

√

‖g1 − g2‖∞/E.
In studying this first example we have seen a number of typical properties of ill-posed

problems:

• amplification of high frequency errors

• dependence of ill-posedness on the choice of norms, which is often determined by
practical needs

• restoration of stability by a-priori information

• a trade-off between accuracy and stability in the choice of the discretization parameter

• dependence of the optimal choice of the discretization parameter and the convergence
rate on the smoothness of the solution

Example 1.3. (Backwards heat equation)

Direct Problem: Given ϕ ∈ L2([0, 1]) find g(x) = u(x, T ) (T > 0) where u :
[0, 1] × [0, T ] → R satisfies

∂

∂t
u(x, t) = ∆u(x, t), x ∈ (0, 1), t ∈ (0, T ), (1.5a)

u(0, t) = u(1, t) = 0, t ∈ (0, T ], (1.5b)

u(x, 0) = ϕ(x), x ∈ [0, 1]. (1.5c)

ϕ may describe a temperature profile at time t = 0. On the boundaries of the interval
[0, 1] the temperature is kept at 0. The task is to find the temperature at time t = T . The
inverse problem consists in finding the initial temperature given the temperature at time
t = T .

Inverse Problem: Given g ∈ L2([0, 1]), find ϕ ∈ L2([0, 1]) such that u(·, T ) = g
and u satisfies (1.5).

Let ϕn :=
√

2
∫ 1

0
sin(πnx)ϕ(x) dx denote the Fourier coefficients of ϕ with respect to

the complete orthonormal system {
√

2 sin(πn·) : n = 1, 2, . . .} of L2([0, 1]). A separation
of variables leads to the formal solution

u(x, t) =
√

2
∞
∑

n=1

ϕne
−π2n2t sin(nπx) (1.6)
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of (1.5). It is a straightforward exercise to show that u defined by (1.6) belongs to
C∞([0, 1] × (0, T ]) and satisfies (1.5a) and (1.5b). Moreover, the initial condition (1.5c) is
satisfied in the L2 sense, i.e. u(·, t) → ϕ as t→ 0 in L2([0, 1]).

Introducing the operator TBH : L2([0, 1]) → L2([0, 1]) by

(TBHϕ)(x) :=

∫

2

∞
∑

n=1

(

e−π
2n2T sin(nπx) sin(nπy)

)

ϕ(y) dy, (1.7)

we may formulate the inverse problem as an integral equation of the first kind

TBHϕ = g. (1.8)

Note that the direct solution operator TBH damps out high frequency components with
an exponentially descreasing factor e−π

2n2T . Therefore, in the inverse problem a data error
in the nth Fourier component of g is amplified by the factor eπ

2n2T ! This shows that the
inverse problem is severely ill-posed.

Also note that the inverse problem does not have a solution for arbitrary g ∈ L2([0, 1]).
For more information on inverse problems in diffusion processes we refer to [ER95].

Example 1.4. (Sideways heat equation and deconvolution problems)
We again consider the heat equation on the interval [0, 1], but this time with an infinite
time interval:

ut(x, t) = uxx(x, t), x ∈ (0, 1), t ∈ R (1.9a)

The interval [0, 1] may describe some heat conducting medium, e.g. the wall of a furnace.
We assume that the exterior side of the wall is insulated,

ux(0, t) = 0, t ∈ R, (1.9b)

and that the interior side has the temperature of the interior of the furnace,

u(1, t) = ϕ(t), t ∈ R. (1.9c)

Direct Problem: Given ϕ ∈ L2(R) find u : [0, 1] × R → R satisfying (1.9).

In practice the interior of a furnace is not accessible. Temperature measurements can
only be taken at the exterior side of the wall. This leads to the

Inverse Problem: Given g ∈ L2(R), find ϕ ∈ L2(R) such that the solution to
(1.9) satisfies

u(0, t) = g(t), t ∈ R. (1.10)

The Fourier transform of u with respect to the time variable,

(Fu)(x, ω) :=
1√
2π

∫ ∞

−∞
e−iωtu(x, t) dt
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formally satisfies
Fuxx = (Fu)xx and Fut = iωFu

for 0 < x < 1. Hence, Fu is characterized by the equations

(Fu)xx = iωFu, (Fu)x(0, ·) = 0, (Fu)(1, ·) = Fϕ,

which have the explicit solution

(Fu)(x, ω) =
cosh

√
iωx

cosh
√
iω

(Fϕ)(ω)

where
√
iω =

√

ω
2
+i
√

ω
2
. It is easily checked that the inverse Fourier transform of the right

hand side of this equation really defines a solution to (1.9). Therefore, we can reformulate
our problem as an operator equation TSHϕ = g with the operator TSHϕ : L2(R) → L2(R)
defined by

TSHϕ := F−1(cosh
√
iω)−1Fϕ. (1.11)

By the Convolution Theorem TSH can be written as a convolution operator

(TSHϕ)(t) =

∫ ∞

−∞
k(t− s)ϕ(s) ds

with kernel k =
√

2πF−1((cosh
√
iω)−1).

Integral equations of convolution type also arise in other areas of the applied sciences,
e.g. in deblurring of images.

Example 1.5. (Deblurring of images)
In early 1990 the Hubble Space Telescope was launched into the low-earth orbit outside
of the disturbing atmosphere in order to provide images with a unprecedented spatial
resolution. Unfortunately, soon after launch a manufacturing error in the main mirror was
detected, causing severe spherical aberrations in the images. Therefore, before the space
shuttle Endeavour visited the telescope in 1993 to fix the error, astronomers employed
inverse problem techniques to improve the blurred images (cf. [Ado95, LB91]).

The true image ϕ and the blurred image g are related by a first kind integral equation
∫ ∞

−∞

∫ ∞

−∞
k(x, y; x′, y′)ϕ(x′, y′) dx′ dy′ = g(x, y) (1.12)

where k is the blurring function. k(·; x0, y0) describes the blurred image of a point source
at (x0, y0). It is usually assumed that k is spatially invariant, i.e.

k(x, y; x′, y′) = h(x− x′, y − y′), x, x′, y, y′ ∈ R. (1.13)

h is called point spread function. Under the assumption (1.13) the direct problem is de-
scribed by the convolution operator

(TDBϕ)(x, y) :=

∫ ∞

−∞

∫ ∞

−∞
h(x− x′, y − y′)ϕ(x′, y′) dx′ dy′.
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The exact solution to the problem
TDBϕ = g (1.14)

can in principle be computed by Fourier transformation as for the sideways heat equation.
We get ϕ = (2π)−1F−1(1/ĥ)Fg. Again, the multiplication by 1/ĥ is unstable since ĥ := Fh
vanishes asymptotically for large arguments. Therefore the inverse problem to determine
ϕ ∈ L2(R2) given g ∈ L2(R2) is ill-posed.

In many image restoration applications, a crucial problem is to find a suitable point
spread function. For the Hubble Space Telescope it turned out that the blurring function
was to some extent spatially varying, i.e. that assumption (1.13) was violated. Moreover
the functions k(·; x0, y0) had a comparatively large support.

Example 1.6. (Computerized tomography)
Computerized tomography is used in medical imaging and other applications and has been
studied intensively for a long time (cf. [Hel80, Nat86, RK96]). In medical X-ray tomography
one tries to determine the density ϕ of a two-dimensional cross section of the human body
by measuring the attenuation of X-rays. We assume that the support of ϕ is contained in
the disc of radius 1. Let I(t) = Iϑ,s(t) denote the intensity of an X-ray traveling in direction

ϑ⊥ along the line t 7→ sϑ+tϑ⊥ where ϑ ∈ S1 := {x ∈ R2 : |x| = 1} and ϑ⊥ :=

(

0 1
−1 0

)

ϑ

(cf. Fig. 1.1). Then I satisfies the differential equation

I ′(t) = −ϕ(sϑ+ tϑ⊥)I(t)

with the explicit solution

I(t) = I(−∞) exp

(

−
∫ t

−∞
ϕ(sϑ+ t̃ϑ⊥) dt̃

)

.

If ϕ has compact support, then I(t) is constant for |t| sufficiently large. The asymptotic

values I(±∞) of I(t) are the given data. We have − ln
Iϑ,s(∞)

Iϑ,s(−∞)
= (Rϕ)(ϑ, s) where the

Radon transform is defined by

(Rϕ)(ϑ, s) :=

∫ ∞

−∞
ϕ(sϑ+ tϑ⊥) dt.

The direct problem consists in evaluating the Radon transform (Rϕ)(ϑ, s) for a given density
distribution ϕ ∈ L2(B1), B1 := {x ∈ R2 : |x| ≤ 1} at all ϑ ∈ S1 and s ∈ R. The inverse
problem is to find ϕ ∈ L2(B1) given g = Rϕ ∈ L2(S1 × R).

In the special case that ϕ is radially symmetric we only need rays from one direction
since (Rϕ)(ϑ, s) is constant with respect to the direction ϑ. If ϕ(x) = Φ(|x|2), we obtain

(Rϕ)(ϑ, s) =

∫

√
1−s2

−
√

1−s2
ϕ(sϑ+ tϑ⊥) dt = 2

∫

√
1−s2

0

Φ(t2 + s2) dt =

∫ 1

σ

Φ(τ)√
τ − σ

dτ
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ϑ

s

source

detector

ϑ

Fig. 1.1: The Radon transform

where we have used the substitutions τ = t2 + s2 and σ = s2. Hence our problem reduces
to the Abel integral equation

(TCTΦ)(σ) = g(σ), σ ∈ [0, 1] (1.15)

with the Volterra integral operator

(TCTΦ)(σ) :=

∫ 1

σ

Φ(τ)√
τ − σ

dτ. (1.16)

Example 1.7. (Electrical Impedance Tomography, EIT)
Let D ⊂ R

d, d = 2, 3 describe an electrically conducting medium with spatially varying
conductivity σ(x). We denote the voltage by u and assume that the electric field E =
− gradu is stationary, i.e. ∂tE = 0. By Ohm’s law, the current density j satisfies j =
σE = −σ gradu. Applying the div operator to the Maxwell equation rotH = j + ∂t(ǫE)
yields

div σ gradu = 0, in D. (1.17a)

since div rot = 0. On the boundary a current distribution

σ
∂u

∂ν
= I, on ∂D (1.17b)

is prescribed. By Gauss’ law (or the conservation of charge) it must satisfy
∫

∂D

I ds = 0. (1.17c)

Since the voltage is only determined up to a constant, we can normalize u by
∫

∂D

u ds = 0. (1.17d)
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Direct problem: Given σ, determine the voltage u|∂D on the boundary for all
current distributions I satisfying (1.17c) by solving the elliptic boundary value
problem (1.17a), (1.17b), (1.17d). In other words, determine the Neumann-to-
Dirichlet map Λσ : H−1/2(∂D) → H1/2(∂D) defined by ΛσI := u|∂D.

Inverse problem: Given measurements of the voltage distributation u|∂D for all
current distributations I, i.e. given the Neumann-to-Dirichlet map Λσ, recon-
struct σ.

This problem has been studied intensively due to numereous applications in medical imag-
ing and nondestructive testing. Note that even though the underlying differential equation
(1.17a) is linear, the mapping σ 7→ Λσ is nonlinear. Some important papers on theoretical
aspects of this problem are [Ale88, Nac88, Nac95, SU87].

For d = 1 the Neumann-to-Dirichlet map is determined by one real number, which
is certainly not enough information to reconstruct the function σ(x). If we assume the
interior measurements of u are available, i.e. that u(x) is known for say x ∈ [0, 1] in
addition to a(0)u′(0), then σ can be computed explicitely. Since (σu′)′ = 0, we have
σ(x)u′(x) − σ(0)u′(0) =

∫ x

0
(σu′)′ dx̃ = 0, and hence

σ(x) =
σ(0)u′(0)

u′(x)

provided u′(x) vanishes nowhere. This problem is (mildly) ill-posed as it involves differen-
tiation of the given data u (see example 1.2). If u′ is small in some areas, this may cause
additional instability.

We have introduced two problems where a coefficient in a partial differential equation is
to be determined from (partial) knowledge of the solution of the equation. Such problems
are refered to as parameter identification problems (cf. [BK89, Isa90, Isa98]).

Example 1.8. (Inverse obstacle scattering problems)
Another particularly important class of inverse problems are inverse scattering problems.
Such problems arise in acoustics, electromagnetics, elasticity, and quantum theory. The
aim is to identify properties of inaccessible objects by measuring waves scattered by them.
For simplicity we only look at the acoustic case. Let U(x, t) = Re(u(x)e−iωt) describe the
velocity potential of a time harmonic wave with frequency ω and space-dependent part
u propagating through a homogeneous medium. Then the wave equation 1

c2
∂2

∂t2
U = ∆U

reduces to the Helmholtz equation

∆u+ k2u = 0 in R
d\K. (1.18a)

Here k = ω/c is the wave number, and K describes an impenetrable, smooth, bounded
obstacle K. The boundary condition on ∂K depends on the surface properties. For sound-
soft obstacles we have the Dirichlet condition

u = 0 on ∂K. (1.18b)
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We assume that the total field u = ui + us is the superposition of an known incident field
ui(x) = eik〈x,d〉 with direction d ∈ {x ∈ R2 : |x| = 1} and a scattered field us. The scattered
field satisfies the Sommerfeld’s radiation condition

lim
r→∞

r(d−1)/2

(

∂us
∂r

− ikus

)

= 0 r = |x|, uniformly for all x̂ = x/r, (1.18c)

which guarantees that asymptotically energy is transported away from the origin. More-
over, this condition implies that the scattered field behaves asymptotically like an outgoing
wave:

us(x) =
eikr

r(d−1)/2

(

u∞(x̂) + O

(

1

|x|

))

, |x| → ∞ (1.19)

The function u∞ : Sd−1 → C defined on the sphere Sd−1 := {x̂ ∈ Rd : |x̂| = 1} is called far
field pattern or scattering amplitude of us.

Direct Problem: Given a smooth bounded obstacle K and an incident wave ui
find the far-field pattern u∞ ∈ L2(Sd−1) of the scattered field satisfying (1.18).

Inverse Problem: Given the far-field pattern u∞ ∈ L2(Sd−1) and the incident
wave ui find the obstacle K (e.g. a parametrization of its boundary ∂K).

For more information on inverse scattering problems we refer to the monographs [CK83,
CK97b, Ram86] and the literature therein.

All the examples we have considered can be formulated as operator equations

F (ϕ) = g (1.20)

for operators F : X → Y between normed spaces X and Y . For the linear problems 1.2,
1.3, 1.4, 1.5, and 1.6, F is given by a linear integral operator

(F (ϕ))(x) = (Tϕ)(x) =

∫

k(x, y)ϕ(y) dy

with some kernel k, i.e. these problems can be formulated as integral equations of the first
kind. For operator equations of the form (1.20) Hadamard’s criteria of well-posedness in
Definition 1.1 are

1. F (X) = Y .

2. F is one-to-one.

3. F−1 is continuous.
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The third criterium cannot be satisfied if F is a compact operator (i.e. it maps bounded
sets to relatively compact sets) and if dimX = ∞. Otherwise the unit ball B = F−1(F (B))
in X would be relatively compact, which is false.

If g in equation (1.20) does not describe measured data, but a desired state and if ϕ
describes control parameter, one speaks of an optimal control problem. Such problems are
related to inverse problems, but the point of view is different in some respects. First of all,
one is mainly interested in convergence in the image space Y rather than the pre-image
space X. Often one is not even care about uniqueness of a solution ϕ to (1.20). Whereas
in inverse problems it is assumed that g (not gδ!) belongs to the range of F , this is not
true for optimal control problems. If the desired state g is not attainable, one tries to get
as close as possible to g, i.e. (1.20) is replaced by the minimization problem

‖F (ϕ) − g‖ = min! ϕ ∈ X.



2. Algorithms for the solution of
linear inverse problems

In this chapter we introduce methods for the stable solution of linear ill-posed operator
equations

Tϕ = g. (2.1)

Here T : X → Y is a bounded linear injective operator between Hilbert spaces X and Y ,
and g ∈ R(T ). The algorithms we are going to discuss have to take care of the fact that
the solution of (2.1) does not depend continuously on the data, i.e. that ‖T−1‖ = ∞ and
that the data may be perturbed by noise. We assume that only noisy data gδ are at our
disposal and that

‖gδ − g‖ ≤ δ. (2.2)

Tikhonov regularization

The problem to solve (2.1) with noise data gδ may be equivalently reformulated as finding
the minimum of the functional ϕ 7→ ‖Tϕ − gδ‖2 in X. Of course, the solution to this
minimization problem again does not depend continuously on the data. One possibility to
restore stability is to add a penalty term to the functional involving the distance of ϕ to
some initial guess ϕ0:

Jα(ϕ) := ‖Tϕ− gδ‖2 + α‖ϕ− ϕ0‖2

The parameter α > 0 is called regularization parameter. If no initial guess is known, we
take ϕ0 = 0.

Theorem 2.1. The Tikhonov functional Jα has a unique minimum ϕδα in X for all α > 0,
gδ ∈ Y , and ϕ0 ∈ X. This minimum is given by

ϕδα = (T ∗T + αI)−1(T ∗gδ + αϕ0). (2.3)

The operator T ∗T + αI is boundedly invertible, so ϕδα depends continuously on gδ.

To prove this theorem we need some preparations.

Definition 2.2. Let X, Y be normed spaces, and let U be an open subset of X. A mapping
F : U → Y is called Fréchet differentiable at ϕ ∈ U if there exists a bounded linear operator
F ′[ϕ] : X → Y such that

lim
h→0

1

‖h‖ (F (ϕ+ h) − F (ϕ) − F ′[ϕ]h) = 0. (2.4)

14



2. Algorithms for the solution of linear inverse problems 15

F ′[ϕ] is called the Fréchet derivative of F at ϕ. F is called Fréchet differentiable if it is
Fréchet differentiable at every point ϕ ∈ U .

Lemma 2.3. Let U be an open subset of a normed space X. If F : U → R is Fréchet
differentiable at ϕ and if ϕ ∈ U is a local minimum of F , then F ′[ϕ] = 0.

Proof. Assume on the contrary that F ′[ϕ]h 6= 0. After possibly changing the sign of h we
may assume that F ′[ϕ]h < 0. Then

lim
ǫց0

F (ϕ+ ǫh) − F (ϕ)

ǫ
= F ′[ϕ]h < 0.

This contradicts the assumption that ϕ is a local minimum of F .

Lemma 2.4. The Tikhonov functional is Fréchet differentiable for every α ≥ 0, and the
Fréchet derivative is given by

J ′
α[ϕ]h = 2 Re

〈

T ∗(Tϕ− gδ) + α(ϕ− ϕ0), h
〉

.

Proof. The assertion follows from the identity

Jα(ϕ+ h) − Jα(ϕ) − J ′
α[ϕ]h = ‖Th‖2 + α‖h‖2.

Proof of Theorem 2.1. Assume that ϕδα minimizes the Tikhonov functional Jα. Then
J ′[ϕδα]h = 0 for all h ∈ X by Lemma 2.3 and 2.4. The choice h = T ∗(Tϕ− gδ)+α(ϕ−ϕ0)
implies that

(T ∗T + αI)ϕδα = T ∗gδ + αϕ0.

The bounded invertibility of T ∗T + αI follows from the Lax-Milgrim lemma and the in-
equality

Re 〈(T ∗T + αI)ϕ, ϕ〉 = ‖Tϕ‖2 + α‖ϕ‖2 ≥ α‖ϕ‖2.

To show that ϕδα defined by (2.3) minimizes Jα, note that for all h ∈ X \ {0} the function
ψ(t) := Jα(ϕ

δ
α + th) is a polynomial of degree 2 with ψ ≥ 0 and ψ′(0) = 0. Hence,

ψ(t) ≥ ψ(0) for all t ∈ R with equality only for t = 0.

Landweber iteration

Another idea is to minimize the functional J0(ϕ) = ‖Tϕ − gδ‖2 by the steepest decent
method. According to Lemma 2.4 the direction of steepest decent is h = −T ∗(Tϕ − gδ).
This leads to the recursion formula

ϕ0 = 0 (2.5a)

ϕn+1 = ϕn − µT ∗(Tϕn − gδ), n ≥ 0, (2.5b)
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known as Landweber iteration. We will see later that the step size parameter µ has be
chosen such that µ‖T ∗T‖ ≤ 1. It can be shown by induction that the nth Landweber
iterate is given by

ϕn =

n−1
∑

j=0

(I − µT ∗T )jµT ∗gδ. (2.6)

In fact, the equation is obviously correct for n = 0, and if (2.6) holds true for n, then

ϕn+1 = (I − µT ∗T )ϕn + µT ∗gδ =
n
∑

j=0

(I − µT ∗T )jµT ∗gδ.

If some initial guess ϕ0 to the solution is known, the iteration should be started at ϕ0.
This case can be reduced to (2.5) by introducing the data g̃δ = gδ − Tϕ0. The Landweber
iterates ϕ̃n corresponding to these data are related to ϕn by ϕ̃n = ϕn − ϕ0, n ≥ 0.

By possibly rescaling the norm in Y , we may also assume for theoretical purposes that

‖T‖ ≤ 1. (2.7)

Then we may set µ = 1, and the formulas above become a bit simpler. In practice it is
necessary to estimate the norm of ‖T ∗T‖ since the speed of convergence depends sensitively
on the value µ‖T ∗T‖, which should not be much smaller than 1. This can be done by a
few steps of the power method ψn+1 := T ∗Tψn/‖T ∗Tψn‖. Usually after about 5 steps with
a random starting vector ψ0 the norm of ‖T ∗Tψn‖ is sufficiently close to ‖T ∗T‖.

Discrepancy principle

A crucial problem concerning Tikhonov regularization as well as other regularization meth-
ods is the choice of the regularization parameter. For Landweber iteration the number of
iterations plays the role of the regularization parameter. For Tikhonov regularization with
ϕ0 = 0 the total error ϕ− ϕδα can be decomposed as follows:

ϕ− ϕδα = ϕ− (αI + T ∗T )−1T ∗Tϕ+ (T ∗T + αI)−1T ∗(g − gδ)

= α(αI + T ∗T )−1ϕ+ (T ∗T + αI)−1T ∗(g − gδ)

The first term on the right hand side of this identity is called the approximation error,
and the second term is called the data noise error. Formally (at least if T is a non-zero
multiple of the identity operator) the approximation error tends to 0 as α → 0. We will
show later that this is true for arbitrary T and ϕ ∈ N(T )⊥. On the other hand, the
operator (T ∗T + αI)−1T ∗ formally tends to the unbounded operator T−1, so we expect
that the propagated data noise error explods as α → 0. This situation is illustrated in
Figure 2.1. We have a trade-off between accuracy and stability: If α is too large, we get
a poor approximation of the exact solution even for exact data, and if α is too small, the
reconstruction becomes unstable. The optimal value of α depends both on the data noise
level δ and the exact solution ϕ.



2. Algorithms for the solution of linear inverse problems 17

0 1 2 3 4 5
0

2

4

6

8

10

12

regularization parameter

er
ro

r

approximation error
propagated data noise error
total error

Fig. 2.1: Dependence of error terms on regularization parameter

There exist a variety of strategies for choosing the regularization parameter. The most
well-known is Morozov‘s discrepancy principle. It implies that one should not try to satisfy
the operator equation more accurately than the data noise error. More precisely, it consists
in taking the largest regularization parameter α = α(δ, gδ) such that the residual ‖Tϕδα−gδ‖
is lower or equal τδ, where τ ≥ 1 is some fixed parameter:

α(δ, gδ) := sup{α > 0 : ‖Tϕδα − gδ‖ ≤ τδ} (2.8)

We will prove later that for Tikhonov regularization and most other regularization methods
the function α 7→ ‖Tϕδα − gδ‖ is monotonely increasing. Usually it is sufficient to find α
such that τ1δ ≤ ‖Tϕδα − gδ‖ ≤ τ2δ for given constants 1 ≤ τ1 < τ2. This can be done
by a simple bisection algorithm. Faster convergence can be achieved by Newton’s method
applied to 1/α as unknown.

For iterative methods such as Landweber iteration, the discrepancy principle consists
in stopping the iteration at the first index N for which ‖TϕδN − gδ‖ ≤ τδ.

Other implicit methods

Once we have computed the Tikhonov solution ϕδα defined by (2.3) we may find a better
approximation by applying Tikhonov regularization again using ϕδα as initial guess ϕ0.
This leads to iterated Tikhonov regularization:

ϕδα,0 := 0 (2.9a)

ϕδα,n+1 := (T ∗T + αI)−1(T ∗gδ + αϕδα,n), n ≥ 0 (2.9b)
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Note that only one operator T ∗T + αI has to be inverted to compute ϕδα,n for any n ∈ N.
If we use, e.g., the LU factorization to apply (T ∗T + αI)−1, the computation of ϕδα,n for
n ≥ 2 is not much more expensive than the computation of ϕδα,1.

The following expression for ϕδα,n is easily derived by induction:

ϕδα,n := (αI + T ∗T )−n(T ∗T )−1 ((αI + T ∗T )n − αnI)T ∗gδ (2.10)

Whereas in iterated Tikhonov regularization n is fixed and α is determined by some
parameter choice rule (e.g. the discrepancy principle), we may also hold α > 0 fixed and
iterpret (2.9) as an iterative method. In this case one speaks of Lardy’s method.

In his original paper on integral equations of the first kind Tikhonov [Tik63] suggested
to include a derivative operator L in the penalty term in order to damp out high frequencies,
i.e. to replace Jα by the functional

‖Tϕ− gδ‖2 + α‖L(ϕ− ϕ0)‖2. (2.11)

Since a minimum ϕδα of this functional must belong to the domain of the differential
operator, and since ‖Lϕδα‖ must not be too large, the incooperation of L has a smoothing
effect. In many cases this leads to a considerable improvement of the results. If N(L) =
{0}, the situation can usually be reduced to the situation considered before by introducing
a Hilbert space XL := D(L) ⊂ X with the norm ‖ϕ‖XL

:= ‖Lϕ‖X 1 (cf. [Kre89, Section
16.5]). Typically, XL is a Sobolev space. If 0 < dimN(L) <∞ and ‖Tϕ‖2+‖Lϕ‖2 ≥ γ‖ϕ‖2

for all ϕ ∈ D(L) and some constant γ > 0, then the regularization (2.11) still works, but
technical complications occur (cf. [EHN96, Chapter 8])

Other penalty terms have been investigated for special situations. E.g. if jumps of the
unknown solution ϕ have to be detected, the smoothing effect of (2.11) is most undesirable.
Much better results are obtained with the bounded variation norm, which is defined by
‖ϕ‖BV = ‖ϕ‖L1 + ‖ gradϕ‖L1 for smooth functions ϕ. In general, if ϕ ∈ L1(Ω), Ω ⊂ Rd is
not smooth, the weak formulation

‖ϕ‖BV := ‖ϕ‖L1 + sup

{
∫

Ω

ϕ div f dx : f ∈ C1
0 (Ω), |f | ≤ 1

}

(2.12)

has to be used. For more information on functions of bounded variation we refer to [Giu84].
The non-differentiability of the bounded variation norm causes difficulties both in the
convergence analysis and the numerical implementation of this method (cf. [CK97a, NS98,
VO96]).

Maximum entropy regularization is defined by

‖Tϕ− gδ‖2 + α

∫ b

a

ϕ(x) log
ϕ(x)

ϕ0(x)
dx (2.13)

where ϕ0 > 0 is some initial guess. It is assumed that ϕ0 and ϕ are nonnegative funtions
satisfying

∫

ϕ dx =
∫

ϕ0 dx = 1 (cf. [EHN96, SG85]). In other words, ϕ and ϕ0 can be
interpreted as probability densities. Note that the penalty term is nonlinear here. For a
convergence analysis of the maximum entropy method we refer to [EL93].

1It can be shown by results from spectral theory of unbounded operators that XL is complete if L is
self-adjoint and there exists a constant γ > 0 such that ‖Lϕ‖ ≥ γ‖ϕ‖ for all ϕ ∈ D(L).
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Other explicit methods

Implicit methods are characterized by the fact that some operator involving T has to be
inverted. For many problems the application of the operator T to a vector ϕ ∈ X can
be implemented without the need to set up a matrix corresponding to T . For example,
the application of convolution operators can be implemented by FFT using O (N logN)
flops where N is the number of unknowns. This is much faster then a matrix-vector
multiplication with O (N2) flops. Other examples include the application of inverses of
elliptic differential operator by multigrid method and the application of boundary integral
operators by multipole or panel-clustering methods. For these problems explicit schemes
such as Landweber iteration are very attractive since they do not require setting up a
matrix for T . To apply such schemes we only need routines implementing the application
of the operators T and T ∗ to given vectors.

Note that the nth Landweber iterate belongs the Krylov subspace defined by

Kn(T
∗T, T ∗gδ) := span{(T ∗T )jT ∗gδ : j = 1, . . . , n}

Since the computation of any element of Kn(T
∗T, T ∗gδ) requires only (at most) n appli-

cations of T ∗T , one may try to look for better approximations in the Krylov subspace
Kn(T

∗T, T ∗gδ).
The conjugate gradient method applied to the normal equation T ∗Tϕ = T ∗y is charac-

terized by the optimality condition

‖Tϕδn − gδ‖ = min
ϕ∈Kn(T ∗T,T ∗gδ)

‖Tϕ− gδ‖.

The algorithm is defined as follows:

ϕδ0 = 0; d0 = gδ; p1 = s0 = T ∗d0 (2.14a)

for k = 1, 2, . . . , unless sk−1 = 0

qk = Tpk (2.14b)

αk = ‖sk−1‖2/‖qk‖2 (2.14c)

ϕδk = ϕδk−1 + αkpk (2.14d)

dk = dk−1 − αkqk (2.14e)

sk = T ∗dk (2.14f)

βk = ‖sk‖2/‖sk−1‖2 (2.14g)

pk+1 = sk + βkpk (2.14h)

Note that ϕδn depends nonlinearly on gδ. Moreover, it can be shown that the function
gδ 7→ ϕδn is discontinuous. Both of these facts make the analysis of the conjugate gradient
method more difficult than the analysis of other methods.

Quasi solutions

A different method for the solution of general (linear and nonlinear) ill-posed problems is
based on the following topological result:
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Theorem 2.5. Let K be a compact topological space, and let Y be topological space satisfy-
ing the Hausdorff separation axiom. Moreover, let f : K → Y be continuous and injective.
Then f−1 : f(K) → K is continuous with respect to the topology of f(K) induced by Y .

Proof. We first show that f maps closed sets to closed sets. Let A ⊂ K be closed. Since
K is compact, A is compact as well. Due to the continuity of f , f(A) is compact. Since Y
satisfies the Hausdorff axiom, f(A) is closed.

Now let U ⊂ K be open. Then f(K\U) is closed by our previous argument. It follows
that f(U) is open in f(K) since f(U) ∪ f(K \ U) = f(K) and f(U) ∩ f(K \ U) = ∅ due
to the injectivity of f . Hence, f−1 is continuous.

By Theorem 2.5 the restriction of any injective, continuous operator to a compact set
is boundedly invertible on its range.

Definition 2.6. Let F : X → Y be a continuous (not necessarily linear) operator and let
K ⊂ X. ϕδK ∈ K is called a quasi-solution of F (ϕ) = gδ with contraint K if

‖F (ϕδK) − gδ‖ = inf
{

‖F (ϕ) − gδ‖ : ϕ ∈ K
}

. (2.15)

Obviously, a quasi-solution exists if and only if there exists a best-approximation
QF (K)g

δ to gδ in F (K). If F (K) is convex, then QF (K)g
δ exists for all gδ ∈ Y , and

QF (K) is continuous. If, moreover, K ⊂ X is compact, then ϕδK = (F |K)−1QF (X)g
δ de-

pends continuously on gδ by Theorem 2.5. Note that F (K) is convex if F is linear and K
is convex.

Since the embedding operators of function spaces with higher regularity to function
spaces with lower regularity are typically compact, convex and compact subsets K of X
are given by imposing a bound on the corresponding stronger norm. E.g., if X = L2([0, 1]),
then the sets {ϕ ∈ C1([0, 1]) : ‖ϕ‖C1 ≤ R} and {ϕ ∈ H1

0 ([0, 1]) : ‖ϕ′‖L2 ≤ R} are compact
in X for all R > 0. Note the in the latter case (2.11) with L = d/dx can be interpreted as
a penalty method for solving the constraint optimization problem (2.15) with F = T . In
the former case the constraint optimization problem (2.15) is more difficult to solve.

Regularization by discretization

We have seen in Example 1.2 that inverse problems can be regularized by discretization.
In fact, the restriction of T to any finite dimensional subspace Xn ⊂ X yields a well-posed
problem since linear operators on finite dimensional spaces are always bounded. However,
the condition number of the finite dimensional problem may be very large unless Xn is
chosen properly. Whereas for differentiation and some other important problems it is well
understood how to choose finite dimensional subspaces such that the condition number
can be controlled, appropriate finite dimensional subspaces are not always known a-priori,
and the numerical computation of such spaces is usually too expensive.

In regularization by discretization the size of the finite dimensional subspace acts as
a regularization parameter. Therefore, asymptotically the solution becomes less reliable
as the discretization gets finer. We refer to [Nat77], [EHN96, Section 3.3], and [Kre89,
Chapter 17] as general references.
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Of course, if other regularization methods such as Tikhonov regularization are used, the
regularized problems have to be discretized for a numerical implementation, and the effects
of this discretization have to be investigated ([Neu88, PV90, Hoh00]). This is refered to as
regularization with discretization as opposed to regularization by discretization discussed
before. In the former case the choice of the discretization scheme is not as critical, and for
any reasonable method the quality of the solution does not deteriorate as the discretization
gets finer. In this lecture we will neither consider regularization by nor regularization with
discretization.



3. Regularization methods

Let X and Y be Hilbert spaces, and let L(X, Y ) denote the space of linear bounded
operators from X to Y . We define L(X) := L(X,X). For T ∈ L(X, Y ), the null-space
and the range of T are denoted by N(T ) := {ϕ ∈ X : Tϕ = 0} and R(T ) := T (X).

Orthogonal projections

Theorem 3.1. Let U be a closed linear subspace of X. Then for each ϕ ∈ X there exists
a unique vector ψ ∈ U satisfying

‖ψ − ϕ‖ = inf
u∈U

‖u− ϕ‖. (3.1)

ψ is called the best approximation to ϕ in U . ψ is the unique element of U satisfying

〈ϕ− ψ, u〉 = 0 for all u ∈ U. (3.2)

Proof. We abbreviate the right hand side of (3.1) by d and choose a sequence (un) ⊂ U
such that

‖ϕ− un‖2 ≤ d2 +
1

n
, n ∈ N. (3.3)

Then

‖(ϕ− un) + (ϕ− um)‖2 + ‖un − um‖2

= 2‖ϕ− un‖2 + 2‖ϕ− um‖2 ≤ 4d2 +
2

n
+

2

m

for all n,m ∈ N. Since 1
2
(un + um) ∈ U it follows that

‖un − um‖2 ≤ 4d2 +
2

n
+

2

m
− 4

∥

∥

∥

∥

ϕ− 1

2
(un + um)

∥

∥

∥

∥

≤ 2

n
+

2

m
.

This shows that (un) is a Cauchy sequence. Since U is complete, it has a unique limit
ψ ∈ U . Passing to the limit n → ∞ in (3.3) shows that ψ is a best approximation to ϕ.
From the equality

‖(ϕ− ψ) + tu‖2 = ‖ϕ− ψ‖2 + 2tRe 〈ϕ− ψ, u〉 + t2‖u‖2, (3.4)

which holds for all u ∈ U and all t ∈ R, it follows that 2|Re 〈ϕ− ψ, u〉 | ≤ t‖u‖2 for all
t > 0. This implies (3.2). Going back to (3.4) shows that ψ is the only best approximation
to ϕ in U .

22
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Remark 3.2. An inspection of the proof shows that Theorem 3.1 remains valid if U is a
closed convex subset of X. In this case (3.2) has to be replaced by

Re 〈ϕ− ψ, u− ψ〉 ≤ 0 for all u ∈ U. (3.5)

Theorem 3.3. Let U 6= {0} be a closed linear subspace of X and let P : X → U denote
the orthogonal projection onto U , which maps a vector ϕ ∈ X to its best approximation in
U . Then P is a linear operator with ‖P‖ = 1 satisfying

P 2 = P and P ∗ = P. (3.6)

I − P is the orthogonal projection onto the closed subspace U⊥ := {v ∈ X : 〈v, u〉 =
0 for all u ∈ U}. Moreover,

X = U ⊕ U⊥ and U⊥⊥ = U. (3.7)

Proof. Linearity of P follows from the characterization (3.2). Since Pϕ = ϕ for ϕ ∈ U ,
we have P 2 = P and ‖P‖ ≥ 1. (3.2) with u = Pϕ implies ‖ϕ‖2 = ‖Pϕ‖2 + ‖(I − P )ϕ‖2.
Hence, ‖P‖ ≤ 1. Since

〈Pϕ, ψ〉 = 〈Pϕ, Pψ + (I − P )ψ〉 = 〈Pϕ, Pψ〉

and analogously 〈ϕ, Pψ〉 = 〈Pϕ, Pψ〉, the operator P is self-adjoint.
To show that U⊥ is closed, let (ϕn) be a convergent subsequence in U⊥ with limit ϕ ∈ X.

Then 〈ϕ, u〉 = limn→∞ 〈ϕn, u〉 = 0, so ϕ ∈ U⊥. It follows from (3.2) that (I − P )ϕ ∈ U⊥

for all ϕ ∈ X. Moreover, 〈ϕ− (I − P )ϕ, v〉 = 〈Pϕ, v〉 = 0 for all v ∈ U⊥. By Theorem 3.1
this implies that (I − P )ϕ is the best approximation to ϕ in U⊥.

It follows immediately from the definition of U⊥ that U∩U⊥ = {0}. Moreover, U+U⊥ =
X since ϕ = Pϕ + (I − P )ϕ for all ϕ ∈ X with Pϕ ∈ U and (I − P )ϕ ∈ U⊥. Finally,
U⊥⊥ = R(I − (I − P )) = R(P ) = U .

Theorem 3.4. If T ∈ L(X, Y ) then

N(T ) = R(T ∗)⊥ and R(T ) = N(T ∗)⊥. (3.8)

Proof. If ϕ ∈ N(T ), then 〈ϕ, T ∗ψ〉 = 〈Tϕ, ψ〉 = 0 for all ψ ∈ Y , so ϕ ∈ R(T ∗)⊥. Hence,
N(T ) ⊂ R(T ∗)⊥. If ϕ ∈ R(T ∗)⊥, then 0 = 〈ϕ, T ∗ψ〉 = 〈Tϕ, ψ〉 for all ψ ∈ Y . Hence
Tϕ = 0, i.e. ϕ ∈ N(T ). This shows that R(T )⊥ ⊂ N(T ) and completes the proof of the
first equality in (3.8). Interchanging the roles of T and T ∗ gives N(T ∗) = R(T )⊥. Hence,

N(T ∗)⊥ = R(T )⊥⊥ = R(T ). The last equality follows from (3.7) since R(T )⊥ = R(T )
⊥
.

The Moore-Penrose generalized inverse

We consider an operator equation
Tϕ = g (3.9)
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with an operator T ∈ L(X, Y ). Since we also want to consider optimal control problems,
we neither assume that T is injective nor that g ∈ R(T ). First we have to define what is
meant by a solution of (3.9) in this case. This leads to a generalization of the notion of
the inverse of T .

Definition 3.5. ϕ is called a least-squares solution of (3.9) if

‖Tϕ− g‖ = inf{‖Tψ − g‖ : ψ ∈ X}. (3.10)

ϕ ∈ X is called a best approximate solution of (3.9) if ϕ is a least-squares solution of (3.9)
and if

‖ϕ‖ = inf{‖ψ‖ : ψ is least-squares solution of Tψ = g}. (3.11)

Theorem 3.6. Let Q : Y → R(T ) denote the orthogonal projection onto R(T ). Then the
following three statements are equivalent:

ϕ is a least-squares solution to Tϕ = g. (3.12)

Tϕ = Qg (3.13)

T ∗Tϕ = T ∗g (3.14)

Proof. Since 〈Tϕ−Qg, (I −Q)g〉 = 0 by Theorem 3.3, we have

‖Tϕ− g‖2 = ‖Tϕ−Qg‖2 + ‖Qg − g‖2.

This shows that (3.13) implies (3.12). Vice versa, if ϕ0 is a least-squares solution, the
last equation shows that ϕ0 is a minimum of the functional ϕ 7→ ‖Tϕ − Qg‖. Since
infϕ∈X ‖Tϕ−Qg‖ = 0 by the definition of Q, ϕ must satisfy (3.13).

Since N(T ∗) = R(T )⊥ = R(I−Q) by Theorems 3.3 and 3.4, the identity T ∗(I−Q) = 0
holds true. Hence, (3.13) implies (3.14). Vice versa, assume that (3.14) holds true. Then
Tϕ− g ∈ N(T ∗) = R(T )⊥. Hence, 0 = Q(Tϕ− g) = Tϕ−Qg.

Equation (3.14) is called the normal equation of (3.9). Note that a least-squares solution
may not exist since the infimum in (3.10) may not be attained. It follows from Theorem
3.6 that a least-squares solution of (3.9) exists if and only if g ∈ R(T ) +R(T )⊥.

Let P : X → N(T ) denote the orthogonal projection onto the null-space N(T ) of T . If
ϕ0 is a least-squares solution to (3.9) then the set of all least-squares solution to (3.9) is
given by {ϕ0 + u : u ∈ N(T )}. Since

‖ϕ0 + u‖2 = ‖(I − P )(ϕ0 + u)‖2 + ‖P (ϕ0 + u)‖2 = ‖(I − P )ϕ0‖2 + ‖Pϕ0 + u‖2,

the best-approximate solution of (3.9) is given by (I − P )ϕ0. In particular, a best-
approximate solution of (3.9) is unique if it exists.

After these preparations we introduce the Moore-Penrose inverse as follows:

Definition 3.7. The Moore-Penrose (generalized) inverse T † : D(T †) → X of T defined
on D(T †) := R(T ) +R(T )⊥ maps g ∈ D(T †) to the best-approximate solution of (3.9).
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Obviously, T † = T−1 if R(T )⊥ = 0 and N(T ) = 0. Note that T †g is not defined for all
g ∈ Y if R(T ) is not closed.

Let T̃ : N(T )⊥ → R(T ), T̃ϕ := Tϕ denote the restriction of T to N(T )⊥. Since
N(T̃ ) = N(T ) ∩ N(T )⊥ = {0} and R(T̃ ) = R(T ), the operator T̃ is invertible. By the
remarks above, the Moore-Penrose inverse can be written as

T †g = T̃−1Qg for all g ∈ D(T †). (3.15)

Definition and properties of regularization methods

Definition 3.8. Let Rα : Y → X be a family of continuous (not necessarily linear)
operators defined for α in some index set A, and let α : (0,∞) × Y → A be a parameter
choice rule. For a given noisy data gδ ∈ Y and noise level δ > 0 such that ‖gδ− g‖ ≤ δ the
exact solution T †g is approximated by Rα(δ,gδ)g

δ. The pair (R, α) is called a regularization
method for (3.9) if

lim
δ→0

sup
{
∥

∥Rα(δ,gδ)g
δ − T †g

∥

∥ : gδ ∈ Y, ‖gδ − g‖ ≤ δ
}

= 0 (3.16)

for all g ∈ D(T †). α is called an a-priori parameter choice rule if α(δ, gδ) depends only on
δ. Otherwise α is called an a-posteriori parameter choice rule.

In most cases the operators Rα are linear. E.g., for Tikhonov regularization we have
A = (0,∞) and Rα = (αI + T ∗T )−1T ∗. The discrepancy principle is an example of an
a-posteriori parameter choice rule since the regularization parameter depends on quantities
arising in the computations, which in turn depend on the observed data gδ. An example of
an a-priori parameter choice rule for Tikhonov regularization is α(δ, gδ) = δ. For iterative
methods the number of iterations plays the role of the regularization parameter, i.e. we
have A = N. We will show later that Tikhonov regularization, Landweber iteration and
other method introduced in the previous chapter together with appropriate parameter
choice rules are regularization methods in the sense of Definition 3.8.

The number
sup

{
∥

∥Rα(δ,gδ)g
δ − T †g

∥

∥ : gδ ∈ Y, ‖gδ − g‖ ≤ δ
}

in (3.16) is the worst case error of the regularization method (R, α) for the exact data
g ∈ D(T †) and the noise level δ. We require that the worst case error tends to 0 as the
noise level tends to 0.

If regularization with discretization is considered, the regularization parameter is of
the form α = (α̃, h), where α̃ is the regularization parameter of the infinite dimensional
method and h is a discretization parameter.

Note that an arbitrary reconstruction method T †g ≈ S(δ, gδ) with a (not necessarily
continuous) mapping S : (0,∞) × Y → X can be written in the form of Definition 3.8 by
setting A = X and defining Rαg := α for all g ∈ Y . This is important concerning the
negative results in Theorem 3.9 and 3.11 below.

Since it is sometimes hard or impossible to obtain information on the size of the noise
level in practice, parameter choice rules α have been devised, which only require knowledge
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of the measured data gδ, but not of the noise level δ (cf. [EHN96, Section 4.5] and the
references therein). Although such so-called error-free parameter choice rules give good
results in many cases, the following result by Bakushinskii shows that for an ill-posed
problem one cannot get convergence in the sense of Definition 3.8.

Theorem 3.9. Assume there exists a regularization method (Rα, α) for (3.9) with a param-
eter choice rule α(δ, gδ), which depends only on gδ, but not on δ. Then T † is continuous.

Proof. Choosing gδ = g in (3.16) shows that Rα(g)g = T †g for all g ∈ D(T †). Let (gn)n∈N

be a sequence in D(T †) which converges to g ∈ D(T †) as n → ∞. Then Rα(gn)gn = T †gn
for all n ∈ N. Using (3.16) again with gδ = gn gives 0 = limn→∞ ‖Rα(gn)gn − T †g‖ =
limn→∞ ‖T †gn − T †g‖. This proves the assertion.

Whereas we are considering the error as a deterministic quantity, it may be more ap-
propriate in some applications to consider it as a probabalistic quantity. The standard
method to determine the regularization parameter in this setting is generalized cross vali-
dation (cf. [Wah90]). Usually it is assumed in this setting that the image space Y is finite
dimensional and that some information on the distribution of the error is known.

Let us consider regularization methods (Rα, α) which satisfy the following assumption:

Rα : Y → X, α ∈ A ⊂ (0,∞) is a family of linear operators and

lim
δ→0

sup
{

α(δ, gδ) : gδ ∈ Y, ‖gδ − g‖ ≤ δ
}

= 0. (3.17)

It follows from (3.16) and (3.17) with gδ = g that Rα converges pointwise to T †:

lim
α→0

Rαg = T †g for all g ∈ D(T †). (3.18)

Theorem 3.10. Assume that (3.17) holds true and T † is unbounded. Then the operators
Rα cannot be uniformly bounded with respect to α, and the operators RαT cannot be norm
convergent as α → 0.

Proof. For the first statement, assume on the contrary that ‖Rα‖ ≤ C for all α ∈ A. Then
(3.18) implies ‖T †‖ ≤ C which contradicts our assumption that ‖T †‖ = ∞.

For the second statement, assume that we have norm convergence. Then there exists
α ∈ A such that ‖RαT − I‖ ≤ 1/2. It follows that

‖T †g‖ ≤ ‖T †g − RαTT
†g‖ + ‖RαQg‖ ≤ 1

2
‖T †g‖ + ‖Rα‖‖g‖

for all g ∈ D(T †), which implies ‖T †g‖ ≤ 2‖Rα‖‖g‖. Again, this contradicts our assump-
tion.

We have required that (3.16) holds true for all y ∈ D(T †). Our next result shows that
it is not possible to get a uniform convergence rate in (3.16) for all y ∈ D(T †).

Theorem 3.11. Assume that there exist a regularization method (Rα, α) for (3.9) and a
continuous function f : [0,∞) → [0,∞) with f(0) = 0 such that

sup
{
∥

∥Rα(δ,gδ)g
δ − T †g

∥

∥ : gδ ∈ Y, ‖gδ − g‖ ≤ δ
}

≤ f(δ) (3.19)

for all g ∈ D(T †) with ‖g‖ ≤ 1 and all δ > 0. Then T † is continuous.
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Proof. Let (gn)n∈N be a sequence in D(T †) converging to g̃ ∈ D(T †) as n → ∞ such that
‖gn‖ ≤ 1 for all n. With δn := ‖gn − g̃‖ we obtain

∥

∥T †gn − T †g̃
∥

∥ ≤
∥

∥T †gn − Rα(δn,gn)gn
∥

∥+
∥

∥Rα(δn,gn)gn − T †g̃
∥

∥ .

The first term on the right hand side of this inequality can be estimated by setting g =
gδ = gn in (3.19), and the second term by setting g = g̃ and gδ = gn. We obtain

∥

∥T †gn − T †g̃
∥

∥ ≤ 2f(δn).

Since f is continuous and f(0) = 0, this implies that T †gn → T †g̃ as n→ ∞. Therefore, T †

is continuous at all points g̃ with ‖g̃‖ ≤ 1. This implies that T † is continuous everywhere.

Theorem 3.11 shows that for any regularization method for an ill-posed problem con-
vergence can be arbitrarily slow. However, we have seen in Example 1.2 for the central
difference quotient that convergence rates f(δ) = C

√
δ or f(δ) = Cδ2/3 can be shown if

smoothness properties of the exact solution ϕ† = T †g are known a-priori. Later we will get
to know generalized smoothness conditions which yield convergence rates in the general
setting considered here.
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Compact operators in Hilbert spaces

Lemma 4.1. Let A ∈ L(X) be self-adjoint and assume that X 6= {0}. Then

‖A‖ = sup
‖ϕ‖=1

| 〈Aϕ, ϕ〉 |. (4.1)

Proof. Let a denote the right hand side of equation (4.1). It follows from the Cauchy-
Schwarz inequality that ‖A‖ ≥ a. To show that ‖A‖ ≤ a first note that

‖A‖ = sup
‖ϕ‖=1

‖Aϕ‖ ≤ sup
‖ϕ‖=‖ψ‖=1

| 〈Aϕ, ψ〉 |

since we may choose ψ = Aϕ/‖Aϕ‖. Let ϕ, ψ ∈ X with ‖ϕ‖ = ‖ψ‖ = 1. We choose α ∈ C

with |α| = 1 such that | 〈Aϕ, ψ〉 | = 〈Aϕ, αψ〉 and set ψ̃ := αψ. Using the polarization
identity and the fact that 〈Aχ, χ〉 ∈ R for all χ ∈ X we obtain

| 〈Aϕ, ψ〉 | =
1

4

3
∑

k=0

ik
〈

A(ϕ+ ikψ̃), ϕ+ ikψ̃
〉

=
1

4

〈

A(ϕ+ ψ̃), ϕ+ ψ̃
〉

− 1

4

〈

A(ϕ− ψ̃), ϕ− ψ̃
〉

≤ a

4

(

‖ϕ+ ψ̃‖2 + ‖ϕ− ψ̃‖2
)

=
a

4

(

2‖ϕ‖2 + 2‖ψ̃‖2
)

= a.

This shows that ‖A‖ ≤ a.

Lemma 4.2. Let A ∈ L(X) be compact and self-adjoint and assume that X 6= {0}. Then
there exists an eigenvalue λ of A such that ‖A‖ = |λ|.

Proof. By virtue of Lemma 4.1 there exists a sequence (ϕn) with ‖ϕn‖ = 1 for all n such
that 〈Aϕn, ϕn〉 → λ, n → ∞ where λ ∈ {‖A‖,−‖A‖}. To prove that λ is an eigenvalue,
we note that

0 ≤ ‖Aϕn − λϕn‖ = ‖Aϕn‖2 − 2λ 〈Aϕn, ϕn〉 + λ2‖ϕn‖2

≤ ‖A‖2 − 2λ 〈Aϕn, ϕn〉 + λ2 = 2λ (λ− 〈Aϕn, ϕn〉) → 0, n→ 0,

28



4. Spectral theory 29

so
Aϕn → λϕn, n→ ∞. (4.2)

Since A is compact, there exists a subsequence (ϕn(k)) such that Aϕn(k) → ψ, k → ∞ for
some ψ ∈ X. We may assume that A 6= 0 since for A = 0 the statement of the theorem
is trivial. It follows from (4.2) that λϕn(k) → ψ, k → ∞. Therefore, ϕn(k) converges to
ϕ := ψ/λ as k → ∞, and Aϕ = λϕ.

Theorem 4.3. (Spectral theorem for compact self-adjoint operators) Let A ∈
L(X) be compact and self-adjoint. Then there exists a complete orthonormal system E =
{ϕj : j ∈ I} of X consisting of eigenvectors of A. Here I is some index set, and Aϕj = λjϕj
for j ∈ I. The set J = {j ∈ I : λj 6= 0} is countable, and

Aϕ =
∑

j∈J
λj 〈ϕ, ϕj〉ϕj (4.3)

for all ϕ ∈ X. Moreover, for any ǫ > 0 the set Jǫ := {j ∈ I : |λj| ≥ ǫ} is finite.

Proof. By Zorn’s lemma there exists a maximal orthonormal set E of eigenfunctions of A.
Let U denote the closed linear span of E. Obviously, A(U) ⊂ U . Moreover, A(U⊥) ⊂ U⊥

since 〈Au, ϕ〉 = 〈u,Aϕ〉 = 0 for all u ∈ U⊥ and all ϕ ∈ U . As U⊥ is closed, A|U⊥ is compact,
and of course A|U⊥ is self-adjoint. Hence, if U⊥ 6= {0}, there exists an eigenvector ψ ∈ U⊥

of A due to Lemma 4.2. Since this contradicts the maximality of E, we conclude that
U⊥ = {0}. Therefore U = X, i.e. the orthonormal system E is complete.

To show (4.3) we apply A to the Fourier representation

ϕ =
∑

j∈I
〈ϕ, ϕj〉ϕj (4.4)

with respect to the Hilbert basis E.1

Assume that Jǫ is infinite for some ǫ > 0. Then there exists a sequence (ϕn)n∈N of
orthonormal eigenvectors such that |λn| ≥ ǫ for all n ∈ N. Since A is compact, there exists
a subsequence (ϕn(k)) of (ϕn) such that (Aϕn(k)) = (λn(k)ϕn(k)) is a Cauchy-sequence.
This is a contradiction since ‖λnϕn − λmϕm‖2 = λ2

n + λ2
m ≥ 2ǫ2 for m 6= n due to the

orthonormality of the vectors ϕn.

Theorem and Definition 4.4. (Singular value decomposition) Let T ∈ L(X, Y )
be compact, and let P ∈ L(X) denote the orthogonal projection onto N(T ). Then there
exist singular values σ0 ≥ σ1 ≥ · · · > 0 and orthonormal systems {ϕ0, ϕ1, . . .} ⊂ X and
{g0, g1, . . . } ⊂ Y such that

ϕ =

∞
∑

n=0

〈ϕ, ϕn〉ϕn + Pϕ (4.5)

1Recall that only a countable number of terms in (4.4) can be non-zero even if E is not count-
able. By Bessel’s inequality, we have

∑

ϕj∈E | 〈ϕ, ϕj〉 |2 ≤ ‖ϕ‖2 < ∞ where
∑

ϕj∈E | 〈ϕ, ϕj〉 |2 :=

sup{∑ϕj∈G | 〈ϕ, ϕj〉 |2 : G ⊂ E, #G < ∞}. Therefore, for each n ∈ N the set Sn := {ϕj ∈ E : | 〈ϕ, ϕj〉 | ∈
( ‖ϕ‖

n+1
,
‖ϕ‖
n

]} is finite. Hence, S =
⋃

n∈N
Sn = {ϕj ∈ E : | 〈ϕ, ϕj〉 | > 0} is countable.
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and

Tϕ =
∞
∑

n=0

σn 〈ϕ, ϕn〉 gn. (4.6)

for all ϕ ∈ X. A system {(σn, ϕn, gn)} with these properties is called a singular system of
T . If dimR(T ) <∞, the series in (4.5) and (4.6) degenerate to finite sums. The singular
values σn = σn(T ) are uniquely determined by T and satisfy

σn(T ) → 0 as n→ ∞. (4.7)

If dimR(T ) <∞ and n ≥ dimR(T ), we set σn(T ) := 0.

Proof. We use the notation of Theorem 4.3 with A = T ∗T . Then λn = 〈λnϕn, ϕn〉 =
‖Tϕn‖2 > 0 for all n. Set

σn :=
√

λn and gn := Tϕn/‖Tϕn‖. (4.8)

The vectors gn are orthogonal since 〈Tϕn, Tϕm〉 = 〈T ∗Tϕn, ϕm〉 = λn 〈ϕn, ϕm〉 = 0 for
n 6= m. (4.5) follows from (4.4) since Pϕ =

∑

j∈I\J 〈ϕ, ϕj〉ϕj. Applying T to both sides

of (4.5) gives (4.6) by the continuity of the scalar product. Now let {(σn, ϕn, gn)} be any
singular system of T . It follows from (4.6) with ϕ = ϕn that Tϕn = σngn for all n.
Moreover, since T ∗gn ∈ N(T )⊥ and 〈T ∗gn, ϕm〉 = 〈gn, Tϕm〉 = σm 〈gn, gm〉 = σnδn,m for all
n,m, we have

T ∗gn = σnϕn. (4.9)

Hence, T ∗Tϕn = σ2
nϕn. This shows that the singular values σn(T ) are uniquely determined

as positive square roots of the eigenvalues of A = T ∗T . (4.7) follows from the fact that 0
is the only possible accumulation point of the eigenvectors of A.

Example 4.5. For the operator TBH defined in Example 1.3 a singular system is given by

σn(TBH) =
√

2 exp(−π2(n+ 1)2T ),

ϕn(x) = gn(x) = sin(π(n+ 1)x), x ∈ [0, 1]

for n ∈ N0.

Theorem 4.6. The singular values of a compact operator T ∈ L(X, Y ) satisfy

σn(T ) = inf {‖T − F‖ : F ∈ L(X, Y ), dimR(F ) ≤ n} , n ∈ N0. (4.10)

Proof. Let αn(T ) denote the right hand side of (4.10). To show that αn(T ) ≤ σn(T ), we
choose Fϕ :=

∑n−1
j=0 σn 〈ϕ, ϕn〉 gn, where (σn, ϕn, gn) is a singular system of T . Then by

Parseval’s equality

‖Tϕ− Fϕ‖2 =

∞
∑

j=n

σ2
n| 〈ϕ, ϕj〉 |2 ≤ σ2

n‖ϕ‖2.
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This implies αn(T ) ≤ σn(T ). To prove the reverse inequality, let F ∈ L(X, Y ) with
dimR(F ) ≤ n be given. Then the restriction of F to span{ϕ0, . . . , ϕn} has a non-trivial
null-space. Hence, there exists ϕ =

∑n
j=0 αnϕn with ‖ϕ‖ = 1 and Fϕ = 0. It follows that

‖T − F‖2 ≥ ‖(T − F )ϕ‖2 = ‖Tϕ‖2 =

∥

∥

∥

∥

∥

n
∑

j=0

σjαjgj

∥

∥

∥

∥

∥

=
n
∑

j=0

σ2
j |αj|2 ≥ σ2

n.

Hence, αn(T ) ≥ σn(T ).

Theorem 4.7. (Picard) Let T ∈ L(X, Y ) be compact, and let {(σn, ϕn, gn)} be a singular
system of T . Then the equation

Tϕ = g (4.11)

is solvable if and only if g ∈ N(T ∗)⊥ and if the Picard criterion

∞
∑

n=0

1

σ2
n

|〈g, gn〉|2 <∞ (4.12)

is satisfied. Then the solution is given by

ϕ =

∞
∑

n=0

1

σn
〈g, gn〉ϕn. (4.13)

Proof. Assume that g ∈ N(T ∗)⊥ and that (4.12) holds true. Then g =
∑∞

n=0 〈g, gn〉 gn,
and the series in (4.13) converges. Applying T to both sides of (4.13) gives (4.11). Vice
versa, assume that (4.11) holds true. Then g ∈ N(T ∗)⊥ by Theorem 3.4. Since 〈g, gn〉 =
〈Tϕ, gn〉 = 〈ϕ, T ∗gn〉 = σn 〈ϕ, ϕn〉 by (4.9), it follows that

∞
∑

n=0

1

σ2
n

|〈g, gn〉|2 =

∞
∑

n=0

|〈ϕ, ϕn〉|2 = ‖ϕ‖2 <∞.

The solution formula (4.13) nicely illustrates the ill-posedness of linear operator equa-
tions with a compact operator: Since 1/σn → ∞ by (4.7), the large Fourier modes are
amplified without bound. Typically, as in Example 4.5 the large Fourier modes correspond
to high frequencies. Obviously, the faster the decay of the singular values, the more severe
is the ill-posedness of the problem.

We say that (4.11) is mildly ill-posed if the singular values decay to 0 at a polyno-
mial rate, i.e. if there exist constants C, p > 0 such that σn ≥ Cn−p for all n ∈ N.
Otherwise (4.11) is called severely ill-posed. If there exist constants C, p > 0 such that
σn ≤ C exp(−np), we call the problem (4.11) exponentially ill-posed.

One possibility to restore stability in (4.13) is to truncate the series, i.e. to compute

Rαg :=
∑

{n:σn≥α}

1

σn
〈g, gn〉ϕn. (4.14)
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for some regularization parameter α > 0. This is called truncated singular value decompo-
sition. A modified version is

Rαg :=
∑

{n:σn≥α}

1

σn
〈g, gn〉ϕn. +

∑

{n:σn<α}

1

α
〈g, gn〉ϕn. (4.15)

This method is usually only efficient if a singular system of the operator is known
explicitely since a numerical computation of the singular values and vectors is too expensive
for large problems.

The spectral theorem for bounded self-adjoint operators

Our next aim is to find a generalization of Theorem 4.3 for bounded self-adjoint operators.
This theorem may be reformulated as follows: We define the operator W : l2(I) → X by
W (f) :=

∑

j∈I f(j)ϕj. Here l2(I) is the Hilbert space of all functions f : I → C with the

norm ‖f‖2 :=
∑

j∈I |f(j)|2. By Parseval’s equality, W is a unitary operator. Its inverse is

given by (W−1ϕ)(j) = 〈ϕ, ϕj〉 for j ∈ J . Eq. (4.3) is equivalent to

W ∗AW = Mλ

where Mλ ∈ L(l2(I)) is defined by (M(λ)f)(j) = λjf(j), j ∈ I. In other words, there exists
a unitary map W such that A is transformed to the multiplication operator Mλ on l2(I).

An important class of operators, which occured in the examples 1.4 and 1.5, are con-
volution operators. Let k ∈ L1(Rd) satisfy k(x) = k(−x) for x ∈ Rd. Then

(Aϕ)(x) :=

∫

Rd

k(x− y)ϕ(y) dy

defines a self-adjoint operator A ∈ L(X). Recall that the Fourier transform

(Fϕ)(ω) := (2π)−d/2
∫

Rd

e−i〈ω,x〉ϕ(x) dx, ω ∈ R
d

is unitary on L2(Rd) and that the inverse operator is given by

(F−1f)(x) := (2π)−d/2
∫

Rd

ei〈ω,x〉f(ω) dω, x ∈ R
d.

Due to the assumed symmetry of k, the function Fk is real-valued, and it is bounded since
k ∈ L1(Rd). Introducing the function λ := (2π)d/2Fk and the multiplication operator
Mλ ∈ L(L2(Rd)), (Mλf)(ω) := λ(ω)f(ω), the Convolution Theorem implies that

FAF−1 = Mλ.

Thus we have again found a unitary map which transforms A to a multiplication opera-
tor. The following theorem shows that this is always possible for a bounded self-adjoint
operator.
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Theorem 4.8 (spectral theorem for bounded self-adjoint operators). Let A ∈ L(X) be
self-adjoint. Then there exist a locally compact space Ω, a positive Borel measure µ on Ω,
a unitary map

W : L2(Ω, dµ) −→ X, (4.16)

and a real-valued function λ ∈ C(Ω) such that

W ∗AW = Mλ, (4.17)

where Mλ ∈ L(L2(Ω, dµ)) is the multiplication operator defined by (Mλf)(ω) := λ(ω)f(ω)
for f ∈ L2(Ω, dµ) and ω ∈ Ω.

Note that we have already proved this theorem for all the linear examples in Chapter
(1) by the remarks above. Our proof follows the presentation in [Tay96, Section 8.1] and
makes use of the following special case of the representation theorem of Riesz, the proof of
which can be found e.g. in [Bau90, MV92]. For other versions of the spectral theorem we
refer to [HS71, Rud73, Wei76].

Theorem 4.9 (Riesz). Let Ω be a locally compact space, and let C0(Ω) denote the space
of continuous, compactly supported functions on Ω. Let L : C0(Ω) → R be a positive linear
functional, i.e. L(f) ≥ 0 for all f ≥ 0. Then there exists a positive Borel measure µ on Ω
such that for all f ∈ C0(Ω)

L(f) =

∫

f dµ.

Lemma 4.10. Let A ∈ L(X) be self-adjoint. Then the initial value problem

d

dt
U(t) = iAU(t), U(0) = I (4.18)

has a unique solution U ∈ C1(R, L(X)) given by

U(t) =

∞
∑

n=0

1

n!
(itA)n. (4.19)

{U(t) : t ∈ R} is a group of unitary operators with the multiplication

U(s + t) = U(s)U(t). (4.20)

Proof. The series (4.19) together with its term by term derivative converges uniformly on
bounded intervals t ∈ [a, b] with respect to the operator norm since

∑∞
n=0 1/n! ‖itA‖n =

exp(t‖A‖) < ∞ and
∑∞

n=1 n/n! ‖iA‖ · ‖itA‖n−1 = ‖A‖ exp(t‖A‖) < ∞. Hence, t 7→ U(t)
is differentiable, and

U ′(t) = iA

∞
∑

n=1

n

n!
(itA)n−1 = iAU(t).
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If Ũ ∈ C1(R, L(X)) is another solution to (4.18), then Z = U − Ũ satisfies Z ′(t) = iAZ(t)
and Z(0) = 0. Since A is self-adjoint

d

dt
‖Z(t)ϕ‖2 = 2 Re 〈Z ′(t)ϕ, Z(t)ϕ〉 = 2 Re 〈iAZ(t)ϕ, Z(t)ϕ〉 = 0

for all ϕ ∈ X. Hence Z(t) = 0 and U(t) = Ũ(t) for all t.
To establish (4.20) we observe that Z(s) := U(s+t)−U(s)U(t) satisfies Z ′(s) = iAZ(s)

and Z(0) = 0. It follows from the argument above that Z(s) = 0 for all s. By the definition
(4.19), U(t)∗ = U(−t) for all t ∈ R. Now (4.20) implies that U(t)∗U(t) = U(t)U(t)∗ = I,
i.e. U(t) is unitary.

For ϕ ∈ X we call
Xϕ := span{U(t)ϕ : t ∈ R} (4.21)

the cyclic subspace generated by ϕ. We say that ϕ ∈ X is a cyclic vector of X if Xϕ = X.

Lemma 4.11. If {U(t) : t ∈ R} is a unitary group on a Hilbert space X, then X is an
orthogonal direct sum of cyclic subspaces.

Proof. An easy application of Zorn’s lemma shows that there exists a maximal set {ϕj :
j ∈ I} of vectors ϕ ∈ X such that the cyclic subspaces Xϕj

are pairwise orthogonal. Let
V :=

⊕

j∈I Xϕj
. Obviously, U(t)V ⊂ V for all t ∈ R. Assume that there exists a vector

ψ ∈ V ⊥ with ψ 6= 0. Since for all t ∈ R and all ϕ ∈ V

〈U(t)ψ, ϕ〉 = 〈ψ, U(t)∗ϕ〉 = 〈ψ, U(−t)ϕ〉 = 0,

it follows that Xψ ⊂ V ⊥. This contradicts the maximality of the set {ϕj : j ∈ I}. It
follows that V ⊥ = {0} and X = V .

Lemma 4.12. If {U(t) : t ∈ R} is a continuous unitary group of operators on a Hilbert
space X, having a cyclic vector ϕ, then there exist a positive Borel measure µ on R and a
unitary map W : L2(R, dµ) → X such that

W ∗U(t)Wf(ω) = eitωf(ω), ω ∈ R (4.22)

for all f ∈ L2(R, dµ) and t ∈ R.

Proof. We consider the function

ζ(t) := (2π)−1/2 〈U(t)ϕ, ϕ〉 , t ∈ R

and define the linear functional

L(f) :=

∫ ∞

−∞
ζ(−t)Ff(t) dt
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for f ∈ C2
0(R), where f̂ = Ff denotes the Fourier transform of f . L(f) is well-defined

since |ζ(t)| ≤ ‖ϕ‖2 <∞ and

f̂(t) = (2π)−1/2

∫ ∞

−∞
e−iωtf(ω) dω = (2π)−1/2(−it)−2

∫ ∞

−∞
e−iωtf ′′(ω) dω

for t 6= 0 by partial integration, so |(Ff)(t)| = O(|t|−2) as |t| → ∞. Therefore, Lf is well
defined for f ∈ C2

0(R). Moreover,

W (f) := (2π)−1/2

∫ ∞

−∞
(Ff)(t)U(t)ϕ dt

is well defined, and

‖W (f)‖2 = (2π)−1

〈
∫ ∞

−∞
f̂(s)U(s)ϕ ds,

∫ ∞

−∞
f̂(t)U(t)ϕ dt

〉

= (2π)−1

∫ ∞

−∞

∫ ∞

−∞
f̂(s)f̂(t) 〈U(s− t)ϕ, ϕ〉 dt ds

= (2π)−1/2

∫ ∞

−∞

∫ ∞

−∞
f̂(s)f̂(t− s) ds ζ(−t) dt (4.23)

=

∫ ∞

−∞
F(ff)(t) ζ(−t) dt

= L(|f |2).

This shows that L(|f |2) ≥ 0 for f ∈ C2
0(R).

Our next aim is to show that for each interval [a, b] ⊂ R, L has a unique extension to a
bounded, positive linear functional on C0([a, b]). For this end we choose a smooth cut-off
function χ ∈ C2

0(R) satisfying 0 ≤ χ ≤ 1 and χ(ω) = 1 for ω ∈ [a, b]. Let g ∈ C2
0 ([a, b])

with ‖g‖∞ < 1. Then
√

χ2 − g ∈ C2
0 (R). Hence, L(χ2 − g) ≥ 0 by (4.23). Analogously,

L(χ2 + g) ≥ 0. Both inequalities and the linearity of L imply that |L(g)| ≤ L(χ2).
Therefore, L is continuous on C2([a, b]) with respect to the maximum norm. To show that
L(g) ≥ 0 for g ∈ C2

0(R) with g ≥ 0, we introduce fǫ := g/
√
g + ǫ for all ǫ > 0. Note that

fǫ ∈ C2
0(R) and that

‖g − f 2
ǫ ‖∞ =

∥

∥

∥

∥

g2 + gǫ− g2

g + ǫ

∥

∥

∥

∥

∞
≤ ǫ.

Hence, L(g) = limǫ→0L(f 2
ǫ ) ≥ 0. As C2

0([a, b]) is dense in C0([a, b]), L has a unique
extension to a bounded, positive linear functional on C0([a, b]).

Now Theorem 4.9 implies that L(f) =
∫

f dµ, f ∈ C0(R) for some positive Borel
measure µ on R. Eq. (4.23) shows that W can be extended to an isometry W : L2(R, µ) →
X. Assume that ψ ∈ R(W )⊥. Then 0 = 〈ψ,W (f)〉 = (2π)−1/2

∫

f̂(t) 〈ψ, U(t)ϕ〉 dt for all
f ∈ C2

0(R). Hence 〈ψ, U(t)ϕ〉 = 0 for all t ∈ R. Since ϕ is assumed to be cyclic, ψ = 0.
Therefore, R(W )⊥ = {0}, i.e. W is unitary.
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For s ∈ R and f ∈ C2
0 (R) we have

W (eis·f) =

∫ ∞

−∞
f̂(t− s)U(t)ϕ dt =

∫ ∞

−∞
f̂(t)U(t+ s)ϕ dt

= U(s)

∫ ∞

−∞
f̂(t)U(t)ϕ dt = U(s)W (f).

Applying W ∗ to both sides of this equation gives (4.22) for f ∈ C2
0 (R). Then a density

argument shows that (4.22) holds true for all f ∈ L2(R, µ).
Proof of Theorem 4.8. If X is cyclic, then we apply −id/dt to (4.22) with U defined in

Lemma 4.10 and obtain (4.17) with λ(ω) = ω and Ω = R.
In general, by Lemma 4.11 we can decompose X into an orthogonal sum of cyclic sub-

spaces, X =
⊕

j∈I Xϕj
. Hence, we obtain a family of Borel measures {µj : j ∈ I} defined

on Ωj = R, a family of continuous function λj ∈ C(Ωj), and a familiy of unitary mappings
Wj : L2(Ωj , dµj) → Xϕj

such that W ∗
j AWj = Mλj

for all j ∈ I. Let µ denote the sum of
the measures {µj : j ∈ I} defined on the topological sum Ω of the spaces Ωj . Obviously, Ω
is locally compact. Moreover, L2(Ω, µ) can be identified with

⊕

j∈I L
2(Ωj , dµj). Defining

W : L2(Ω, dµ) → X as the sum of the operators Wj, and Mλ ∈ L(L2(Ω, dµ)) as sum of the
operators Mλj

completes the proof.
Since we have shown that all bounded self-adjoint operators can be transformed to

multiplication operators, we will now look at this class of operators more closely.

Lemma 4.13. Let µ be a Borel measure on a locally compact space Ω, and let f ∈ C(Ω).
Then the norm of Mf ∈ L(L2(Ω, dµ)) defined by (Mfg)(ω) := f(ω)g(ω) for g ∈ L2(Ω, dµ)
and ω ∈ Ω is given by

‖Mf‖ = ‖f‖∞, suppµ (4.24)

where supp µ = Ω \⋃S open, µ(S)=0 S.

Proof. Since

‖Mfg‖2 =

∫

Ω

|fg|2 dµ =

∫

suppµ

|fg|2 dµ ≤ ‖f‖2
∞,suppµ

∫

suppµ

|g|2dµ = ‖f‖2
∞,suppµ‖g‖2

we have ‖Mf‖ ≤ ‖f‖∞, suppµ. To show the reverse inequality, we may assume that
‖f‖∞,suppµ > 0 and choose 0 < ǫ < ‖f‖∞,suppµ. By continuity of f , Ωǫ := (f |suppµ)

−1({ω :
|ω| > ‖f‖∞, suppµ−ǫ}) is open, and |f(ω)| ≥ ‖f‖∞, suppµ−ǫ for all ω ∈ Ωǫ. Since Ω is locally
compact, there exists a compact neighborhood K to any point in Ωǫ, and µ(K) <∞ since
µ is a Borel measure. Moreover, µ(K ∩Ωǫ) > 0 as Ωǫ ⊂ suppµ and the interior of K ∩ Ωǫ

is not empty. Hence, the characteristic function g of K ∩ Ωǫ belongs to L2(Ω, dµ), g 6= 0,
and ‖Mfg‖ ≥ (‖f‖∞ suppµ − ǫ)‖g‖. Therefore, ‖Mf‖ ≥ ‖f‖∞, suppµ − ǫ for any ǫ > 0. This
completes the proof of (4.24).

Next we define the spectrum of an operator, which is a generalization of the set of
eigenvalues of a matrix.
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Definition 4.14. Let X be a Banach space and A ∈ L(X). The resolvent set ρ(A) of
A is the set of all λ̃ ∈ C for which N(λ̃I − A) = {0}, R(λ̃I − A) = X, and (λ̃I − A) is
boundedly invertible. The spectrum of A is defined as σ(A) := C \ ρ(A).

It follows immediately from the definition that the spectrum is invariant under unitary
transformations. In particular, σ(A) = σ(Mλ) with the notation of Theorem 4.8. By
(4.24), (λ̃I −Mλ)

−1 exists and is bounded if and only if the function ω 7→ (λ̃− λ(ω))−1 is
well-defined for µ-almost all ω ∈ Ω and if ‖(λ̃− λ)−1‖∞, suppµ <∞. Since λ is continuous,

the latter condition is equivalent to λ̃ /∈ λ(suppµ). In other words, ρ(Mλ) = C \ λ(suppµ)
or

σ(A) = λ(supp µ). (4.25)

It follows from (4.24) and (4.25) that σ(A) is closed and bounded and hence compact.
If p(λ) =

∑n
j=0 pjλ

j is a polynomial, it is natural to define

p(A) :=
n
∑

j=0

pjA
j . (4.26)

The next theorem generalizes this definition to continuous functions on σ(A).

Theorem 4.15 (functional calculus). With the notation of Theorem 4.8 define

f(A) := WMf◦λW
∗ (4.27)

for a real-valued function f ∈ C(σ(A)). Here (f ◦ λ)(ω) := f(λ(ω)). Then f(A) ∈ L(X)
is self-adjoint and satisfies (4.26) if f is a polynomial. The mapping f 7→ f(A), which is
called the functional calculus at A, is an isometric algebra homomorphism from C(σ(A))
to L(X), i.e. for f, g ∈ C(σ(A)) and α, β ∈ R we have

(αf + βg)(A) = αf(A) + βg(A), (4.28a)

(fg)(A) = f(A)g(A), (4.28b)

‖f(A)‖ = ‖f‖∞. (4.28c)

The functional calculus is uniquely determined by the properties (4.26) and (4.28).

Proof. By (4.24) and (4.25), f(A) is well-defined and bounded. It is self-adjoint since
f is real-valued. For a polynomial p we have p(A) = Wp(Mλ)W

∗ with the definition
(4.26). Since p(Mλ) = Mp◦λ, this coincides with definition (4.27). The proof of (4.28a) is
straightforward. To show (4.28b), we write

f(A)g(A) = WMf◦λW
∗WMg◦λW

∗ = WM(fg)◦λW
∗ = (fg)(A).

Finally, using (4.24), (4.25), and the continuity of f ,

‖f(A)‖ = ‖Mf◦λ‖ = ‖f ◦ λ‖∞,suppµ = ‖f‖∞,σ(A).
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Let ΦA : C(σ(A)) → L(X) be any isometric algebra homomorphism satisfying ΦA(p) =
p(A) for all polynomials. By the Weierstraß Approximation Theorem, for any f ∈ C(σ(A))
there exists a sequence of polynomials (pn) such that ‖f − pn‖∞,σ(A) → 0 as n → ∞.
Using (4.28c) we obtain ΦA(f) = limn→∞ ΦA(pn) = limn→∞ pn(A) = f(A). Therefore, the
functional calculus is uniquely determined by (4.26) and (4.28).

Theorem 4.15 will be a powerful tool for the convergence analysis in the next section as
it allows to reduce the estimation of operator norms to the estimation of functions defined
on an interval. We will also need the following

Lemma 4.16. If T ∈ L(X, Y ) and f ∈ C([0, ‖T ∗T‖]), then

Tf(T ∗T ) = f(TT ∗)T. (4.29)

Proof. It is obvious that (4.29) holds true if f is a polynomial. By the Weierstraß Approx-
imation Theorem, for any f ∈ C([0, ‖T ∗T‖]) there exists a sequence (pn) of polynomials
such that ‖f − pn‖∞,[0,‖T ∗T‖] → 0 as n → ∞. Hence, Tf(T ∗T ) = limn→∞ Tpn(T

∗T ) =
limn→∞ pn(TT

∗)T = f(TT ∗)T by virtue of (4.28c).
Finally we show that the functional calculus can be extended to the algebra M(σ(A))

of bounded, Borel-measureable functions on σ(A) with the norm ‖f‖∞ := supt∈σ(A) |f(t)|.
Theorem 4.17. The mapping f 7→ f(A) := WMf◦λW

∗ is a norm-decreasing algebra
homomorphism from M(σ(A)) to L(X), i.e. for f, g ∈ M(σ(A)) and α, β ∈ R we have

(αf + βg)(A) = αf(A) + βg(A), (4.30a)

(fg)(A) = f(A)g(A), (4.30b)

‖f(A)‖ ≤ ‖f‖∞. (4.30c)

If (fn) is a sequence in M(σ(A)) converging pointwise to a function f ∈ M(σ(A)) such
that supn∈N

‖fn‖ <∞, then

‖fn(A)ϕ− f(A)ϕ‖ → 0 as n→ ∞ (4.31)

for all ϕ ∈ X.

Proof. (4.30a) and (4.30b) are shown in the same way as (4.28a) and (4.28b). For the proof
of (4.30c) we estimate ‖f(A)‖ = ‖Mf◦λ‖ ≤ ‖f‖∞. To prove (4.31), we define g := W ∗ϕ
and C := supn∈N

‖fn‖. Since the functions |fn ◦ λ − f ◦ λ|2|g|2 converge pointwise to 0
and since they are dominated by the integrable function 4C2|g|2, Lebesgue’s Dominated
Convergence Theorem implies that

‖fn(A)ϕ− f(A)ϕ‖2 = ‖Mfn◦λg −Mf◦λg‖2 =

∫

|fn(λ(ω)) − f(λ(ω))|2|g(ω)|2dµ→ 0

as n→ ∞.



5. Convergence analysis of linear
regularization methods

We consider an operator equation
Tϕ = g (5.1)

where T ∈ L(X, Y ) and X and Y are Hilbert spaces. We assume that g ∈ D(T †) and that
the data gδ ∈ Y satisfy

‖g − gδ‖ ≤ δ. (5.2)

In this chapter we are going to consider the convergence of regularization methods of the
form

Rαg
δ := qα(T

∗T )T ∗gδ (5.3)

with some functions qα ∈ C([0, ‖T ∗T‖])) depending on some regularization parameter α >
0. We denote the reconstructions for exact and noisy data by ϕα := Rαg and ϕδα := Rαg

δ,
respectively and use the symbol ϕ† := T †g for the exact solution. Since T ∗g = T ∗Qg =
T ∗Tϕ†, the reconstruction error for exact data is given by

ϕ† − ϕα = (I − qα(T
∗T )T ∗T )ϕ† = rα(T

∗T )ϕ† (5.4)

with
rα(λ) := 1 − λqα(λ), λ ∈ [0, ‖T ∗T‖]. (5.5)

The following table lists the functions qα and rα for some regularization methods.

Tikhonov regularization qα(λ) = 1
λ+α

rα(λ) = α
λ+α

iterated Tikhonov regu-
larization (2.9), n ≥ 1

qα(λ) = (λ+α)n−αn

λ(λ+α)n rα(λ) =
(

α
λ+α

)n

truncated singular value
decomposition (4.14)

qα(λ) =

{

λ−1, λ ≥ α
0, λ < α

rα(λ) =

{

0, λ ≥ α
1, λ < α

truncated singular value
decomposition (4.15)

qα(λ) =

{

λ−1, λ ≥ α
α−1, λ < α

rα(λ) =

{

0, λ ≥ α
1 − λ/α, λ < α

Landweber iteration
with µ = 1

qn(λ) =
∑n−1

j=0 (1 − λ)j rn(λ) = (1 − λ)n

39
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In all these cases the functions rα satisfy

lim
α→0

rα(λ) =

{

0, λ > 0
1, λ = 0

(5.6)

|rα(λ)| ≤ Cr for λ ∈ [0, ‖T ∗T‖]. (5.7)

with some constant Cr > 0. The limit function defined by the right hand side of (5.6) is
denoted by r0(λ). For Landweber iteration we set α = 1/n and assume that the normal-
ization condition (2.7) holds true. Note that (5.6) is equivalent to limα→0 qα(λ) = 1/λ for
all λ > 0. Hence, qα explodes near 0. For all methods listed in the table above this growth
is bounded by

|qα(λ)| ≤ Cq

α
for λ ∈ [0, ‖T ∗T‖] (5.8)

with some constant Cq > 0.

Theorem 5.1. If (5.6) and (5.7) hold true, then the operators Rα defined by (5.3) converge
pointwise to T † on D(T †) as α → 0. With the additional assumption (5.8) the norm of the
regularization operators can be estimated by

‖Rα‖ ≤
√

(Cr + 1)Cq

α
. (5.9)

If α(δ, gδ) is a parameter choice rule satisfying

α(δ, gδ) → 0, and δ/
√

α(δ, gδ) → 0 as δ → 0, (5.10)

then (Rα, α) is a regularization method in the sense of Definition 3.8.

Proof. We first aim to show the pointwise convergence Rα → T †. Let g ∈ D(T †), ϕ† = T †g,
and A := T ∗T . Recall from (5.4) that T †g −Rαg = rα(A)ϕ†. Using the boundedness con-
dition (5.7), it follows from (4.31) in Theorem 4.17 that limα→0 rα(A)ϕ† = r0(A)ϕ†. Since
r0 is real-valued and r2

0 = r0, the operator r0(A) is an orthogonal projection. Moreover,
R(r0(A)) ⊂ N(A) since λr0(λ) = 0 for all λ and hence Ar0(A) = 0. By (3.8) we have
N(T ) = N(A). Hence, ‖r0(A)ϕ†‖2 =

〈

r0(A)ϕ†, ϕ†〉 = 0 as ϕ† ∈ N(T )⊥ = N(A)⊥. This
shows that ‖Rαg − T †g‖ → 0 as α→ 0.

Using Lemma 4.16 and the Cauchy-Schwarz inequality we obtain that

‖Rαψ‖2 = 〈TT ∗qα(TT
∗)ψ, qα(TT

∗)ψ〉 ≤ ‖λqα(λ)‖∞‖qα(λ)‖∞‖ψ‖2

for ψ ∈ Y . Now (5.9) follows from the assumptions (5.7) and (5.8).
To prove that (R,α) is a regularization method, we estimate

‖ϕ† − ϕδα‖ ≤ ‖ϕ† − ϕα‖ + ‖ϕα − ϕδα‖. (5.11)

The approximation error ‖ϕ†−ϕα‖ tends to 0 due to the pointwise convergence of Rα and
the first assumption in (5.10). The propagated data noise error ‖ϕα−ϕδα‖ = ‖Rα(δ)(g−gδ)‖
vanishes asymptotically as δ → 0 by (5.2), (5.9), and the second assumption in (5.10).
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Source conditions

We have seen in Theorem 3.11 that the convergence of any regularization method can be
arbitrarily slow in general. On the other hand, we have seen in Example 1.2 that estimates
on the rate of convergence as the noise level δ tends to 0 can be obtained under a-priori
smoothness assumptions on the solution. In a general Hilbert space setting such conditions
have the form

ϕ† = f(T ∗T )w, w ∈ X, ‖w‖ ≤ ρ (5.12)

with a continuous function f satisfying f(0) = 0. (5.12) is called a source condition. The
most common choice f(λ) = λµ with µ > 0 leads to source conditions of Hölder type,

ϕ† = (T ∗T )µw, w ∈ X, ‖w‖ ≤ ρ. (5.13)

Since T is typically a smoothing operator, (5.12) and (5.13) can be seen as abstract smooth-
ness conditions. In the next chapter we will show for some important problems that source
conditions can be interpreted as classical smoothness conditions in terms of Sobolev spaces.
In (5.13) the case µ = 1/2 is of special importance, since

R((T ∗T )1/2) = R(T ∗) (5.14)

as shown in the exercises. To take advantage of the source condition (5.13) we assume that
there exist constants 0 ≤ µ0 ≤ ∞ and Cµ > 0 such that

sup
λ∈[0,‖T ∗T‖]

|λµrα(λ)| ≤ Cµα
µ for 0 ≤ µ ≤ µ0. (5.15)

The constant µ0 is called the qualification of the family of regularization operators (Rα)
defined by (5.3). A straightforward computation shows that the qualification of (iterated)
Tikhonov regularization µ0 = 1 (or µ0 = n, respectively), and that the qualification of
Landweber iteration and the truncated singular value decomposition is µ0 = ∞. By the
following theorem, µ0 is a measure of the maximal degree of smoothness, for which the
method converges of optimal order.

Theorem 5.2. Assume that (5.13) and (5.15) hold. Then the approximation error and its
image under T satisfy

‖ϕ† − ϕα‖ ≤ Cµα
µρ, for 0 ≤ µ ≤ µ0, (5.16)

‖Tϕ† − Tϕα‖ ≤ Cµ+1/2α
µ+1/2ρ, for 0 ≤ µ ≤ µ0 −

1

2
. (5.17)

Under the additional assumptions (5.2) and (5.8) and with the a-priori parameter choice

rule α = cδ
2

2µ+1 , c > 0, the total error is bounded by

‖ϕ† − ϕδα‖ ≤ cµδ
2µ

2µ+1 (5.18)

with some constant cµ > 0 independent of gδ. For the parameter choice rule α = c(δ/ρ)
2

2µ+1 ,
c > 0 we have

‖ϕ† − ϕδα‖ ≤ cµρ
1

2µ+1 δ
2µ

2µ+1 (5.19)

with cµ independent of gδ and ρ.
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Proof. Using (5.4), (5.13), (5.15), and the isometry of the functional calculus (4.28c), we
obtain

‖ϕ† − ϕα‖ = ‖rα(T ∗T )ϕ†‖ = ‖rα(T ∗T )(T ∗T )µw‖ ≤ ‖λµrα(λ)‖∞ρ ≤ Cµα
µρ.

(5.17) follows from (5.16) together with the identify

‖Tψ‖2 = 〈Tψ, Tψ〉 = 〈T ∗Tψ, ψ〉 =
〈

(T ∗T )1/2ψ, (T ∗T )1/2ψ
〉

= ‖(T ∗T )1/2ψ‖2. (5.20)

Due to the assumption (5.2) and (5.9), this gives the estimate

‖ϕ† − ϕδα‖ ≤ ‖ϕ† − ϕα‖ + ‖ϕα − ϕδα‖ ≤ Cµα
µρ+

√

(Cr + 1)Cqα
−1/2δ.

This shows (5.18) and (5.19).
The choice f(λ) = λµ in (5.12) is not always appropriate. Whereas Hölder-type source

conditions (5.13) have natural interpretations for many mildly ill-posed problems, they are
far too restrictive for most exponentially ill-posed problems. (5.13) often implies that ϕ†

in an analytic function in such situations. As we will see, an appropriate choice of f for
most exponentially ill-posed problems is

fp(λ) :=

{

(− lnλ)−p, 0 < λ ≤ exp(−1)
0, λ = 0

(5.21)

with p > 0, i.e.
ϕ† = fp(T

∗T )w, ‖w‖ ≤ ρ. (5.22a)

We call (5.22) a logarithmic source condition. In order to avoid the singularity of fp(λ) at
λ = 1, we always assume in this context that the norm in Y is scaled such that

‖T ∗T‖ = ‖T‖2 ≤ exp(−1). (5.22b)

The equality in (5.22b) is a consequence of Lemma 4.1. Of course, scaling the norm of Y
has the same effect as scaling the operator T .

Theorem 5.3. Assume that (5.22) with p > 0 and (5.15) with µ0 > 0 hold true. Then
there exist constants γp > 0 such that the approximation error is bounded by

‖ϕ† − ϕα‖ ≤ γpfp(α)ρ (5.23)

for all α ∈ [0, exp(−1)]. Under the additional assumptions (5.2) and (5.8) and with the
a-priori parameter choice rule α = δ, the total error is bounded by

‖ϕ† − ϕδα‖ ≤ cpfp(δ) for δ ≤ exp(−1) (5.24)

with some constant cp > 0 independent of gδ. If α = δ/ρ, then

‖ϕ† − ϕδα‖ ≤ cpρfp(δ/ρ), for δ/ρ ≤ exp(−1) (5.25)

with some constant cp > 0 independent of gδ and ρ.
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Proof. It follows from (5.4), (5.22), and (4.28c) that

‖ϕ† − ϕα‖ = ‖rα(T ∗T )ϕ†‖ = ‖rα(T ∗T )fp(T
∗T )w‖ ≤ ρ‖rαfp‖∞,[0,exp(−1)].

If we can show that (5.15) implies

|rα(λ)|fp(λ) ≤ γpfp(α) (5.26)

for all λ, α ∈ [0, exp(−1)], we have proved (5.23). To show (5.26) we make the substitution
ζ = α/λ and write r̃(λ, ζ) := rζλ(λ) with ζ ∈ [0, 1/(eλ)]. (5.15) and (5.26) are equivalent
to

r̃(λ, ζ) ≤ Cµζ
µ, (5.27)

r̃(λ, ζ) ≤ γp
fp(ζλ)

fp(λ)
, (5.28)

respectively. Suppose that (5.27) holds true, and define γ̃p := sup0<ζ≤1Cµζ
µ(− ln ζ+1)p <

∞. Then

r̃(λ, ζ) ≤ Cµ̄ζ
µ̄ ≤ γ̃p(− ln ζ + 1)−p ≤ γ̃p

(

ln ζ

lnλ
+ 1

)−p
= γ̃p

fp(ζλ)

fp(λ)

for 0 < ζ ≤ 1 and 0 < λ ≤ exp(−1) since lnλ ≤ −1. For 1 < ζ ≤ 1/(eλ), condition (5.15)
with µ = 0 implies that

C0
fp(ζλ)

fp(λ)
> C0 ≥ r̃(λ, ζ).

This proves (5.26) with γp = max(C0, γ̃p).
Using (5.11), (5.9), and (5.23) we obtain

‖ϕ† − ϕδα‖ ≤ γpρfp(α) +
√

(1 + C0)Cq
δ√
α
.

This implies (5.24) with cp = γpρ+
√

(1 + C0)Cq sup0<λ≤exp(−1)

√
λ/fp(λ) and (5.25) with

cp = γp +
√

(1 + C0)Cq sup0<λ≤exp(−1)

√
λ/fp(λ).

Optimality and an abstract stability result

Assume we want to find the best approximate solution ϕ† = T †g to (5.1), and at our
disposal are noisy data gδ satisfying (5.2) and the a-priori information that ϕ† satisfies
(5.12). Define

Mf,ρ = {ϕ† ∈ X : ϕ† satisfies (5.12)},
and let R : Y → X be an arbitrary mapping to approximately recover ϕ† from gδ. Then
the worst case error of the method R is

∆R(δ,Mf,ρ, T ) := sup{‖Rgδ − ϕ†‖ : ϕ† ∈Mf,ρ, g
δ ∈ Y, ‖Tϕ† −Qgδ‖ ≤ δ}.

The best possible error bound is the infimum over all mappings R : Y → X:

∆(δ,Mf,ρ, T ) := inf
R

∆R(δ,Mf,ρ, T ) (5.29)
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Theorem 5.4. Let ω(δ,Mf,ρ, T ) := sup{‖ϕ†‖ : ϕ† ∈Mf,ρ, ‖Tϕ†‖ ≤ δ} denote the modulus
of continuity of (T |Mf,ρ

)−1. Then

∆(δ,Mf,ρ, T ) ≥ ω(δ,Mf,ρ, T ). (5.30)

Proof. Let R : Y → X be an arbitrary mapping, and let ϕ† ∈ Mf,ρ such that ‖Tϕ†‖ ≤ δ.
Choosing gδ = 0 in the definition of ∆R gives

∆R(δ,Mf,ρ, T ) ≥ ‖R(0) − ϕ†‖.

Since also −ϕ† ∈Mf,ρ and ‖ − Tϕ†‖ ≤ δ, we get

∆R(δ,Mf,ρ, T ) ≥ ‖R(0) + ϕ†‖,

and hence
2‖ϕ†‖ ≤ ‖R(0) − ϕ†‖ + ‖R(0) + ϕ†‖ ≤ 2∆R(δ,Mf,ρ, T ).

This implies ω(δ,Mf,ρ, T ) ≤ ∆R(δ,Mf,ρ, T ) after taking the supremum over all ϕ† ∈ Mf,ρ

with ‖Tϕ†‖ ≤ δ. Since R was arbitrary, we have proved (5.30).
It can be shown that actually equality holds in (5.30). The proof of the reverse in-

equality, which is much more difficult than the proof of Theorem 5.4, proceeds by the
construction of an optimal method for the set Mf,ρ (cf. [MM79, Lou89, GP95]). These
methods require the a-priori knowledge of both f and ρ.

Our next aim is to find a computable expression for ω(δ,Mf,ρ, T ) which allows us to
compare error bounds for practical regularization methods to the best possible error bound.
The proof of the next theorem is based on

Lemma 5.5. (Jensen’s inequality) Assume that φ ∈ C2([α, β]) with α, β ∈ R ∪ {±∞}
is convex, and let µ be a finite measure on some measure space Ω. Then

φ

(
∫

χ dµ
∫

dµ

)

≤
∫

φ ◦ χ dµ
∫

dµ
(5.31)

holds for all χ ∈ L1(Ω, dµ) satisfying α ≤ χ ≤ β almost everywhere dµ. The right hand
side may be infinite if α = −∞ or β = ∞.

Proof. W.l.o.g. we may assume that
∫

dµ = 1. Let M :=
∫

χdµ, and consider the Taylor
expansion φ(ξ) = φ(M) + φ′(M)(ξ −M) + φ′′(η) · (ξ −M)2/2 for some η ∈ (α, β). Since
φ′′(η) ≥ 0, we have φ(M) + φ′(M)(ξ −M) ≤ φ(ξ) for all ξ ∈ [α, β]. Hence, with ξ = χ(x),

φ(M) + φ′(M)(χ−M) ≤ φ ◦ χ

for almost all x ∈ Ω. An integration dµ yields (5.31).

For the special case φ(t) = tp, p > 1, Jensen’s inequality becomes

∫

χdµ ≤
(
∫

χpdµ

)
1
p
(
∫

dµ

)
1
q
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with q = p
p−1

. From this form, we easily obtain Hölder’s inequality

∫

|a||b|dµ̃ ≤
(
∫

|a|pdµ̃
)

1
p
(
∫

|b|qdµ̃
)

1
q

for positive measures µ̃ on Ω, a ∈ Lp(µ̃), and b ∈ Lq(µ̃) by setting µ = |b|qµ̃ and χ =

|a||b|− 1
p−1 .

Theorem 5.6. Let (5.12) hold, and assume that f ∈ C([0, τ ]), τ = ‖T‖2, is strictly mono-
tonically increasing with f(0) = 0. Moreover, assume that the function φ : [0, f(τ)2] →
[0, τf(τ)2] defined by

φ(ξ) := ξ · (f · f)−1(ξ) (5.32)

is convex and twice continuously differentiable. Then the stability estimate

‖ϕ†‖2 ≤ ρ2φ−1

(‖Tϕ†‖2

ρ2

)

. (5.33)

holds. Consequently, for δ ≤ ρ
√
τf(τ),

ω(δ,Mf,ρ, T ) ≤ ρ
√

φ−1 (δ2/ρ2). (5.34)

Proof. By linearity, we may assume that ρ = 1. With the notation of Theorem 4.8 let
µw := |W−1w|2µ. Then (5.31) and (5.32) yield

φ

(‖ϕ†‖2

‖w‖2

)

= φ

(

‖W−1ϕ†‖2
L2(Ω,dµ)

‖W−1w‖2
L2(Ω,dµ)

)

= φ

(
∫

f(λ)2dµw
∫

dµw

)

≤
∫

φ(f(λ)2)dµw
∫

dµw
=

∫

λf(λ)2dµw
‖w‖2

=
‖(T ∗T )1/2f(T ∗T )w‖2

‖w‖2
=

‖Tϕ†‖2

‖w‖2
.

By the convexity of φ, the fact that φ(0) = 0, and ‖w‖ ≤ 1, this estimate implies

φ(‖ϕ†‖2) ≤ ‖Tϕ†‖2. (5.35)

Since f is strictly increasing, so are f · f , (f · f)−1, φ, and φ−1. Hence, applying φ−1 to
(5.35) yields (5.33). (5.34) follows from (5.33) and the definition.

The estimate (5.33) is a stability estimate for (5.1) based on the a-priori information
that ϕ† ∈Mf,ρ. It corresponds to the stability estimate derived in Example 1.2, which was
based on an a-priori bound on the second derivative of the solution.

Remark 5.7. We discuss when equality holds in (5.33) and (5.34). Let w be an eigenvector
of T ∗T such that ‖w‖ = ρ = 1 and T ∗Tw = λ̃w. Then ϕ† = f(λ̃)w and

‖ϕ†‖2 = f(λ̃)2 = φ−1(λ̃f(λ̃)2) = φ−1(‖Tϕ†‖2).

In the second equality we have used the definition (5.32) with ξ = f(λ̃)2, and in the last
equality the identity (5.20). Hence, (5.33) is sharp in this case. Moreover, equality holds
in (5.34) if (δ/ρ)2 is an eigenvalue of T ∗Tf(T ∗T )2. An exact expression for ω(δ,Mf,ρ, T )
for all δ is derived in [Hoh99].
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Definition 5.8. Let (Rα, α) be a regularization method for (5.1), and let the assumptions
of Theorem 5.6 be satisfied. Convergence on the source sets Mf,ρ is said to be

• optimal if
∆Rα(δ,Mf,ρ, T ) ≤ ρ

√

φ−1 (δ2/ρ2)

• asymptotically optimal if

∆Rα(δ,Mf,ρ, T ) = ρ
√

φ−1 (δ2/ρ2) (1 + o (1)), δ → 0

• of optimal order if there is a constant C ≥ 1 such that

∆Rα(δ,Mf,ρ, T ) ≤ Cρ
√

φ−1 (δ2/ρ2)

for δ/ρ sufficiently small.

For f(λ) = λµ, µ > 0, the assumptions of Theorem 5.6 are satisfied, and φ(ξ) = ξ
1+2µ
2µ .

We get

Corollary 5.9. (5.13) implies

‖ϕ†‖ ≤ ρ
1

1+2µ‖Tϕ†‖
2µ

1+2µ .

Moreover,

ω(δ,Mλµ,ρ, T ) ≤ ρ
1

2µ+1 δ
2µ

1+2µ .

Corollary 5.9 implies that the method in Theorem 5.2 is of optimal order. Note, how-
ever, that this method requires knowledge of the parameter µ, i.e. the degree of smoothness
of the unknown solution. We will see below that a-posteriori parameter choice rules can
lead to order-optimal methods, which do not require such a-priori knowledge.

Usually, Corollary 5.9 is proved by interpolation instead of Jensen’s inequality (cf.,e.g.,[EHN96,
Lou89]). We have chosen the latter approach since it also allows to treat logarithmic source
conditions (cf. [Mai94]):

Corollary 5.10. The assumptions of Theorem 5.6 are satisfied for f = fp (see (5.21)),
and the inverses of the corresponding functions φp have the asymptotic behavior

√

φ−1
p (λ) = fp(λ)(1 + o (1)), λ→ 0. (5.36)

Consequently,

‖ϕ†‖ ≤ ρfp

(‖Tϕ†‖2

ρ2

)

(1 + o (1)), ‖Tϕ†‖/ρ→ 0, (5.37)

ω(δ,Mfp,ρ, T ) ≤ ρfp
(

δ2/ρ2
)

(1 + o (1)), δ/ρ→ 0. (5.38)
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Proof. By (5.22b), we have τ = exp(−1). It is obvious that fp is continuous on [0, τ ] and
strictly monotonically increasing. φp : [0, 1] → [0, exp(−1)] is given by

φp(ξ) = ξ exp(−ξ− 1
2p ).

From

φ′′
p(ξ) = exp(−ξ−1/2p)

ξ−1− 1
2p

(2p)2
(2p− 1 + ξ−

1
2p )

it is easily seen that φ′′
p(ξ) ≥ 0 for ξ ∈ [0, 1], i.e. φp is convex.

To prove the estimate on
√

φ−1
p (λ), first note that ξ = φ−1

p (λ) implies

lnλ = ln ξ − ξ−
1
2p .

Therefore,

ξ = (ln ξ − lnλ)−2p

= (− lnλ)−2p

(

1 − ln ξ

lnλ

)−2p

= fp(λ)2

(

1 − ln ξ

ln ξ − ξ−
1
2p

)−2p

Since limξ→0
ln ξ

ln ξ−ξ−1/2p = 0 and limλ→0 ξ = limλ→0 φ
−1
p (λ) = 0, the assertion follows.

As fp(δ
2/ρ2) = 2−pfp(δ/ρ), Corollary 5.10 implies that the method in Theorem 5.3 is

of optimal order.

The discrepancy principle

We assume in this section the exact data g are attainable, i.e.

g ∈ R(T ). (5.39)

Assume that (5.7) holds true and choose

τ > Cr. (5.40)

Instead of (2.8) we consider a version of the discrepancy principle which allows some
sloppyness in the choice of the regularization paramter. If ‖gδ‖ > τδ, i.e. if the signal-
to-noise ration ‖gδ‖/δ is greater than τ , we assume that α = α(δ, gδ) is chosen such that

‖gδ − Tϕδα‖ ≤ τδ ≤ ‖gδ − Tϕδα′‖ (5.41a)

for some α′ ∈ [α, 2α]. Otherwise, if ‖gδ‖ ≤ τδ, we set

α(δ, gδ) = ∞ (5.41b)
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and ϕδ∞ := 0. In the latter case, when there is more noise than data, there may not exist
α′ such that (5.41a) is satisfied. Note that under assumption (5.8),

‖ϕδα‖ = ‖qα(T ∗T )T ∗gδ‖ ≤ Cq

α
‖T ∗gδ‖ → 0 as α → ∞, (5.42)

which explains the notation ϕδ∞ := 0. Finally note that

gδ − Tϕδβ = (I − Tqβ(T
∗T )T ∗)gδ = rβ(TT

∗)gδ (5.43)

for all β > 0 by virtue of Lemma 4.16. Hence, limα→0 ‖gδ − Tϕδα‖ = ‖r0(TT ∗)gδ‖ ≤
‖gδ‖ ≤ δ by Theorem 4.17. Together with (5.42) this shows that (5.41a) can be satisfied if
‖gδ‖ ≥ τδ.

Theorem 5.11. Let rα and qα satisfy (5.7), (5.8), and (5.15) with µ0 > 1/2, and let
α(δ, gδ) be a parameter choice rule satisfying (5.40) and (5.41). Then (Rα, α) is a regular-
ization method in the sense of Defintion 3.8.

Proof. We will repeatedly use the inequalities

‖g − Tϕα‖ ≤ (τ + Cr)δ (5.44a)

(τ − Cr)δ ≤ ‖g − Tϕα′‖ (5.44b)

which follow from (5.41a), (5.40), and the estimate

‖(g − Tϕβ) − (gδ − Tϕδβ)‖ = ‖rβ(T ∗T )(g − gδ)‖ ≤ Crδ. (5.45)

Eq. (5.45), which holds for all β > 0, is a consequence of (5.2) and the identity (5.43).
The proof is again based on the splitting (5.11) of the total error into an approximation

error and a propagated data error. Let (gδn)n∈N be a sequence in Y such that ‖g−gδn‖ ≤ δn
and δn → 0 as n → ∞, and let αn := α(δn, g

δn). Assume that the approximation error
does not tend to 0. Then, after passing to a subsequence, we may assume that there exists
ǫ > 0 such that

‖ϕ† − ϕαn‖ ≥ ǫ for all n. (5.46)

Using the notation of Theorem 4.8 with T ∗T = A = WMλW
−1, let ψ† := W−1ϕ†. It

follows from (5.4) and (5.20), and (5.44a) that

∫

λ|rαn ◦ λ|2|ψ†|2 dµ = ‖
√
Arαn(A)ϕ†‖2 = ‖T (ϕ† − ϕαn)‖2 → 0

as n → ∞. Since 0 ≤ λ ≤ ‖A‖, it follows from the Riesz-Fischer Theorem that there
exists a subsequence of n(k), such that λ|rαn(k)

◦λ|2|ψ†|2 → 0 pointwise almost everywhere

dµ as k → ∞. Hence, |rαn(k)
◦ λ − r0 ◦ λ|2|ψ†|2 → 0 pointwise almost everywhere dµ

as k → ∞, where r0 denotes the limit function defined by the right-hand side of (5.6).
With assumption (5.7), it follows from Lebesque’s Dominated Convergence Theorem that
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∫

|rαn(k)
◦ λ− r0 ◦ λ|2|ψ†|2 dµ → 0 as k → ∞. Since r0(A)ϕ† = 0 as shown in the proof of

Theorem 5.1, this implies that

‖ϕ† − ϕαn(k)
‖ = ‖rαn(k)

(A)ϕ†‖ = ‖rαn(k)
(A)ϕ† − r0(A)ϕ†‖ → 0

as k → ∞. This contradicts (5.46). Hence, ‖ϕ† − ϕαn‖ → 0 as n→ ∞.
Now assume that the propagated data noise error does not tend to 0. In analogy to

(5.46) we may assume that there exists ǫ > 0 such that

‖ϕαn − ϕδnαn
‖ ≥ ǫ for all n. (5.47)

It follows from (5.9) that

‖ϕαn − ϕδαn
‖ ≤ C

δn√
αn

≤ C
δn√
α′
n

(5.48)

with a generic constant C independent of n. This implies that (5.48) α′
n → 0 as n → ∞.

Now it follows from (5.44b), (5.17), and the assumption µ0 > 1/2 that

‖ϕαn − ϕδαn
‖ ≤ C

δn√
α′
n

≤ C
‖T (ϕ† − ϕα′

n
)‖√

α′
n

≤ C(α′
n)
µ0−1/2 → 0 (5.49)

as n → ∞ with a generic constant C. This contradicts (5.47). Hence, both the approxi-
mation error and the propagated data noise error tend to 0, and the proof is complete.

The next theorem shows that the discrepancy principle leads to order optimal conver-
gence rates.

Theorem 5.12. Under the assumptions of Theorem 5.11 let ϕ† satisfy the Hölder source
condition (5.13) with 0 < µ ≤ µ0 − 1/2. Then there exists a constant cµ > 0 independent
of ρ, δ, and ϕ† such that

‖ϕ† − ϕα(δ,gδ)‖ ≤ cµρ
1

2µ+1 δ
2µ

2µ+1 . (5.50)

Proof. To estimate the approximation error we use Corollary 5.9 with ϕ† replaced by
ϕ† − ϕα = rα(T

∗T )ϕ† = (T ∗T )µrα(T
∗T )w. Since ‖rα(T ∗T )w‖ ≤ Crρ, this gives

‖ϕ† − ϕα‖ ≤ (ρCr)
1

1+2µ‖T (ϕ† − ϕα)‖
2µ

2µ+1 ≤ (ρCr)
1

1+2µ ((τ + Cr)δ)
2µ

1+2µ . (5.51)

Here the second inequality is a consequence of (5.44a). To estimate the propagated data
noise error, note that (5.17) and (5.44b) imply

(τ − Cr)δ ≤ ‖g − Tϕα′‖ ≤ Cµ+1/2(α
′)µ+1/2ρ.

Together with (5.2) and (5.9) it follows that

‖ϕα − ϕδα‖ ≤
√

(Cr + 1)Cq

α
δ ≤

√

2(Cr + 1)Cq

α′ δ ≤ cµρ
1

2µ+1 δ
2µ

2µ+1



5. Convergence analysis of linear regularization methods 50

with a constant cµ independent of ρ, δ, and ϕ†. This together with (5.51) shows (5.50).
By Theorem 5.12, the discrepancy principle leads to order-optimal convergence only for

µ ≤ µ0 − 1/2, whereas the a-priori rule in Theorem 5.2 yields order-optimal convergence
for all µ ≤ µ0. It can be shown that (5.50) cannot be extended to µ ∈ (µ0 − 1/2, µ0]
(cf. [Gro83] for Tikhonov regularization). This fact has initiated a considerable amount of
research in improved a-posteriori rule, which yield order-optimal convergence for all µ ≤ µ0

without a-priori knowledge of µ (cf. [EG88, Gfr87] and references in [EHN96]).
For logarithmic source conditions, the discrepancy principle also leads to order-optimal

convergence. With a modified version of the discrepancy principle even asymptotically
optimal convergence rates can be achieved without a-priori knowledge of p (cf. [Hoh00]).



6. Interpretation of source conditions

In the previous chapter we have established convergence rates of regularization methods
for ill-posed operator equations Tϕ = g if the exact solution ϕ† satisfies a source condition

ϕ† = f(T ∗T )w, ‖w‖ ≤ ρ

with a continuous function f : [0, ‖T ∗T‖] → [0,∞) satisfying f(0) = 0. It is usually not
obvious what such a condition means for a specific inverse problem. The aim of this chapter
is to interpret source condition for some important inverse problems.

Sobolev spaces of periodic functions

Let

fn(x) :=
1√
2π

exp(inx), n ∈ Z

denote the standard orthonormal basis of L2([0, 2π]) with respect to the inner product

〈ϕ, ψ〉 :=
∫ 2π

0
ϕ(x)ψ(x) dx. For ϕ ∈ L2([0, 2π]) we denote the Fourier coefficients of ϕ by

ϕ̂(n) := 〈ϕ, fn〉 , n ∈ Z.

Then ‖ϕ‖2
L2 =

∑

n∈Z
|ϕ̂(n)|2 by Parseval’s equality, and ϕ =

∑

n∈Z
ϕ̂(n)fn.

Definition 6.1. For 0 ≤ s <∞ we define

‖ϕ‖Hs :=

(

∑

n∈Z

(1 + n2)s|ϕ̂(n)|2
)1/2

(6.1)

and
Hs([0, 2π]) := {ϕ ∈ L2([0, 2π]) : ‖ϕ‖Hs <∞}.

Hs([0, 2π]) is called a Sobolev space of index s. Note that H0([0, 2π]) = L2([0, 2π]).

Theorem 6.2. Hs([0, 2π]) is a Hilbert space for s ≥ 0.

Proof. It is easy to show that Hs([0, 2π]) is a linear space and that

〈ϕ, ψ〉Hs :=
∑

n∈Z

(1 + n2)sϕ̂(n)ψ̂(n)

51



6. Interpretation of source conditions 52

is an inner product on Hs([0, 2π]) satisfying ‖ϕ‖2
Hs = 〈ϕ, ϕ〉Hs for all ϕ ∈ Hs([0, 2π]). To

show completeness, let (ϕk)k∈N be a Cauchy sequence in Hs([0, 2π]). Then (ϕ̂k(n))k∈N is a
Cauchy sequence for each n ∈ Z, and ϕ̂(n) := limk→∞ ϕ̂k(n) is well defined. We have to
show that ϕ :=

∑

n∈Z
fnϕ̂(n) belongs to Hs([0, 2π]) and that ‖ϕ− ϕk‖Hs → 0 as k → ∞.

Given ǫ > 0 there exists k > 0 such that ‖ϕk − ϕl‖2
Hs ≤ ǫ for all l ≥ k. Hence,

N
∑

n=−N
(1 + n2)s|ϕ̂(n) − ϕ̂k(n)|2 = lim

l→∞

N
∑

n=−N
(1 + n2)s|ϕ̂l(n) − ϕ̂k(n)|2

≤ sup
l≥k

‖ϕl − ϕk‖2
Hs ≤ ǫ

for all N > 0. Taking the supremum over N ∈ N shows that ‖ϕ−ϕk‖Hs ≤ ǫ. This implies
that ‖ϕ‖Hs <∞ and ϕk → ϕ in Hs as k → ∞.

Remark 6.3. Another definition of Sobolev spaces of integral index s ∈ N uses the concept
of weak derivatives. A 2π-periodic function ϕ ∈ L2([0, 2π]) is said to have a weak (or
distributional) derivative Dkϕ ∈ L2([0, 2π]) of order k ∈ N if the periodic continuation of
Dkϕ satisfies

∫

R

ϕχ(k) dx = (−1)k
∫

R

(Dkϕ)χ dx

for all χ ∈ C∞(R) with compact support. It can be shown that Hk([0, 2π]) is the set of
all functions in L2([0, 2π]) which have weak derivatives in L2([0, 2π]) of order ≤ k (see
exercises). This alternative definition can be used to introduce Sobolev spaces on more
general domains.

For more information on Sobolev spaces of periodic functions, we refer to [Kre89, Chap-
ter 8].

Hölder-type source conditions

Our first example is numerical differention. Since differentiation annihilates constant func-
tion we define the Hilbert space

L2
0([0, 2π]) :=

{

ϕ ∈ L2([0, 2π]) :

∫ 2π

0

ϕ(x) dx = 0

}

of L2 function with zero mean. The inverse of the differentiation operator on L2
0([0, 2π]) is

given by

(TDϕ)(x) :=

∫ x

0

ϕ(t) dt+ c(ϕ), x ∈ [0, 2π]

where c(ϕ) := − 1
2π

∫ 2π

0

∫ x

0
ϕ(t) dt dx is defined such that TDϕ ∈ L2

0([0, 2π]) for all ϕ ∈
L2

0([0, 2π]), i.e. TD ∈ L(L2
0([0, 2π])).
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Theorem 6.4. R((T ∗
DTD)µ) = H2µ([0, 2π])∩L2

0([0, 2π]) for all µ ≥ 0. Moreover, there exist
constants c, C > 0 such that c‖w‖L2 ≤ ‖(T ∗

DTD)µw‖H2µ ≤ C‖w‖L2 for all w ∈ L2([0, 2π]),
i.e. ‖(T ∗

DTD)µw‖H2µ ∼ ‖w‖L2.

Proof. Note that L2
0([0, 2π]) = span{fn : n ∈ Z, n 6= 0}. A straightforward computation

shows that TDfn = 1
in
fn for n ∈ Z \ {0}. It follows that T ∗

Dfn = − 1
in
fn since 〈Tϕ, fn〉 =

1
in
ϕ̂(n) =

〈

ϕ, −1
in
fn
〉

. Hence,

T ∗
DTDfn =

1

n2
fn, n ∈ Z \ {0},

i.e. {fn : n ∈ Z \ {0}} is complete orthonormal system of eigenfunctions of T ∗
DTD. It

follows from Theorem 4.15 with W : l2(Z \ {0}) → L2
0([0, 2π]), Wϕ̂ :=

∑

n 6=0 ϕ̂(n)fn and

λ(n) = n−2 that

(T ∗
DTD)µw =

∑

n 6=0

1

n2µ
ŵ(n)fn

for all w ∈ L2
0([0, 2π]). Therefore,

‖(T ∗
DTD)µw‖2

H2µ =
∑

n 6=0

(

1 + n2

n2

)2µ

|ŵ(n)|2 ≤ 22µ‖ŵ(n)‖2
L2 <∞

which implies R((T ∗
DTD)µ) ⊂ H2µ([0, 2π]) ∩ L0([0, 2π]). To prove the reverse inclusion, let

ϕ ∈ H2µ([0, 2π]) and define w :=
∑

n 6=0 n
2µϕ̂(n)fn. Then w ∈ L2

0([0, 2π]) is well defined

since ‖w‖2
L2 =

∑

n 6=0(n
2µ)2|ϕ̂(n)|2 ≤ ‖ϕ‖2

H2µ <∞, and (T ∗
DTD)µw = ϕ.

Theorem 6.4 implies that if ϕ† ∈ H2µ([0, 2π]) and if the regularization method satisfies
the assumptions of either Theorem 5.2 or Theorem 5.12, then the error can be estimated
by

‖ϕ† − ϕα(δ,gδ)‖L2 ≤ cµρ
1

2µ+1 δ
2µ

2µ+1 .

with ρ = ‖ϕ†‖H2µ . Replacing the Sobolev spaces H2µ([0, 2π]) by the classical function
spaces C2µ([0, 2π]) with µ ∈ {0, 1/2, 1}, this corresponds to the convergence rates (1.3)
obtained for the central difference quotient.

Our second example is related to solution of the boundary value problem

∆u = 0 in Ω, u = f on ∂Ω (6.2)

where Ω ⊂ R2 is a bounded, simply connected region with smooth boundary ∂Ω and
f ∈ C(∂Ω). The single layer potential

u(x) = −1

π

∫

∂Ω

ψ(y) ln |x− y| ds(y), x ∈ Ω

solves (6.2) if and only if the density ψ ∈ C(∂Ω) solves Symm’s equation

−1

π

∫

∂Ω

ψ(y) ln |x− y| ds(y) = f(y), x ∈ ∂Ω
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(cf. [Kre89]). It is a prototype of a one-dimensional first-kind integral equation with a
logarithmic singularity. We consider the special case that ∂Ω is a circle of radius a > 0
parametrized by z(t) = a(cos t, sin t), t ∈ [0, 2π]. Then |z(t) − z(τ)|2 = 4a2 sin2 t−τ

2
, and

setting ϕ(t) := aψ(z(t)) and g(t) := f(z(t)) we get

−1

π

∫ 2π

0

ϕ(τ)

(

ln a +
1

2
ln

(

4 sin2 t− τ

2

))

dτ = g(t), t ∈ [0, 2π]. (6.3)

The left hand side of this equation is denoted by (TSyϕ)(t). We now consider (6.3) as an
integral equation in L2([0, 2π]). Since the integral operator TSy has a square integrable
kernel, it is a compact operator in L(L2([0, 2π])). Therefore, (6.3) is ill-posed.

Theorem 6.5. If a 6= 1, then R((T ∗
SyTSy)

µ) = H2µ([0, 2π]) for all µ ≥ 0. Moreover,
‖(T ∗

SyTSy)
µw‖H2µ ∼ ‖w‖L2 for w ∈ L2([0, 2π]).

Proof. Using the integrals

1

2π

∫ 2π

0

eint ln

(

4 sin2 t

2

)

dt =

{

−1/|n|, n ∈ Z \ {0}
0, n = 0

(cf. [Kir96, Lemma 3.17]) we obtain

TSyfn =

{

1/|n|fn, n ∈ Z \ {0}
2 ln af0, n = 0

As T ∗
Sy = TSy it follows that

(T ∗
SyTSy)fn =

{

1/|n|2fn, n ∈ Z \ {0}
(2 ln a)2f0, n = 0

Now the proof is almost identical to that of Theorem 6.4.

Logarithmic source conditions

We consider the initial value problem for the heat equation with periodic boundary condi-
tions:

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t), x ∈ (0, 2π), t ∈ (0, T ] (6.4a)

u(0, t) = u(2π, t), t ∈ (0, T ) (6.4b)

u(x, 0) = ϕ(x), x ∈ [0, 2π]. (6.4c)

This is equivalent to the heat equation on a circle. In analogy to (1.6), the solution to this
evolution problem is given by

u(x, t) =
∑

n∈Z

exp(−n2t)ϕ̂(n)fn(x)
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We define the operator TBH ∈ L(X, Y ) with X = Y = L2([0, 2π]) by (TBHϕ)(x) := u(x, T )
where u satisfies (6.4), i.e.

TBHϕ =
∑

n∈Z

exp(−n2T )ϕ̂(n)fn. (6.5)

In order to meat the normalization condition (5.22b), we define the norm in Y to be
‖ψ‖Y := exp(−1/2)‖ψ‖L2.

Theorem 6.6. R(fp(T
∗
BHTBH)) = H2p([0, 2π]) for all p > 0, and ‖fp(T ∗

BHTBH)w‖H2p ∼
‖w‖L2.

Proof. It follows from (6.5) and the definition of the norm in Y that

T ∗
BHTBHϕ =

∑

n∈Z

exp(−1) exp(−2Tn2)ϕ̂(n)fn.

Hence,

fp(T
∗
BHTBH)w =

∑

n∈Z

fp(exp(−1) exp(−2Tn2))ŵ(n)fn =
∑

n∈Z

(1 + 2Tn2)−pŵ(n)fn

for w ∈ L2([0, 2π]) and

‖fp(T ∗
BHTBH)w‖2

H2p =
∑

n∈Z

(

1 + n2

1 + 2Tn2

)2p

|ŵ(n)|2 ≤ T−2p‖w‖2
L2.

Therefore, R(fp(T
∗
BHTBH)) ⊂ H2p([0, 2π]). Vice versa, let ϕ ∈ H2p([0, 2π]), and define

w :=
∑

n∈Z
(1 + 2Tn2)pϕ̂(n)fn such that fp(T

∗
BHTBH)w = ϕ. It follows from ‖w‖L2 =

∑

n∈Z
(1+2Tn2)2p|ϕ̂(n)|2 ≤ (2T )2p‖ϕ‖2

H2p <∞ that w ∈ L2([0, 2π]). Hence, H2p([0, 2π]) ⊂
R(fp(T

∗
BHTBH)).

Theorem 6.6 shows that if ϕ† ∈ H2p([0, 2π]) and the regularization method satisfies the
assumptions of Theorem 5.3, then the error can be estimated by

‖ϕ† − ϕδα‖ ≤ cpρfp(δ/ρ)

with ρ = ‖ϕ†‖H2p .
Analogous results for the heat equation in more general domains, for the sideways heat

equation, and for some other problems can be found in [Hoh00].
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The Fréchet derivative

Most regularization methods for nonlinear problems are based on a linearization of the
operator equation. Recall the definition of the Fréchet derivative from Chapter 2:

Definition 7.1. Let X, Y be normed spaces, and let U be an open subset of X. A mapping
F : U → Y is called Fréchet differentiable at ϕ ∈ U if there exists a bounded linear operator
F ′[ϕ] : X → Y such that

‖F (ϕ+ h) − F (ϕ) − F ′[ϕ]h‖ = o (‖h‖) (7.1)

uniformly as ‖h‖ → 0. F ′[ϕ] is called the Fréchet derivative of F at ϕ. F is called Fréchet
differentiable if it is Fréchet differentiable at every point ϕ ∈ U . F is called continuously
differentiable if F is differentiable and if F ′ : U → L(X, Y ) is continuous.

We collect some basic properties of the Fréchet derivative.

Theorem 7.2. Let F : U ⊂ X → Y be Fréchet differentiable, and let Z be a normed space.

1. The Fréchet derivative of F is uniquely determined.

2. If G : U → Y is Fréchet differentiable, then αF +βG is differentiable for all α, β ∈ R

(or C) and
(αF + βG)′[ϕ] = αF ′[ϕ] + βG′[ϕ], ϕ ∈ U. (7.2)

3. (Chain rule) If G : Y → Z is Fréchet differentiable, the G ◦ F : U → Z if Fréchet
differentiable, and

(G ◦ F )′[ϕ] = G′[F (ϕ)]F ′, ϕ ∈ U. (7.3)

4. (Product rule) A bounded bilinear mapping b : X×Y → Z is Fréchet differentiable,
and

b′[(ϕ1, ϕ2)](h1, h2) = b(ϕ1, h2) + b(h1, ϕ2) (7.4)

for all ϕ1, h1 ∈ X and ϕ2, h2 ∈ Y .

5. (Derivative of the operator inverse) Let X, Y be Banach spaces, and assume that
the set U ⊂ L(X, Y ) of operators which have a bounded inverse is not empty. Then
the mapping inv : U → L(Y,X) defined by inv(T ) := T−1. is Fréchet differentiable,
and

inv′[T ]H = −T−1HT−1 (7.5)

for T ∈ U and H ∈ L(X, Y ).

56
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Remark 7.3. If Q is a normed space and F1 : Q → X and F2 → Y are Fréchet differen-
tiable, then the product rule and the chain rule with G = b and F = (F1, F2) : Q→ X×Y
imply that b(F1, F2) is Fréchet differentiable with

b(F1, F2)
′[q]h = b(F1(q), F

′
2[q]h) + b(F ′

1[q]h, F2(q)).

If b is the product of real numbers, this is the ordinary product rule. Similarly, part 5
and the chain rule imply that for a mapping T : Q → U the function inv ◦ T is Fréchet
differentiable with

(inv ◦ T )′[q]h = −T (q)−1 (T ′[q]h)T (q)−1.

If X = Y = R, this is the quotient rule.

Proof of Theorem 7.2 1) Let F̃ ′ be another Fréchet derivative of F . Then for all ϕ ∈ U ,
h ∈ X and ǫ > 0 we have

‖F ′[ϕ]ǫh− F̃ ′[ϕ]ǫh‖ ≤ ‖F (ϕ+ ǫh) − F (ϕ) − F ′[ϕ]ǫh‖
+‖ − F (ϕ+ ǫh) − F (ϕ) − F̃ ′[ϕ]ǫh‖ = o (ǫ)

as ǫ→ 0. Dividing by ǫ shows that F ′[ϕ]h = F̃ ′[ϕ]h.
2) This is obvious.
3) We have

‖G(F (ϕ+ h)) −G(F (ϕ)) −G′[F (ϕ)]F ′[ϕ]h‖
≤ ‖G(F (ϕ+ h)) −G(F (ϕ)) −G′[F (ϕ)](F (ϕ+ h) − F (ϕ))‖

+‖G′[ϕ]‖ ‖F (ϕ+ h) − F (ϕ) − F ′[ϕ]h‖.

It follows from the Fréchet differentiability of F that ‖F (ϕ + h) − F (ϕ)‖ = ‖F ′[ϕ]h‖ +
o (‖h‖) = O (‖h‖) as ‖h‖ → 0. Since G is Fréchet differentiable, the first term on the right
hand side is of order o (‖F (ϕ+ h) − F (ϕ)‖) = o (‖h‖). Due to the boundedness of ‖G′[ϕ]‖
and the Fréchet differentiability of F , the second term is also of order o (‖h‖).

4) This follows from the identity

b(ϕ1 + h1, ϕ2 + h2) − b(ϕ1, ϕ2) − b(ϕ1, h2) − b(h1, ϕ2) = b(h1, h2)

and the boundedness of b.
5) By the Neumann series

(T +H)−1 = T−1(I +HT−1)−1 = T−1 − T−1HT−1 +R

for ‖H‖ < ‖T−1‖ with R =
∑∞

j=2 T
−1(−HT−1)j. As ‖R‖ = O(‖T−1(−HT−1)2‖) =

O (‖H‖2), this shows (7.5).
Next we want to define the integral over a continuous function G : [a, b] → X defined on

a bounded interval [a, b] ⊂ R with values in a Hilbert space X. The functional L : X → R

(or L : X → C if X is a complex Hilbert space) given by

L(ψ) :=

∫ b

a

〈G(t), ψ〉 dt
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is (anti)linear and bounded since the t 7→ ‖G(t)‖ is continuous on the compact interval

[a, b] and hence bounded. Using the Riesz representation theorem, we define
∫ 1

0
G(t) dt to

be the unique element in X satisfying
〈
∫ b

a

G(t) dt, ψ

〉

= L(ψ)

for all ψ ∈ X. It follows immediately from this definition that

‖
∫ b

a

G(t) dt‖ ≤
∫ b

a

‖G(t)‖ dt. (7.6)

Lemma 7.4. Let X, Y be Hilbert spaces and U ⊂ X open. Moreover, let ϕ ∈ U and h ∈ X
such that ϕ+ th ∈ U for all 0 ≤ t ≤ 1. If F : U → Y is Fréchet differentiable, then

F (ϕ+ h) − F (ϕ) =

∫ 1

0

F ′[ϕ+ th]h dt. (7.7)

Proof. For a given ψ ∈ X consider the function

f(t) := 〈F (ϕ+ th), ψ〉 , 0 ≤ t ≤ 1.

By the chain rule, f is differentiable and

f ′(t) = 〈F ′[ϕ+ th]h, ψ〉 .
Hence, by the Fundamental Theorem of Calculus, f(1) − f(0) =

∫ 1

0
f ′(t) dt or

〈F (ϕ+ h) − F (ϕ), ψ〉 =

〈
∫ 1

0

F ′[ϕ + th]h dt, ψ

〉

.

Since this holds true for all ψ ∈ X, we have proved the assertion.

Lemma 7.5. Let X, Y be Hilbert spaces and U ⊂ X open. Let F : U → Y be Fréchet
differentiable and assume that there exists a Lipschitz constant L such that

‖F ′[ϕ] − F ′[ψ]‖ ≤ L‖ϕ− ψ‖ (7.8)

for all ϕ, ψ ∈ U . If ϕ+ th ∈ U for all t ∈ [0, 1], then (7.1) can be improved to

‖F (ϕ+ h) − F (ϕ) − F ′[ϕ]h‖ ≤ L

2
‖h‖2.

Proof. Using Lemma 7.4, (7.6) and (7.8) we get

‖F (ϕ+ h) − F (ϕ) − F ′[ϕ]h‖ =

∥

∥

∥

∥

∫ 1

0

(F ′[ϕ+ th]h− F ′[ϕ]h) dt

∥

∥

∥

∥

≤
∫ 1

0

‖F ′[ϕ+ th]h− F ′[ϕ]h‖ dt

≤
∫ 1

0

Lt‖h‖2 dt =
L

2
‖h‖2.
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Compactness

Definition 7.6. Let X, Y be normed spaces, and let U be a subset of X. An operator
F : U → Y is called compact if it maps bounded sets to relatively compact sets. It is called
completely continuous if it is continuous and compact.

Unlike in the linear case, a nonlinear compact operator is not necessarily continuous (see
exercises). We mention that the terms compact and complete continuous are sometimes
used differently in the literature.

Let Z be another normed space, and let F = H ◦G with G : U → Z and H : Z → Y .
It follows immediately from the definition that F is compact if G is compact and H is
continuous, or if G maps bounded sets to bounded sets and H is compact. This facts can
often be used to prove the compactness of nonlinear operators.

Theorem 7.7. Let X, Y be normed spaces, and let U ⊂ X be open. If F : U → Y is
compact and X is infinite dimensional, then F−1 cannot be continuous, i.e. the equation
F (ϕ) = g is ill-posed.

Proof. If F−1 does not exist, there is nothing to show. Assume that F−1 exists as a
continuous operator. Then F−1 maps relatively compact sets to relatively compact sets.
Hence every ball B = {ϕ ∈ X : ‖ϕ− ϕ0‖ < ǫ} contained in U is relatively compact since
F (B) is relatively compact andB = F−1(F (B)). This is not possible since dimX = ∞.

The idea of Newton-type methods, which will be discussed in the next section, is to
replace F (ϕ) = g by the linearized equation

F ′[ϕn]hn = g − F (ϕn) (7.9)

in each step and update ϕn by ϕn+1 := ϕn + hn. The following result implies that (7.9)
inherits the ill-posedness of the original equation if F is completely continuous.

Theorem 7.8. Let X be a normed space, Y a Banach space, and let U ⊂ X be open. If
F : U → Y is completely continuous and Fréchet diffentiable, then F ′[ϕ] is compact for all
ϕ ∈ U .

Proof. The proof relies on the fact that a subset K of the Banach space Y is relatively
compact if and only if it is totally bounded, i.e. if for any ǫ > 0 there exist ψ1, . . . , ψn ∈ Y
such that min1≤j≤n ‖ψ − ψj‖ ≤ ǫ for all ψ ∈ K (cf. e.g. [Kre89, Section 1.4]).

We have to show that

K := {F ′[ϕ]h : h ∈ X, ‖h‖ ≤ 1}

is relatively compact. Let ǫ > 0. By the definition of the Fréchet derivative there exists
δ > 0 such that ϕ+ h ∈ U and

‖F (ϕ+ h) − F (ϕ) − F ′[ϕ]h‖ ≤ ǫ

3
‖h‖ (7.10)
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for all ‖h‖ ≤ δ. Since F is compact, the set {F (ϕ + δh) : h ∈ X, ‖h‖ ≤ 1} is relatively
compact and hence totally bounded, i.e. there exist h1, . . . , hn ∈ X with ‖hj‖ ≤ 1, j =
1, . . . , n such that for all h ∈ X satisfying ‖h‖ ≤ 1 there exists and index j ∈ {1, . . . , n}
such that

‖F (ϕ+ δh) − F (ϕ+ δhj)‖ ≤ ǫδ

3
. (7.11)

Using (7.10) and (7.11) we obtain

δ‖F ′[ϕ]h− F ′[ϕ]hj‖ ≤ ‖F (ϕ+ δh) − F (ϕ+ δhj)‖
+‖ − F (ϕ+ δh) + F (ϕ) + F ′[ϕ]δh‖ + ‖F (ϕ+ δhj) − F (ϕ) − F ′[ϕ]δhj‖ ≤ δǫ,

i.e. K is totally bounded.
Apart from Theorem 7.10 the connection between the ill-posedness of a nonlinear

problem and its linearization is less close than one may expect as counter-examples in
[EKN89, Sch02] show.

The inhomogeneous medium scattering problem

A classical inverse problem is to determine the refractive index of a medium from mea-
surements of far field patterns of scattered time-harmonic acoustic waves in this medium.
Let ui be an incident field satisfying the Helmholtz equation ∆ui + k2ui = 0, e.g. ui(x) =
exp(−ikx · θ) with θ ∈ Sd−1 := {x ∈ Rd : |x| = 1}. The direct scattering problem is
described by the system of equations

∆u+ k2nu = 0, x ∈ Rd, (7.12a)

ui + us = 0, (7.12b)

lim
r→∞

r(d−1)/2

(

∂us

∂r
− ikus

)

= 0, uniformly for all x̂ = x
|x| . (7.12c)

Here k > 0 denotes the wave number, n is the refractive index of the medium, us is the
scattered field, and u is the total field. Absorbing media are modelled by complex-valued
refractive indices n. We assume that Ren ≥ 0, Imn ≥ 0. Moreover, we assume that n is
constant and equal to 1 outside of the ball Bρ := {x ∈ R3 : |x| ≤ ρ}, ρ > 0, i.e.

n = 1 − a

with supp a ⊂ Bρ. The fundamental solution to the Helmholtz equation is given by

Φ(x, y) =
1

4π

exp(k|x− y|)
|x− y| , for d = 3, (7.13)

Φ(x, y) =
i

4
H

(1)
0 (k|x− y|), for d = 2 (7.14)

for x 6= y where H
(1)
0 denotes the Hankel function of the first kind of order 0.
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A basic tool for the analysis of the direct medium scattering problem is a reformulation
of the system (7.12) as an integral equation of the second kind:

u(x) + k2

∫

Bρ

Φ(x− y)a(y)u(y) dy = ui(x), x ∈ R
d. (7.15)

(7.15) is called the Lippmann-Schwinger equation.

Theorem 7.9. Assume that a ∈ C1(Rd) satisfies supp a ⊂ Bρ. Then any solution u ∈
C2(Rd) to (7.12) satisfies (7.15). Vice versa, let u ∈ C(Bρ) be a solution to (7.15). Then

us(x) := −k2

∫

Bρ

Φ(x− y)a(y)u(y) dy, x ∈ R
d (7.16)

belongs to C2(Rd) and satisfies (7.12).

To prove Theorem 7.9 we need a few preparations. All function v ∈ C2(Bρ) ∩ C1(Bρ)
satisfy Green’s representation formula

v(x) =

∫

∂Bρ

{

∂v

∂ν
(y)Φ(x, y) − v(y)

∂Φ(x, y)

∂ν(y)

}

ds(y) (7.17)

−
∫

Bρ

{

∆v(y) + k2v(y)
}

Φ(x, y) dy, x ∈ Bρ

where ν denotes the outer normal vector on ∂Bρ (cf. [CK97b, Theorem 2.1]).
Moreover, we need the following properties of the volume potential

(V ϕ)(x) :=

∫

Rd

Φ(x, y)ϕ(y) dy, x ∈ R
d. (7.18)

Theorem 7.10. Let suppϕ ⊂ Bρ. If ϕ ∈ C(Rd), then V ϕ ∈ C1(Rd), and if ϕ ∈ C1(Rd),
then V ϕ ∈ C2(Rd). In the latter case

(∆ + k2)(V ϕ) = −ϕ (7.19)

holds true.

The mapping properties of V stated in this theorem are crude, but sufficient for our
purposes. In terms of Hölder and Sobolev spaces, V is a smoothing operator of order 2.

Proof of Theorem 7.9. Let u ∈ C2(Rd) be a solution to (7.12), and let x ∈ Bρ. It
follows from Green’s representation formula (7.17) with v = u and ∆u+ k2u = k2au that

u(x) =

∫

∂Bρ

{

∂u

∂ν
(y)Φ(x, y) − u(y)

∂Φ(x, y)

∂ν(y)

}

ds(y) − k2

∫

Bρ

Φ(x, y)a(y)u(y) dy (7.20)

where ν denotes the outer normal vector on ∂Bρ. Green’s formula (7.17) applied to ui

gives

ui(x) =

∫

Bρ

{

∂ui

∂ν
Φ(x, y) − ui(y)

∂Φ(x, y)

∂ν(y)

}

ds(y). (7.21)
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Finally, we choose R > ρ and apply Green’s second theorem to Φ(x, ·) and us in BR \Bρ

∫

∂Bρ

{

∂us

∂ν
(y)Φ(x, y) − us(y)

∂Φ(x, y)

∂ν(y)

}

ds(y)

=

∫

∂BR

{

∂us

∂ν
(y)Φ(x, y)− us(y)

∂Φ(x, y)

∂ν(y)

}

ds(y)

=

∫

∂BR

{

∂us

∂ν
(y) − ikus(y)

}

Φ(x, y) ds(y) +

∫

∂BR

us(y)

{

ikΦ(x, y) − ∂Φ(x, y)

∂ν(y)

}

ds(y)

where ν on ∂BR is the outer normal vector. Since both us and Φ(x, ·) satisfy the Sommerfeld
radiation condition and since (7.12c) implies that |us(y)| = O

(

|y|−(d−1)/2
)

as |y| → ∞, the
right hand side of the last equation tends to 0 as R → ∞. Combining this result with
(7.20) and (7.21) and using (7.12b) shows that (7.15) is satisfied.

Vice versa, let u ∈ C(Bρ) be a solution to (7.15). Since Φ(·, y) satisfies the Sommerfeld
radiation condition uniformly for y ∈ Bρ, us defined by (7.16) satisfies (7.12c). Moreover,
us ∈ C1(Rd) by Theorem 7.10. Now the second statement in Theorem 7.10 and the
assumption a ∈ C1

c (R
d) imply that us ∈ C2(Rd) and that

∆us + k2us − k2au = 0.

Since ∆ui + k2ui = 0, u = us + ui satisfies (7.12a).

Theorem 7.11. The Lippmann-Schwinger equation has a unique solution u ∈ C(Bρ) if
‖a‖∞ < (k2‖V ‖∞)−1.

Proof. Under the given assumption we have ‖k2VMa‖∞ < 1 where Ma : C(Bρ) → C(Bρ)
is defined by Mav := av. Therefore, the operator I + k2VMa has a bounded inverse given
by the Neumann series.

Using Riesz theory it can be shown that the smallness assumption on ‖a‖∞ in Theorem
7.11 can be dropped. However, it is not trivial to show uniqueness of a solution to (7.15)
or equivalently, a solution to (7.12) (cf. [CK97b, Häh98, Kir96]).

Recall the definition of the far-field pattern from (1.19). As straightforward com-
putation shows that for d = 3 the far field pattern of Φ(·, y) is given by Φ∞(x̂, y) =
γ3 exp(−ikx̂ · y), γ3 = 1/(4π) and that Φ(·, y) satisfies (1.19) uniformly with respect
to y ∈ Bρ. By the asymptotic behavior of the Hankel functions for large arguments

(cf. [CK97b, Leb65]), the same holds true for d = 2 with γ2 = eiπ/4/
√

8πk. Hence, for both
d = 2 and d = 3 the far field pattern of us is given by

u∞(x̂) = −k2γd

∫

Bρ

exp(−ikx̂ · y)a(y)u(y) dy, x̂ ∈ Sd−1. (7.22)

The right hand side of this equation defines a linear integral operator E : C(Bρ) →
L2(Sd−1) with u∞ = E(au).
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Now we turn to the inverse problem to recover a from measurements of u∞. Since for
d = 3 the far field pattern u∞ is a function of two variables whereas the unknown coefficient
a is a function of three variables, we cannot expect to be able to reconstruct a from far-field
measurements corresponding to just one incident field. A similar argument holds for d = 2.
Therefore, we consider incident fields ui(x) = ui(x, θ) = exp(ikθ · x) from all directions
θ ∈ Sd−1 and denote the corresponding solutions to the direct problem by u(x, θ), us(x, θ),
and u∞(x, θ). The direct solution operator FIM : D(FIM) ⊂ C1

c (Bρ) → L2(Sd−1 × Sd−1) is
defined by

(FIM(a))(x̂, θ) := u∞(x̂, θ), x̂, θ ∈ Sd−1 (7.23)

where u∞(·, θ) is the far field pattern corresponding to the solution us(·, θ) of (7.12) with
n = 1−a and ui = ui(·, θ). Here C1

c (Bρ) is the space of all continuously differentiable func-
tion on Bρ with supp a ⊂ Bρ, and the domain of FIM incorporates the physical restrictions
on n = 1 − a:

D(FIM) := {a ∈ C1
c (Bρ) : Re(1 − a) ≥ 0, Im(a) ≤ 0}.

It can be shown that FIM is one-to-one, i.e. that the far-field patterns u∞(·, θ) for all
directions θ ∈ S2 of the incident wave determine the refractive index n = 1 − a uniquely
(cf. [CK97b, Häh98, Kir96]).

Theorem 7.12. 1. The operator G : D(FIM) → C(Rd × Sd−1) is Fréchet differentiable
with respect to the supremum norm on D(FIM), and u′ := G′[a]h satisfies the integral
equation

u′ + k2V (au′) = −k2V (hu) (7.24)

for all a ∈ D(FIM) and h ∈ C1
c (Bρ) with u := G(a).

2. FIM is Fréchet differentiable with respect to the maximum norm on D(FIM).

Proof. 1) The mapping D(FIM) → L(C(Bρ × Sd−1)), a 7→ Ma where (Mav)(x, θ) :=
a(x)v(x, θ) is linear and bounded with respect to the supremum norm and hence Fréchet
differentiable. It follows from Theorem 7.2, Parts 3 and 5 that the the mapping D(FIM) →
L(C(Bρ×Sd−1)) a 7→ (I +k2VMa)

−1 is Fréchet-differentiable. An application of the chain
rule yields the Fréchet differentiability of G(a) = (I + k2VMa)

−1ui. Now (7.24) can be de-
rived by differentiating both sides of the Lippmann-Schwinger equation (7.15) with respect
to a using the product rule.

2) Since F (a) = E(MaG(a)), this follows from the first part, the product and the chain
rule.



8. Nonlinear Tikhonov regularization

Let X, Y be Hilbert spaces and F : D(F ) ⊂ X → Y a continuous operator. We want to
solve the operator equation

F (ϕ) = g (8.1)

given noisy data gδ ∈ Y satisfying ‖gδ − g‖ ≤ δ. Let ϕ† denote the exact solution. We
assume that the solution to (8.1) with exact data g = F (ϕ†) is unique, i.e. that

F (ϕ) = g ⇒ ϕ = ϕ† (8.2)

although many of the results below can be obtained in a modified form without this as-
sumption.

The straightforward generalization of linear Tikhonov regularization leads to the min-
imization problem

‖F (ϕ) − gδ‖2 + α‖ϕ− ϕ0‖2 = min! (8.3)

over ϕ ∈ D(F ) where ϕ0 denotes some initial guess of ϕ†. The mapping D(F ) → R,
ϕ 7→ ‖F (ϕ) − gδ‖2 + α‖ϕ − ϕ0‖2 is called (nonlinear) Tikhonov functional. Note that
as opposed to the linear case, the element 0 ∈ X does not have a special role any more.
Therefore, ϕ0 = 0 is as good as any other initial guess.

As opposed to the linear case it is not clear under the given assumptions if the mini-
mization problem (8.3) has a solution. We will have to impose additional assumptions on
F to ensure existence. Moreover, even if (8.3) has a unique solution for α = 0 there may
be more than one global minimizer of (8.3) for α > 0.

As in the linear case, it is sometimes useful to consider other penalty terms in (8.3)
than α‖ϕ− ϕ0‖2.

Weak convergence in Hilbert spaces

Definition 8.1. We say that a sequence (ϕn) in a Hilbert space X converges weakly to
ϕ ∈ X and write ϕn ⇀ ϕ as n→ ∞ if

〈ϕn, ψ〉 → 〈ϕ, ψ〉 , n→ ∞ (8.4)

for all ψ ∈ X.

If ϕ̃ is another weak limit of the sequence (ϕn), then 〈ϕ− ϕ̃, ψ〉 = 0 for all ψ ∈
X. Choosing ψ = ϕ − ϕ̃ shows that ϕ = ϕ̃, i.e. a weak limit of a sequence is uniquely
determined. It follows from the Cauchy-Schwarz inequality that strong convergence implies
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weak convergence. The following example shows that the reverse implication is not true in
general.

Example 8.2. Let {ϕn : n ∈ N} be an orthonormal system in X. Then ‖ϕn − ϕm‖ =
√

2
for m 6= n, i.e. the sequence (ϕn) cannot be strongly convergent. On the other hand, it
follows from Bessel’s inequality

∞
∑

n=1

| 〈ϕn, ψ〉 |2 ≤ ‖ψ‖2

for ψ ∈ X that | 〈ϕn, ψ〉 |2 → 0 as n→ ∞. Therefore, ϕn ⇀ 0.

Lemma 8.3. If T ∈ L(X, Y ), then T is weakly continuous, i.e. ϕn ⇀ ϕ implies Tϕn ⇀ Tϕ
as n→ ∞.

Proof. Let ϕn ⇀ ϕ. Then for any ψ ∈ Y we have

〈Tϕn, ψ〉 = 〈ϕn, T ∗ψ〉 → 〈ϕ, T ∗ψ〉 = 〈Tϕ, ψ〉 .

Lemma 8.4. If ϕn ⇀ ϕ, then lim supn→∞ ‖ϕn‖ ≥ ‖ϕ‖, i.e. the norm is weakly lower
semicontinuous.

Proof. We have 〈ϕn, ϕ〉 → ‖ϕ‖2 as n→ ∞. It follows from the Cauchy-Schwarz inequality
that lim supn→∞ ‖ϕn‖‖ϕ‖ ≥ ‖ϕ‖2. This implies the assertion.

Theorem 8.5. Every bounded sequence has a weakly convergent subsequence.

Proof. Let (ϕn)n∈N be some sequence in X such that ‖ϕn‖ ≤ 1 for all n ∈ N, and let
{ej : j ∈ N} be a complete orthonormal system in X̃ := span{ϕn : n ∈ N}. Since 〈ϕn, e1〉 is
a bounded sequence of complex numbers, there exists a convergent subsequence

〈

ϕn1(k), e1
〉

.
Since

〈

ϕn1(k), e2
〉

is bounded, there exists a subsequence n2(k) of n1(k) such that
〈

ϕn2(k), e2
〉

is convergent. By continuing this process, we obtain subsequences nl(k) for all l ∈ N such
that

〈

ϕnl(k), el
〉

is convergent and nl+1(k) is a subsequence of nl(k). The diagonal sequence
(ϕnl(l))l∈N has the property that

〈

ϕnl(l), ek
〉

converges to some ξk ∈ C as l → ∞ for all

k ∈ N. Then ϕ :=
∑

k∈N
ξkek defines an element of X̃ with ‖ϕ‖ ≤ 1 since for all K ∈ N we

have
K
∑

k=1

|ξ|2 = lim
l→∞

K
∑

k=1

|
〈

ϕnl(l), ek
〉

|2 ≤ lim sup
l→∞

‖ϕnl(l)‖2 ≤ 1.

We have to show that
〈

ϕnl(l), ψ
〉

→ 〈ϕ, ψ〉 for all ψ ∈ X. It suffices to consider ψ ∈ X̃

since ϕnl(l), ϕ ∈ X̃. Let ǫ > 0 and choose K ∈ N such that
∑∞

k=K+1 | 〈ψ, ek〉 |2 ≤ (ǫ/4)2.
There exists L > 0 such that

∣

∣

∣
〈ϕ− ϕnl(l),

K
∑

k=1

〈ψ, ek〉 ek〉
∣

∣

∣
≤ ǫ

2
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for l ≥ L. Now it follows from the triangle inequality and the Cauchy-Schwarz inequality
that |

〈

ϕ− ϕnl(l), ψ
〉

| ≤ ǫ for l ≥ L.

Definition 8.6. A subset K of a Hilbert space X is called weakly closed if it contains the
weak limits of all weakly convergent sequences contained in K.
An operator F : D(F ) ⊂ X → Y is called weakly closed if its graph grF := {(ϕ, F (ϕ)) :
ϕ ∈ D(F )} is weakly closed in X×Y , i.e. if ϕn ⇀ ϕ and F (ϕn) ⇀ g imply that ϕ ∈ D(F )
and F (ϕ) = g.

Note that if F is weakly continuous and if D(F ) is weakly closed, then F is weakly
closed. The following result gives sufficient conditions for the weak closedness of D(F ).

Theorem 8.7. If K ⊂ X is convex and closed, then K is weakly closed.

Proof. Let (ϕn) be some sequence in K converging weakly to some ϕ ∈ X. By Remark
3.2 there exists a best approximation ψ ∈ K to ϕ in K satisfying

Re 〈u− ψ, ϕ− ψ〉 ≤ 0

for all u ∈ K. Substituting u = ϕn and taking the limit n→ ∞ shows that ‖ϕ− ψ‖2 ≤ 0.
Hence, ψ = ϕ, and in particular ϕ ∈ K.

Convergence analysis

Theorem 8.8. Assume that F is weakly closed. Then the Tikhonov functional (8.3) has
a global minimum for all α > 0.

Proof. Let I := infϕ∈D(F ) ‖F (ϕ)− gδ‖2 + α‖ϕ− ϕ0‖2 denote the infimum of the Tikhonov
functional and choose a sequence (ϕn) in D(F ) such that

‖F (ϕn) − gδ‖2 + α‖ϕn − ϕ0‖2 ≤ I +
1

n
. (8.5)

Since α > 0, ϕn is bounded. Hence, by Theorem 8.5 there exists a weakly convergent
subsequence ϕn(k) with a weak limit ϕ ∈ X. Moreover, it follows from (8.5) that F (ϕn(k))
is bounded. Therefore, there exists a further subsequence such that F (ϕn(k(l))) is weakly
convergent. Now the weak closedness of F implies that ϕ ∈ D(F ) and that F (ϕn(k(l))) ⇀
F (ϕ) as l → ∞. It follows from Lemma 8.4 that

‖F (ϕ) − gδ‖2 + α‖ϕ− ϕ0‖2 ≤ lim sup
n→∞

{

‖F (ϕn) − gδ‖2 + α‖ϕn − ϕ0‖2
}

≤ I.

Hence, ϕ is a global minimum of the Tikhonov functional.
We do not know if a solution to (8.3) is unique. Nevertheless, it can be shown that

an arbitrary sequence of minimizers converges to the exact solution ϕ† as the noise level δ
tends to 0. In analogy to Definition 3.8 this means that nonlinear Tikhonov regularization
is a regularization method.
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Theorem 8.9. Assume that F is weakly closed and that (8.2) holds true. Let α = α(δ) be
chosen such that

α(δ) → 0 and δ2/α(δ) → 0 as δ → 0. (8.6)

If gδk is some sequence in Y such that ‖gδk − g‖ ≤ δk and δk → 0 as k → ∞, and if ϕδkαk

denotes a solution to (8.3) with gδ = gδk and α = αk = α(δk), then ‖ϕδkαk
− ϕ†‖ → 0 as

k → ∞.

Proof. Since ϕδkαk
minimizes the Tikhonov functional, we have

‖F (ϕδkαk
) − gδk‖2 + αk‖ϕδkαk

− ϕ0‖2 ≤ ‖F (ϕ†) − gδk‖2 + αk‖ϕ† − ϕ0‖2

≤ δ2
k + αk‖ϕ† − ϕ0‖2.

The assumptions δk → 0 and αk → 0 imply that

lim
k→∞

F (ϕδkαk
) = g, (8.7)

and the assumption δ2
k/αk → 0 yields

lim sup
k→∞

‖ϕδkαk
− ϕ0‖2 ≤ lim sup

k→∞

{

δ2
k/αk + ‖ϕ† − ϕ0‖2

}

= ‖ϕ† − ϕ0‖2. (8.8)

It follows from (8.8) and Theorem 8.5 that there exists a weakly convergent subsequence of
ϕδkαk

with some weak limit ϕ ∈ X. By virtue of the weak closedness of F we have ϕ ∈ D(F )
and F (ϕ) = g, so ϕ = ϕ† by (8.2).

It remains to show that ‖ϕδkαk
− ϕ†‖ → 0. Assume on the contrary that there exists

ǫ > 0 such that
‖ϕδkαk

− ϕ†‖ ≥ ǫ (8.9)

for some subsequence of (ϕδkαk
) which may be assumed to be identical to (ϕδkαk

) without loss
of generality. By the argument above, we may further assume that ϕδkαk

⇀ ϕ†. Since

‖ϕδkαk
− ϕ†‖2 = ‖ϕδkαk

− ϕ0‖2 + ‖ϕ0 − ϕ†‖2 + 2 Re
〈

ϕδkαk
− ϕ0, ϕ0 − ϕ†〉 ,

it follows from (8.8) that

lim sup
k→∞

‖ϕδkαk
− ϕ†‖2 ≤ 2‖ϕ† − ϕ0‖2 + 2 Re

〈

ϕ† − ϕ0, ϕ0 − ϕ†〉 = 0.

This contradicts (8.9).
As in the linear case we need a source condition to establish estimates on the rate of

convergence as δ → 0. Source conditions for nonlinear problems usually involve ϕ† − ϕ0

instead of ϕ† because of the loss of the special role of 0 ∈ X.

Theorem 8.10. Assume that F is weakly closed and Fréchet differentiable, that D(F ) is
convex, and that there exists a Lipschitz constant L > 0 such that

‖F ′[ϕ] − F ′[ψ]‖ ≤ L‖ϕ− ψ‖ (8.10)
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for all ϕ, ψ ∈ D(F ). Moreover, assume that the source condition

ϕ† − ϕ0 = F ′[ϕ†]∗w, (8.11a)

L‖w‖ < 1 (8.11b)

is satisfied for some w ∈ Y and that a parameter choice rule α = cδ with some c > 0 is
used. Then there exists a constant C > 0 independent of δ such that every global minimum
ϕδα of the Tikhonov functional satisfies the estimates

‖ϕδα − ϕ†‖ ≤ C
√
δ, (8.12a)

‖F (ϕδα) − g‖ ≤ Cδ. (8.12b)

Proof. As in the proof of the Theorem 8.9 we use the inequality

‖F (ϕδα) − gδ‖2 + α‖ϕδα − ϕ0‖2 ≤ δ2 + α‖ϕ† − ϕ0‖2

for global minimum ϕδα of the Tikhonov functional. Since this estimate would not give the
optimal rate for ‖F (ϕδα)−gδ‖2, we add α‖ϕδα−ϕ†‖2−α‖ϕδα−ϕ0‖2 on both sides to obtain

‖F (ϕδα) − gδ‖2 + α‖ϕδα − ϕ†‖2 ≤ δ2 + 2αRe
〈

ϕ† − ϕ0, ϕ
† − ϕδα

〉

= δ2 + 2αRe
〈

w, F ′[ϕ†](ϕ† − ϕδα)
〉

.

Here (8.11a) has been used in the second line. Using the Cauchy-Schwarz inequality and
inserting the inequality

‖F ′[ϕ†](ϕ† − ϕδα)‖ ≤ L

2
‖ϕδα − ϕ†‖2 + ‖F (ϕδα) − F (ϕ†)‖

≤ L

2
‖ϕδα − ϕ†‖2 + ‖F (ϕδα) − gδ‖ + δ,

which follows from Lemma 7.5, yields

‖F (ϕδα)− gδ‖2 + α‖ϕδα − ϕ†‖2 ≤ δ2 + 2αδ‖w‖+ 2α‖w‖ ‖F (ϕδα)− gδ‖+ αL‖w‖‖ϕδα − ϕ†‖2,

and hence

(

‖F (ϕδα) − gδ‖ − α‖w‖
)2

+ α(1 − L‖w‖)‖ϕδα − ϕ†‖2 ≤ (δ + α‖w‖)2.

Therefore,
‖F (ϕδα) − gδ‖ ≤ δ + 2α‖w‖

and, due to (8.11b),

‖ϕδα − ϕ†‖ ≤ δ + α‖w‖
√

α(1 − L‖w‖)
.

With the parameter choice rule α = cδ, this yields (8.12).
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By virtue of (5.14), condition (8.11a) is equivalent to

ϕ† − ϕ0 = (F ′[ϕ†]∗F ′[ϕ†])1/2w̃, L‖w̃‖ < 1

for some w̃ ∈ X. Hence, for linear problems Theorem 8.10 reduces to a special case of
Theorem 5.2.

Theorem 8.10 was obtained by Engl, Kunisch and Neubauer [EKN89]. Other Hölder-
type source conditions with a-priori parameter choice rules are treated in [Neu89], and a
posteriori parameter choice rules were investigated in [SEK93]. For further references and
results we refer to [EHN96, Chapter 10].



9. Iterative regularization methods

Let X, Y be Hilbert spaces, D(F ) ⊂ X open, and let F : D(F ) → Y be a continuously
Fréchet differentiable operator. We consider the nonlinear operator equation

F (ϕ) = g (9.1)

and assume that for the given exact data g there exists a unique solution ϕ† ∈ D(F )
to (9.1). Moreover, we assume that some initial guess ϕ0 ∈ D(F ) to ϕ† is given, which
will serve as starting point of the iteration. Finally, as before, gδ ∈ Y denote noisy data
satisfying

‖g − gδ‖ ≤ δ. (9.2)

Examples

Since the gradient of the cost functional I(ϕ) := ‖F (ϕ) − gδ‖2 is given by I ′[ϕ]h =
2 Re

〈

F ′[ϕ]∗(F (ϕ) − gδ), h
〉

, the minimization of I by moving in the direction of steep-
est descent leads to the iteration formula

ϕδn+1 = ϕδn − µF ′[ϕδn]
∗(F (ϕδn) − gδ), n = 0, 1, . . . (9.3)

known as nonlinear Landweber iteration. The step size parameter µ > 0 should be chosen
such that µ‖F ′[ϕδn]

∗F ′[ϕδn]‖ ≤ 1 for all n.

It is well known that the convergence of Landweber iteration is very slow. We may ex-
pect faster convergence from Newton-type methods. Recall that Newton’s method consists
in replacing (9.1) in the nth step by the linearized equation

F ′[ϕδn]hn = yδ − F (ϕδn) (9.4)

and updating ϕδn by
ϕδn+1 = ϕδn + hn. (9.5)

If (9.1) is ill-posed then in general F ′[ϕδn]
−1 will not be bounded and the range of F ′[ϕδn]

will not be closed (cf. Theorem 7.8). Therefore, the standard Newton method may not be
well defined even for exact data since we cannot guarantee that y − F (ϕδn) ∈ R(F ′[ϕδn])
in each step. Even if ϕδn is well defined for n ≥ 1, it does not depend continuously
on the data. Therefore, some sort of regularization has to be employed. In principle
any regularization method for linear ill-posed problems can be used to compute a stable
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solution to (9.4). Tikhonov regularization with regularization parameter αn > 0 leads to
the iteration formula

ϕδn+1 = ϕδn + (αnI + F ′[ϕδn]
∗F ′[ϕδn])

−1F ′[ϕδn]
∗(gδ − F (ϕδn)). (9.6)

By Theorem 2.1 this is equivalent to solving the minimization problem

hn = argminh∈X
(

‖F ′[ϕδn]h + F (ϕδn) − gδ‖2 + αn‖h‖2
)

(9.7)

using the update formula (9.5). This method is known as the Levenberg-Marquardt algo-
rithm. The original idea of the Levenberg-Marquardt algorithm is to minimize ‖F (ϕ)−gδ‖2

within a trust region {ϕ ∈ X : ‖ϕ − ϕδn‖ ≤ ρn} in which the approximation F (x) ≈
F (ϕδn) + F ′[ϕδn](x − ϕδn) is assumed to be valid. Here αn plays the rôle of a Lagrange
parameter. Depending on the agreement of the actual residual ‖F (ϕδn+1) − gδ‖ and the
predicted residual ‖F (ϕδn) + F ′[ϕδn](x− ϕδn)− gδ‖ the trust region radius ρn is enlarged or
reduced. If ‖ϕ0 −ϕ†‖ is sufficiently small, then a simple parameter choice rule of the form

αn = α0

(

1

2

)n

(9.8)

is usually sufficient and computationally more effective for ill-posed problems (cf. [Han97a,
Hoh99]).

In [Bak92] Bakushinskii suggested a related method called iteratively regularized Gauss-
Newton method where (9.7) is replaced by

hn = argminh∈X
(

‖F ′[ϕδn]h + F (ϕδn) − gδ‖2 + αn‖h+ ϕδn − ϕ0‖2
)

(9.9)

The penalty term in (9.9) involves the distance of the new iterate ϕδn+1 = hn + ϕδn from
the initial guess ϕ0. This yields additional stability since it is not possible that noise
components sum up over the iteration. Of course, to achieve convergence, the regularization
parameters must be chosen such that αn → 0 as n → ∞. By Theorem 2.1, the unique
solution to (9.9) is given by

hn = (αnI + F ′[ϕδn]
∗F ′[ϕδn])

−1
{

F ′[ϕδn]
∗(gδ − F (ϕδn)) + αn(ϕ0 − ϕδn)

}

. (9.10)

Let us compare the Levenberg-Marquardt algorithm (9.6) and the iteratively regularized
Gauss-Newton method (9.10) if F = T is linear. In this case performing n steps with
constant αn = α is equivalent to applying iterated Tikhonov regularization with n iterations
because (9.7) reduces to

ϕδn+1 = argminϕ∈X
(

‖Tϕ− gδ‖2 + α‖ϕ− ϕδn‖2
)

.

Since we let n tend to infinity, the Levenberg-Marquardt algorithm becomes Lardy’s
method. The iteratively regularized Gauss-Newton method (9.9) applied to linear problems
is

ϕδn+1 = argminϕ∈X
(

‖Tϕ− gδ‖2 + αn‖ϕ− ϕ0‖2
)

,
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i.e. it reduces to ordinary Tikhonov regularization with initial guess ϕ0 and regularization
parameter αn. In particular, ϕδn+1 is independent of all the previous iterates.

The convergence of Newton-type methods is much faster than the convergence of
Landweber iteration. It can be shown that the number of Landweber steps which is neces-
sary to achieve an accuracy comparable to n Newton steps increases exponentially with n
(cf. [DES98]). On the other hand, a disadvantage of the Levenberg-Marquardt algorithm
and the iteratively regularized Gauss-Newton method is that the (typically full) matrix cor-
responding to the operator F ′[ϕδn] ∈ L(X, Y ) has to be computed, and αnI+F ′[ϕδn]

∗F ′[ϕδn]
has to be inverted in each step. For large scale problems, e.g. the inhomogeneous medium
scattering problem discussed in Chapter 7, this can be prohibitively expensive since the
computation of one column F ′[ϕδn]h of this matrix, is typically as expensive as an evaluation
of the operator F .

Setting up a matrix for F ′[ϕδn] can be avoided by using an iterative method to solve
(9.4). Then only the application of F ′[ϕδn] and F ′[ϕδn]

∗ to a given vector are needed. For
many problems highly efficient implementations of the applications of F ′[ϕδn] and F ′[ϕδn]

∗

are available, e.g. by FFT, fast multipole or finite element techniques. The regularization
of (9.4) is then achieved by an early stopping of the inner iteration. Using Landweber
iteration, a ν-method or the conjugate gradient method for the normal equation as inner
iteration leads to the Newton-Landweber method, the Newton-ν-method or the Newton-CG
method, respectively (cf. [Han97b, Kal97, Rie99]). In all cases we we have a choice of
using either 0 or ϕ0 −ϕδn as starting point of the inner iteration, corresponding to either a
Levenberg-Marquardt or an iteratively regularized Gauss-Newton scheme.

Another possibility is to solve the regularized equation

(αnI + F ′[ϕδn]
∗F ′[ϕδn])hn = rn (9.11)

by some iterative method, e.g. the conjugate gradient method. For exponentially ill-posed
problems it is possible to construct special preconditioners for this inner iteration which
increase the speed of convergence significantly (cf. [Hoh01]).

Convergence

As in the linear case, the quality of the iterates deteriorates in the presence of noise as the
number of iterations tends to infinity. Therefore, the iteration has to be stopped before the
propagated data noise error becomes too large. An iteration scheme has to be accompanied
by an appropriate stopping rule to give a regulization method. The most commonly used
stopping rule is the discrepancy principle which requires to stop the iteration at the first
iteration index N = N(δ, gδ) for which

‖F (ϕδN) − gδ‖ ≤ τδ (9.12)

with some fixed constant τ ≥ 1.

Definition 9.1. An iterative method ϕδn+1 := Φn(ϕ
δ
n, . . . , ϕ0, g

δ) together with a stopping
rule N(δ, gδ) is called an iterative regularization method for F if for all ϕ† ∈ D(F ), all
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gδ satisfying (9.2) with g := F (ϕ†) and all initial guesses ϕ0 sufficiently close to ϕ† the
following conditions hold:

1. (Well-definedness) ϕδn is well defined for n = 1, . . . , N(δ, gδ), and N(δ, gδ) < ∞ for
δ > 0.

2. (Convergence for exact data) For exact data (δ = 0) either N = N(0, g) < ∞ and
ϕδN = ϕ† or N = ∞ and ‖ϕn − ϕ†‖ → 0 for n→ ∞.

3. (Convergence for noisy data) The following regularization property holds:

sup{‖ϕδN(δ,gδ) − ϕ†‖ : gδ ∈ Y, ‖gδ − g‖ ≤ δ} → 0 as δ → 0. (9.13)

The last property in Definition 9.1 can often be established with the help of the following
theorem.

Theorem 9.2. Assume that the first two properties in Definition 9.1 are satisfied and
that the discrepancy principle (9.12) is used as stopping rule. Moreover, assume that the
monotonicity condition

‖ϕδn − ϕ†‖ ≤ ‖ϕδn−1 − ϕ†‖ (9.14)

and the stability condition

‖ϕδn − ϕn‖ → 0 as δ → 0 (9.15)

are satisfies for 1 ≤ n ≤ N(δ, gδ). Then the regularizing property (9.13) holds true.

Proof. Let (gδk) be a sequence in Y such that ‖gδk − g‖ ≤ δk and δk → 0 as k → ∞, and
define Nk := N(δk, g

δk).
We first assume that N is a finite accumulation point of Nk. Without loss of generality

we may assume that Nk = N for all k. The stability assumption (9.15) implies that

ϕδk
N

→ ϕN as k → ∞. (9.16)

It follows from (9.12) that ‖gδk − F (ϕδk
N

)‖ ≤ τδk for all k. Taking the limit k → ∞ shows
that F (ϕN) = g, i.e. ϕN is a solution to (9.1). Since we assume the solution to (9.1) to be
unique, this implies (9.13).

It remains to consider the case that Nk → ∞ as k → ∞. Without loss of generality we
may assume that Nk increases monotonically with k. Then (9.14) yields

‖ϕδkNk
− ϕ†‖ ≤ ‖ϕδkNl

− ϕ†‖ ≤ ‖ϕδkNl
− ϕNl

‖ + ‖ϕNl
− ϕ†‖ (9.17)

for l ≤ k. Given ǫ > 0, it follows from the second property in Definition 9.1 that the second
term on the right hand side of (9.17) is ≤ ǫ/2 for some l = l(ǫ). Moreover, it follows from
(9.15) that there exists K ≥ l(ǫ) such that the first term on the right hand side of (9.17)
is ≤ ǫ/2 for k ≥ K. This shows (9.13).
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All known proofs establishing the properties in Definition 9.1 for some method require
some condition restricting the degree of nonlinearity of the operator F . A commonly used
condition is

‖F (ϕ) − F (ψ) − F ′[ϕ](ϕ− ψ)‖ ≤ η‖F (ϕ) − F (ψ)‖, η <
1

2
(9.18)

for ‖ϕ−ψ‖ sufficiently small. At a first glance, (9.18) may look like a weak condition since
the Taylor remainder can be estimated by

‖F (ϕ) − F (ψ) − F ′[ϕ](ϕ− ψ)‖ ≤ L

2
‖ϕ− ψ‖2 (9.19)

under the Lipschitz condition (8.10) (cf. Lemma 7.5), and the right hand side of (9.19)
involves a second power in the distance between ϕ and ψ whereas the right hand side of
(9.18) only involves a first power of the distance of the images under F . However, if (9.1)
is ill-posed, then ‖F (ϕ) − F (ψ)‖ may be much smaller than ‖ϕ− ψ‖. In this sense (9.18)
is more restrictive than (9.19).

Whereas (9.19) could be shown for a number of parameter identification problems in
partitial differential equation involving distributed measurements, it has not been possi-
ble to show (9.18) for other interesting problem such as inverse scattering problems or
impedance tomography, yet.

Our next theorem shows how (9.18) can be used to establish the monotonicity condition
(9.14) for Landweber iteration:

Theorem 9.3. Assume that (9.18) is satisfied in some ball Bρ := {ϕ : ‖ϕ − ϕ†‖ ≤ ρ}
contained in D(F ) and that ‖F ′[ϕ]‖ ≤ 1 for all ϕ ∈ Bρ. Then the Landweber iteration
with µ = 1 together with the discrepancy principle (9.12) with

τ = 2
1 + η

1 − 2η

is well-defined and satisfies (9.14).

Proof. Assume that ϕδn ∈ Bρ for some n < N(δ, gδ). Then

‖ϕ† − ϕδn+1‖2 − ‖ϕ† − ϕδn‖2

= 2 Re
〈

ϕδn − ϕ†, ϕδn+1 − ϕδn
〉

+ ‖ϕδn+1 − ϕδn‖2

= 2 Re
〈

F ′[ϕδn](ϕ
δ
n − ϕ†), gδ − F (ϕδn)

〉

+ Re
〈

gδ − F (ϕδn), F
′[ϕδn]F

′[ϕδn]
∗(gδ − F (ϕδn)

〉

= 2 Re
〈

gδ − F (ϕδn) + F ′[ϕδn](ϕ
δ
n − ϕ†), gδ − F (ϕδn)

〉

−Re
〈

gδ − F (ϕδn), (I − F ′[ϕδn]F
′[ϕδn]

∗)(gδ − F (ϕδn)
〉

− ‖gδ − F (ϕδn)‖2

≤ 2 Re
〈

gδ − F (ϕδn) + F ′[ϕδn](ϕ
δ
n − ϕ†), gδ − F (ϕδn)

〉

− ‖gδ − F (ϕδn)‖2
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since I − F ′[ϕδn]F
′[ϕδn]

∗) is positive semidefinite by the assuption ‖F ′[·]‖ ≤ 1. Using (9.18)
and the Cauchy-Schwarz inequality we obtain

‖ϕ† − ϕδn+1‖2 − ‖ϕ† − ϕδn‖2

≤ ‖gδ − F (ϕδn)‖
(

2η‖g − F (ϕδn)‖ + 2δ − ‖gδ − F (ϕδn)‖
)

≤ ‖gδ − F (ϕδn)‖
(

(2η − 1)‖gδ − F (ϕδn)‖ + 2(1 + η)δ
)

≤ 0

Here the last inequality follows from n < N(δ, gδ), the definition (9.12) of the discrepancy
principle, and the definition of τ . In particular, ϕδn+1 ∈ Bρ. The assertion now follows by
induction on n.

The stability condition (9.15) is obvious from the continuity of F and F ′[·]∗. Hence,
to prove that Landweber iteration is an iterative regularization method in the sense of
definition 9.1, it remains to show that it terminates after a finite number of steps for δ > 0,
i.e. N(δ, gδ) < ∞ and that it converges for exact data. For this we refer to the originial
paper [HNS95] or the monography [EHN96].

Based on Theorem 9.2 it has been shown by Hanke [Han97a, Han97b] that the Levenberg-
Marquardt algorithm and the Newton-CG method are iterative regularization methods in
the sense of Definition 9.1 if the operator F satisfies the nonlinearity condition

‖F (ϕ) − F (ψ) − F ′[ϕ](ϕ− ψ)‖ ≤ c‖ϕ− ψ‖ ‖F (ϕ) − F (ψ)‖ (9.20)

for ‖ϕ− ψ‖ sufficiently small. Although (9.20) is formally stronger than (9.18), for most
problems where (9.18) can be shown, (9.20) can be established as well.

Convergence rates

Let
en := ϕδn − ϕ†, n = 0, 1, . . . ,

denote the error of the nth iterate of the iteratively regularized Gauss-Newton method. It
follows from (9.10) that

en+1 = en + (T ∗
nTn + αnI)

−1
{

T ∗
n(gδ − F (ϕδn)) + αn(e0 − en)

}

= (T ∗
nTn + αnI)

−1
{

αne0 + T ∗
n(gδ − F (ϕδn) + Tnen)

}

with Tn := F ′[ϕδn]. After a few further manipulations we see that en+1 is the sum of an
approximation error eapp

n+1, a data noise error enoi
n+1 and a nonlinearity error enl

n+1 given by

eapp
n+1 = αn(T

∗T + αnI)
−1e0,

enoi
n+1 = (T ∗

nTn + αnI)
−1T ∗

n(gδ − g),

enl
n+1 = (T ∗

nTn + αnI)
−1T ∗

n(F (ϕ†) − F (ϕδn) + Tnen)

+αn(T
∗
nTn + αnI)

−1(T ∗
nTn − T ∗T )(T ∗T + αnI)

−1e0



9. Iterative regularization methods 76

where T := F ′[ϕ†]. If F is linear, then enl
n+1 = 0 and we can use the error analysis in

Chapter 5. The error enl
n+1 caused by the nonlineariy of the operator can be estimated

separately. This possiblity makes the iteratively regularized Gauss-Newton method easier
to analyze than other methods.

Lemma 9.4. Assume that the source condition

ϕ† − ϕ0 = (F ′[ϕ†]∗F ′[ϕ†])µw, ‖w‖ ≤ ρ (9.21)

is satisfied for some 1
2
≤ µ ≤ 1 and w ∈ X and that there exists a Lipschitz constant L

such that
‖F ′[ϕ] − F ′[ψ]‖ ≤ L‖ϕ− ψ‖ (9.22)

for all ϕ, ψ ∈ D(F ). Moreover, assume that the stopping index N is chosen such that

α
µ+ 1

2
N < ηδ ≤ α

µ+ 1
2

n , 0 ≤ n < N (9.23)

with some constant η > 0, and that ϕδn is well-defined. Then

‖en+1‖ ≤
(

ρ+
1

2η

)

αµn + Lρ

(

α
µ−1/2
n

2
+ ‖T ∗T‖µ+1/2

)

‖en‖ +
L

4
√
αn

‖en‖2. (9.24)

Proof. It follows from (5.20) that

‖(T ∗
nTn + αnI)

−1T ∗
n‖ ≤ sup

λ≥0

∣

∣

∣

∣

∣

√
λ

λ+ α

∣

∣

∣

∣

∣

=
1

2
√
α
. (9.25)

By virtue of (9.21) and Theorem 5.2 we have ‖eapp
n+1‖ ≤ αµnρ as µ ≤ 1. It follows from (9.25)

and (9.23) that ‖enoi
n+1‖ ≤ α

−1/2
n δ/2 ≤ αµn/(2η) for n < N . The first term in enl

n+1 can be

estimated by α
−1/2
n (L/4)‖en‖2 due to Lemma 7.5 and (9.25). For the second term in enl

n+1

we get

‖αn(T ∗
nTn + αnI)

−1(T ∗
nTn − T ∗T )(T ∗T + αnI)

−1e0‖
= ‖αn(T ∗

nTn + αnI)
−1 {T ∗

n(T − Tn) + (T ∗ − T ∗
n)T} (T ∗T + αnI)

−1e0‖

≤ L‖en‖ρ
(

α
µ−1/2
n

2
+ ‖T ∗T‖µ+1/2

)

using (9.22), (9.25), (9.21) and Theorem 5.2. Putting all these estimates together gives the
assertion.

Theorem 9.5. Let the assumptions of Lemma 9.4 be satisfied, and assume that

1 ≤ αn
αn+1

≤ r, lim
n→∞

αn → 0, αn > 0 (9.26)
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with α0 ≤ 1 and r > 1. Moreover, assume that η is sufficiently large and ρ is sufficiently
small. Then for exact data the error satisfies

‖ϕn − ϕ†‖ = O (αµn) , as n→ ∞. (9.27)

For noisy data we have

‖ϕN(δ,gδ) − ϕ†‖ = O
(

δ
2µ

2µ+1

)

as δ → 0. (9.28)

Proof. Under the assumptions of Lemma 9.4 the quantities Θn := α−µ
n ‖en‖ fulfil the in-

equality
Θn+1 ≤ a+ bΘn + cΘ2

n, (9.29)

where the coefficients are defined by a := rµ(ρ+1/(2η)), b := rµLρ
(

α
µ−1/2
n /2 + ‖T ∗T‖µ+1/2

)

,

and c := rµL/4. Here we have used that µ ≥ 1/2, and hence α
−1/2
n ≤ α−µ

n . Let t1 and t2
be the solutions to the fixed point equation a + bt+ ct2 = t, i.e.

t1 :=
2a

1 − b+
√

(1 − b)2 − 4ac
, t2 :=

1 − b+
√

(1 − b)2 − 4ac

2c
,

let the stopping index N ≤ ∞ be given by (9.23) and define CΘ := max(Θ0, t1). We will
show by induction that

Θn ≤ CΘ (9.30)

for 0 ≤ n ≤ N if

b+ 2
√
ac < 1, (9.31a)

Θ0 ≤ t2, (9.31b)

{ϕ ∈ X : ‖ϕ− ϕ†‖ ≤ αµ0CΘ} ⊂ D(F ). (9.31c)

It is easy to see that the conditions (9.31a) are satisfied if η is suffiently large and ρ
sufficiently small. For n = 0, (9.30) is true by the definition of CΘ. Assume that (9.30) is
true for some k < N . Then (9.31c) implies that ϕδn ∈ D(F ), i.e. ϕδn+1 ∈ X is well defined,
and (9.29) is true for n = k. By (9.31a) we see that t1, t2 ∈ R and t1 < t2, and by (9.30)
we have 0 ≤ Θk ≤ t1 or t1 < Θk ≤ Θ0. In the first case, since a, b, c ≥ 0, we conclude that

Θk+1 ≤ a + bΘk + cΘ2
k ≤ a+ bt1 + ct21 = t1,

and in the second case we use (9.31b) and the fact that a+(b−1)t+ ct2 ≤ 0 for t1 ≤ t ≤ t2
to show that

Θk+1 ≤ a+ bΘk + cΘ2
k ≤ Θk ≤ Θ0.

Thus in both cases there holds Θk+1 ≤ CΘ. This completes the proof of (9.30).
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(9.30) immediately implies (9.27). The convergence rate (9.28) follows from the first
inequality in (9.23) since

‖ϕN − ϕ†‖ ≤ Cθα
µ
N ≤ Cθ(ηδ)

2µ
2µ+1 .

In [BNS97] it has been shown that the iteratively regularized Gauß-Newton method is
an iterative regularization method in the sense of Definition 9.1 if the operator F satisfies
the following nonlinearity condition: For ϕ, ϕ̄ in a neighborhood of ϕ† there exist operators
R(ϕ̄, ϕ) ∈ L(Y ) and Q(ϕ̄, ϕ) ∈ L(X, Y ) and constants CQ, CR > 0 such that

F ′[ϕ̄] = R(ϕ̄, ϕ)F ′[ϕ] +Q(ϕ̄, ϕ)

‖I −R(ϕ̄, ϕ)‖ ≤ CR, ‖Q(ϕ̄, ϕ)‖ ≤ CQ‖F ′[ϕ†](ϕ̄− ϕ)‖
(9.32)

Under this assumption order optimal convergence rates have been shown for µ < 1
2

using
the discrepancy principle. Convergence rates under logarithmic source conditions

ϕ† − ϕ0 = fp(F
′[ϕ†]∗F ′[ϕ†])w, ‖w‖ ≤ ρ,

(cf. (5.21)) have been obtained in [Hoh97]. Such conditions are appropriate for exponen-
tially ill-posed problems such as inverse obstacle scattering problems and can often be
roughly interpreted as smoothness conditions in terms of Sobolev spaces.
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