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Purpose: Presence of metal artifacts is a major reason of degradation of computed tomography image
quality and there is still no standard solution to this issue. A class of recently investigated metal
artifact reduction (MAR) methods based on forward projection of a prior image that is artifact-free to
replace the metal affected projection data have shown promising results. However, usually it is hard to
get a good prior image which is close to the true image without artifacts. This work aims at creating
a good prior image so that the forward projection can replace the metal affected projection data
well.
Methods: The proposed method consists of four steps based on the forward projection MAR frame-
work. First, metal implants in the reconstructed image are segmented and the corresponding metal
traces in the projection domain are identified. Then the prior image is obtained by two steps. A pro-
cessed precorrected image is generated as an initial prior image first and then in the next step it is
used as the initial image of the iterative reconstruction from the unaffected projection data to generate
a better prior image. In order to deal with severe artifacts, the iteration incorporates the total varia-
tion minimization constraint as well as a novel constraint which forces the soft tissue region near
metal to be as flat as possible. Finally, the projection is completed using forward projection of the
prior image and the corrected image is reconstructed by FBP. A linear interpolation MAR method
and two recently reported forward projection based methods are performed simultaneously for
comparison.
Results: The proposed method shows outstanding performance on both phantoms’ and patients’
datasets. This approach can reduce artifacts dramatically and restore tissue structures near metal to a
large extent. Unlike competing MAR methods, it can effectively prevent introduction of new artifacts
and false structures. Moreover, the proposed method has the lowest RMSE in regions of both soft
tissue and bone tissue among the corrected images and is ranked as the best method for evaluation,
by radiologists.
Conclusions: Both subjective and quantitative evaluations of the results demonstrate the superior
performance of the proposed algorithm, compared to that of the competing methods. This method
offers a remarkable improvement of the image quality. © 2013 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4794474]
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I. INTRODUCTION

Clinically, metallic implants such as surgical clips, dental fill-
ings, and hip prosthesis result in streak artifacts in recon-
structed images of x-ray computed tomography (CT), which
degrades image quality severely.1 Metal artifacts can be at-

tributed to many effects, such as beam hardening due to the
polychromatic x-ray spectrum, scatter and very low signal-
to-noise ratio from photon starvation.2, 3 Currently, metal arti-
facts remain a major problem in x-ray CT.

In the past three decades, various metal artifact reduc-
tion (MAR) algorithms have been proposed. Among them,
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some algorithms model the physics of data acquisition, such
as beam hardening and noise, and then reconstruct the im-
age iteratively from all the projection data,4–6 whereas most
of MAR methods try to reconstruct images only using the
unaffected projection data, while projection data affected by
metal, which is called metal trace or metal shadow, are con-
sidered to be missing. A simple and direct way is to com-
plete the missed projections by the interpolation,7–15 using
data surrounding the metal shadowed area, and linear interpo-
lation (LI) (Refs. 7–9) is a commonly used interpolation al-
gorithm. Interpolation methods are computationally efficient,
however, sometimes new artifacts are introduced in the cor-
rected images.16

Recently, the forward projection based methods have pro-
vided ways to complete the projection data by forward pro-
jecting a prior image,17–21 which is built to be sufficiently
similar to the distribution of the true image (the metal-free
image) and is artifact-free. In arithmetic, the forward projec-
tion based methods usually share the workflow as follows. A
precorrected image is reconstructed first by applying interpo-
lation for metal traces completion, then based on a tissue-
class model,18, 19 the reconstructed image is segmented into
different material tissues and each tissue is assigned a uniform
value, thereby obtaining the named prior image. The final pro-
jection for metal traces is acquired by forward projection of
the prior image which is the same as real CT scanning. Bal
and Spies19 employed the k-means cluster technique to seg-
ment the adaptively filtered image into five classes, while Prell
et al.18 and Meyer et al.21 segmented the precorrected image
(or the uncorrected image with minor artifacts21) into air, soft-
tissue, and bone equivalent materials by using two thresholds
to obtain a prior image. Comparatively, dividing image into
five tissues may lead to wrong segmentation,18 which can be
avoided by the three-tissue-class model to some extent. De-
spite that, wrong segmentation remains a problem in the pres-
ence of severe metal artifacts such as dental fillings, which
may results in some false structures.22 This is discussed fur-
ther in this paper.

As the metal artifact reduction problem can be treated
as the exterior problem, one possible way is to recon-
struct the image from the unaffected projections iteratively,
with adequate regularization. In this case, the image can
be reconstructed by the expectation maximization (EM)
method, the algebraic reconstruction technique (ART) and the
maximum-likelihood algorithm for transmission tomography
(MLTR).23–26 Moreover, the penalized weighted least-squares
(PWLS) constrained optimization method27 is also applied
to remove metal artifacts. Especially, the recently proposed
compressed sensing (CS) theory is powerful to be used to
recover signals from fewer measurements than are required
by Nyquist–Shannon sampling theorem. As a result, the to-
tal variation (TV) minimization constrained method is widely
used to reconstruct CT images from various cases of incom-
plete projections, such as few-views, limited angle data, and
interior tomography.28–31 Meanwhile, the TV constrained al-
gorithmic framework has also been adopted to remove metal
artifacts.31–34 In general, iteration methods can reduce metal
artifacts dramatically but the correction performance is de-

pendent upon selection of regularization parameters to some
extent. In addition, these methods are computationally time
consuming which hinders their application in commercial CT.

To balance the image quality and computational efficiency,
hybrid techniques can compensate for a single method’s
shortcomings.35 Xia et al.36 adopted B-spline interpolation
followed by EM reconstruction to obtain a precise recon-
struction of metal with low computational cost. A similar
method was proposed by Choi et al.37 who adopted CS the-
ory. Boas and Fleischmann38 proposed a metal deletion tech-
nique (MDT) with four iterations. In each iteration, an edge-
preserving blur filtering, forward projection, and FBP re-
construction are performed. Lemmens et al.20 proposed a
MAR algorithm that consists of three iterative reconstruc-
tions and one projection completion procedure. The recon-
structions include MLTR reconstructions and a maximum
a posteriori (MAP) reconstruction incorporating constraints
of multimodal priors. MDT and Lemmens’ method can sup-
press metal artifacts remarkably.

Based on the forward projection MAR framework, we fo-
cus on finding a good prior image in an iterative way, with
low computational time consumption. To this end, a TV con-
strained reconstruction is adopted to generate a prior im-
age that is close to the ground truth. Furthermore, to deal
with the severe ill-posed problem in the vicinity of met-
als, the TV constrained reconstruction is combined with a
specifically designed uniformity constraint in the vicinity of
metals. Initialized by a processed streak-free image, recon-
struction needs only two main loop iterations to achieve a
good prior image. Thereafter, the forward projection is per-
formed and projections are then completed. The proposed
method is evaluated on both simulated datasets and clinical
datasets.

II. METHODS

The MAR methods, which complete sinogram by using
forward projection of a prior image, can achieve good results
as long as the prior image is close enough to the ground truth.
Nevertheless, most of these MAR methods generate the prior
image in a simple way, and the prior image is usually not per-
fect enough if the precorrected image still contains severe ar-
tifacts. In this work, we adopt the TV constraint based itera-
tive reconstruction with an extra local constraint to get a good
prior image, which we call the constrained prior image. Be-
sides, in order to accelerate convergence, the iteration starts
from an initial prior image which is a processed precorrected
image with only a few artifacts. How to get a good prior im-
age is the core in this work and is described in detail in the
following.

The proposed MAR method follows a framework similar
to other MAR methods based on forward projection, while
the prior image is obtained in an iterative way. Hence, the
proposed method can be referred to as a hybrid metal artifact
reduction (HMAR) method. The proposed HMAR method
consists of four main steps: (1) metal trace segmentation;
(2) initial prior image generation; (3) constrained prior im-
age generation; and (4) projection completion followed by the
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FIG. 1. Illustration of HMAR method. Note that pLI, pcp, ptrans, pcorr, f pre, f ip, and f cp are all 1D vectors, for better vision, they are reformatted to the
corresponding 2D image in this figure.

FBP reconstruction. The scheme of HMAR method is as de-
picted in Fig. 1. In these four steps, Steps 1 and 4 are very sim-
ilar to the forward projection-based MAR algorithm (abbrevi-
ated to FP-MAR),24 while Step 3 is the core of the proposed
HMAR algorithm and Step 2 chooses a good initialization for
iteration of Step 3 to accelerate convergence.

II.A. Metal trace segmentation

In this part, the metal trace in the original raw sinogram
is extracted. This work is similar to Refs. 38 and 39. At first,
the distorted image is reconstructed directly from the original

sinogram by FBP. Second, the metal image is segmented from
the reconstructed image by the simple thresholding method.
In this work, 3000 HU is selected as the threshold, which is
proper to extract metal according to the literature.38, 39 In the
uncorrected image, pixel value remains if it is greater than
the threshold; else it is set to zero. Thus, the metal image
is obtained. Finally, the forward projection is performed on
the metal image to generate the metal projection. In the metal
projection, the pixels with the value greater than zero are re-
garded as in the metal trace, i.e., the pixels are contaminated
by the metal. These pixels in the raw sinogram are replaced in
the fourth step.
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II.B. Initial prior image generation

This step is similar to the tissue-class model18, 19, 40 with
some improvements. First, the raw sinogram is processed by
the LI to replace the affected projections. In this paper, pro-
jection datasets and images are expressed by column vectors,
and a vector variable with a subscript denotes the element of
the vector. For example, given the raw projection dataset p
with V views by B detector bins, one of its elements, the vth
view bth bin pixel in the 2D projection dataset is denoted as
pj, j = (v − 1) × V + b. In each view of the raw projection,
if {pk|k ∈ [j + 1, j + �].} is metal trace and its neighboring
projection pixels pj, pj + � + 1 are unaffected by metal, the LI
processed projection data are obtained, as follows:

pLI
k = pj + pj+�+1 − pj

� + 1
(k − j ) . (1)

To suppress the influence of noise, pj, pj + � + 1 can be
smoothed in advance with its neighboring pixels along both
views and bins direction, but excluding pixels in the metal
traces. The precorrected image is reconstructed from the LI
processed sinogram pLI and is then followed by Gaussian fil-
tering, denoted by f pre = {

f
pre
i , i = 1, · · · , N}

, where N is
the number of image pixels. The initial prior image f ip is

then obtained from the precorrected image f pre by the fol-
lowing process. For one thing, soft tissue equivalent materials
account for a dominating proportion in most reconstructed CT
images of humans and the soft tissue equivalent materials are
easily distorted by metal artifacts; for another, compared with
bone tissues, soft tissues have relatively low variance. There-
fore, for the MAR method presented in Ref. 40, all pixel inten-
sities between −500 and 500 HU are replaced with the mean
value of these pixels to generate the prior image by which the
streak artifacts are removed. Inspired by Ref. 40, we also re-
move the artifacts contained in the soft tissue equivalent mate-
rials in the same way. However, both Ref. 40 and tissue-class
model18, 19 assign a uniform value to the segmented tissue or
air, which may cause artificial jump edge between different
classes of tissues and, even worse, false structures in the prior
image.22 To avoid this drawback, a smooth transition between
the soft tissue and the others is necessary. Therefore, we in-
troduce a weight coefficient vector ω according to the spatial
distance between a soft tissue pixel and its nearest nonsoft-
tissue (bone and air) pixel. The soft tissue pixels are assigned
the weighted combination of the precorrected pixels’ value
and their mean value. So the ith pixel f

ip
i in the initial prior

image f ip is assigned the value defined by the formula (2),

f
ip
i =

{
(1 − ωi) · f

pre
i + ωi · meansoft, −500 HU ≤ f

pre
i ≤ 500 HU

f
pre
i , others

, (2)

where meansoft denotes the mean value of the segmented soft
tissues and weight vector ω is defined as

ωi =
{

di

D
, di < D

1, di ≥ D
, ∀i, (3)

where di indicates the Euclidean distance between the ith soft
tissue pixel and its nearest nonsoft-tissue pixel in 2D image
and parameter D controls the region size of smooth transition
and is empirically set to 6 in this investigation.

II.C. Constrained prior image generation

In this section, we produce the prior image by using
constrained iterative reconstruction. TV minimization con-
strained reconstruction can recover some information lost be-
cause of metals shadowing from the unaffected projection
dataset. The CT image f can be reconstructed by solving the
following constrained minimization:

f = arg min
f

‖M f − pnonmetal‖2
2

+ λ1 ‖ f ‖TV , s.t. fi ≥ 0,∀i, (4)

where the system matrix M consists of (V × B) row vec-
tors M i used to yield each projection of ray path, sub-
ject to pnonmetal

i = M i f . pnonmetal is the unaffected projection
dataset vector, λ1 is the regularization parameter. ‖ · ‖2 de-
notes two-norm. In objective function (4), the first term is
data fidelity and ‖ f ‖TV is TV regularization, calculated as∑

x,y

√
(fx,y − fx−1,y)2 + (fx,y − fx,y−1)2, where (x, y) rep-

resents the pixel index of the 2D image.
As the metal is assumed to be opaque, x-rays passing

through the metal are unavailable and image pixels near the
metal miss more projection information required for their re-
construction. Even worse, the projection data are lost almost
completely for pixels next to a large metal. As a result, for
image pixels around large metals, the reconstructed value is
not so reliable. So we propose to raise stronger regularization
near the metal area to suppress unforeseen artifacts that may
exist. To this point, we develop the new constraint acting on
the soft tissue region near the metal, referred to as the local
uniformity constraint (LUC). As is known, attenuation coef-
ficients of soft tissue do not vary significantly in CT images,
so the proposed LUC is to constrain the local region around
metal to be as flat as possible. Namely, these soft tissue pixels
near a metal should be close to a uniform value. Combined
with the LUC, the new objective function can yield a better
prior image that is referred to as the constrained prior image
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f cp. Thus the objective function of TV reconstruction with
LUC (denoted as the TV-LUC) is stated as follows:

f cp = arg min
f

‖M f − pnonmetal‖2
2 + λ1 ‖ f ‖TV

+ λ2U ( f ) , s.t. fi ≥ 0,∀i, (5)

where U ( f ) is the LUC term and λ2 is the corresponding
regularization parameter. U ( f ) is defined as

U ( f ) = 1

2

N∑
i=1

(υi · (fi − Ci))
2, (6)

where υ is a LUC weight vector with the range [0, 1] for
each element and C is named the LUC uniform vector of a
piecewise constant vector, in which soft tissue pixels in the
vicinity of a metal are assigned a uniform value. Here, U ( f )
is to constrain the image f as close to vector C as possible and

vector υ controls the intensity of the constraint at each pixel.
In the following, we draw the details of computation of the
two vectors υ and C.

The LUC weight vector υ is constructed in the follow-
ing way. First, the local region around a metal can be de-
fined by a parameter Dm. Soft tissue pixels with distances
from the metal smaller than Dm compose the local region
around this metal. Thus, the corresponding constraint weight
is set to zero for any pixel beyond local regions. Second, let
dmi be the Euclidean distance between the ith image pixel fi
and its nearest metal pixel, then the corresponding constraint
weight υ i increases monotonously with the decrease of dis-
tance dmi. In addition, the previously mentioned weight vec-
tor ω is also considered in the transition region between the
soft tissue and the others. To sum up, υ can be constructed
as Eq. (7),

υi =
{

ωi · max
{
1 − dmi

Dm
, 0

}
, if the ith pixel is soft tissue

0, others
, i = 1, . . . , N. (7)

As to the LUC uniform vector C, a simple way is to assign
each element of C a weighted mean value of the local regions,
i.e., 〈 f ,υ〉 / ‖υ‖2, where 〈 · , · 〉 denotes the inner product.
However, attenuation coefficients of different kinds of soft-
tissue equivalent tissues (e.g., fat and muscle) may differ a lit-
tle from each other, hence we compute C for each local region
independently. For this purpose, label vector L with the same
size as υ is introduced to label the group of pixels that shares
the same uniform value. In L, the local region for each metal is
assigned a unique nonzero label and the rest of the pixels are
set to zero. Additionally, if two or more local regions are con-
nected, their labels are an identical value. In this way, vector
L is obtained and local region pixels are clustered into sev-
eral groups. Then the LUC uniform value of C for each group
of pixels is calculated by the mean of f weighted by υ and
masked by L. The constraint on the remaining pixels whose
LUC weights are zero is invalid and thus the corresponding Ci

are simply set to zero. Then, each pixel value of the LUC uni-
form vector C can be obtained as stated in formula (8), where
δ( · ) is Kronecker delta function, i.e., δ(t) = 1 if t = 0, and
δ(t) = 0 if t 	= 0. An example of LUC weight vector υ and
LUC uniform vector C of a numerical jaw phantom is shown
in Fig. 3,

Ci =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N∑
k=1

υkfkδ(Lk−Li )

N∑
k=1

υkδ(Lk−Li )
, if υi > 0

0, if υi = 0

, i = 1, · · · , N. (8)

Similar to other TV constrained reconstruction
algorithms,28–31 the minimization of the three terms of
objective function (5) as well as the non-negativity constraint

are iteratively performed in an alternating manner. The
workflow of TV-LUC algorithm is presented as below. The
symbol : = means assignment. The algebraic reconstruction
technique (ART) (Ref. 41) is adopted to minimize the projec-
tion data fidelity term. In order to accelerate the algorithm,
we make use of the ordered subset (OS) technique42 in the
ART procedure. In this paper, all numerical and clinical
projection datasets are identically grouped into 10 subsets
and thus the algorithm consists of 20 subiterations (2 main
loops × 10 subsets). In each subiteration, ART operates
on projections of only one subset. Moreover, to further
accelerate the convergence, the iterative reconstruction starts
with the initial prior image f ip. Followed with each OS-ART
subiteration, non-negativity, LUC and TV minimization are
performed in sequence, where LUC and TV minimization
are accomplished by using the gradient descent method
and [· · · , ∂U ( f )

∂fi
, · · ·]T and [· · · , ∂‖ f ‖TV

∂fi
, · · ·]T are gradient

vectors of LUC and TV, respectively. To avoid the singularity
when computing ∂‖ f ‖TV / ∂fi , a small positive number is
introduced to obtain approximate derivatives.28 We minimize
the TV term with implementation similar to the one described
in Ref. 28. The factor da in Eq. 11 is defined by the difference
between f of the previous and the current subiterations,
which can be used as a parameter to control the strength
of TV. At the end of each subiteration, the corresponding
parameters, such as β, λ2, and Dm, and vectors υ and C,
are updated. Gradual decreasing of the parameters helps
convergence of the algorithm. The image f cp is obtained
after two main loop iterations. Finally, each metal pixel’s
value of f cp is replaced with its nearest nonmetal pixel’s
value, as in Ref. 18. Then, this f cp is the final prior image of
the proposed HMAR method. In the workflow of TV-LUC
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TV-LUC algorithm:
Initialization:

Parameters: main loop iteration number Nmain := 2, the number of subsets Nos := 10, β := 1, βred := 0.95, λ1 := 0.2, λ2 := 1, λred2 := 0.98,
Dm := 40, Dmred := 0.98.
Initial image f := f ip , f 0 := f , LUC weight vector υ, LUC uniform vector C.

Main loop:
for n = 1: Nmain do:

for nos = 1: Nos do:
(A) OS-ART : for i ∈ {indexs of the nosth subset projections} do:

f := f + β M i

pnonmetal − M i · f
M i · M i

; (9)

(B) Nonnegativity: for i = 1: N do:
if fi < 0 then fi := 0;

(C) Local uniformity constraint: for i = 1: N do:

fi := fi − λ2 · ∂U ( f )

∂fi

= fi + λ2 · υi · (Ci − fi ) ; (10)

(D) TV minimization:

da :=
∥∥∥ f 0 − f

∥∥∥
2
, f 0 := f ;

for k = 1: 20 do:

Gradient vector of TV norm: df := ∇f ‖ f ‖T V =
[
· · · , ∂‖ f ‖T V

∂fi
, · · ·

]T

,

Normalization: df := df / ‖df ‖2,

f := f − λ1 · da · df ; (11)

end
(E) Update data: β := β · βred, λ2 := λ2 · λred2, Dm := Dm · Dmred, update υ and C.

end
end
Output: f cp := f

reconstruction algorithm, empirically selected parameters are
fixed for all phantom and clinical datasets in this study.

Objective function (5) consists of three terms: the data fi-
delity term, TV constraint term and LUC term. Obviously, the
former two terms are convex. As to the LUC term, vectors υ

and C are determined by the previous subiteration and thus
they can be treated as constant vectors in the current subiter-
ation. Therefore, the LUC term is convex in each subiteration
since it is a quadratic function with respect to f. However, we
cannot prove convexity of the cost function since the depen-
dence of LUC vectors on iteration of f makes the cost function
complicated. But the experimental results in Sec. IV show that
the constrained optimization can work well and good prior
images can be obtained in this study.

II.D. Projection completion and image reconstruction

In this step, forward projection pcp of the constrained prior
image f cp is obtained by the ray-driven method52 to complete
the sinogram and the corrected image is finally reconstructed
from the corrected sinogram. However, if the metal trace pix-
els are replaced with the corresponding ones of pcp directly, it
leads to discontinuity at the boundary of the metal traces. The
discontinuity results in new streak artifacts. Therefore, elim-
ination of the discontinuity is a necessary step to achieve a
relatively perfect CT image. In this work, the LI method7, 39

is adopted again to generate a projection vector ptrans which
is treated as a smooth transition between pcp and the raw pro-

jection dataset p. For each view, we have

ptrans
k = (

pj − p
cp
j

)
+

(
pj+�+1 − p

cp
j+�+1

) − (
pj − p

cp
j

)
� + 1

(k − j ) ,

(12)

where subscripts have the same meaning as in formula (1).
Then corrected projection pcorr in the metal traces is stated as

pcorr
k = p

cp
k + ptrans

k . (13)

The remaining unaffected projections in pcorr have the same
value as in the raw projection dataset. It can be seen from
formulas (12) and (13) that the replaced projection data
in metal traces can seamlessly connect to the surrounding
unaffected projection data. Finally, the corrected image is re-
constructed by using conventional FBP algorithm and seg-
mented metals in the first step are inserted back into the cor-
rected image.

III. EXPERIMENTAL MATERIALS

In this study, we first adopt simulation experiments to
quantitatively compare the performance of the HMAR with
competing methods. And then, the proposed and the compet-
ing methods are compared on the scanned datasets of patients
and evaluated by two radiologists.
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FIG. 2. Simulation of a numerical jaw phantom. (a) definition of the numer-
ical jaw phantom, three metals are inserted into teeth as indicated by arrows.
(b) reconstructed image of the phantom with metals, and (c) the segmented
metals from (b). It can be seen in (c) that the two adjacent metals are com-
bined into a large one.

In the simulation, a 2D numerical jaw phantom designed
by Lemmens et al.20 is adopted. The phantom consists of
512 × 512 pixels and 0.5 × 0.5 mm per-pixel, as shown in
Fig. 2. Composition of soft tissues and bone tissues in the
phantom is set according to the ICRU 44 Report and the x-
ray attenuation coefficients of these tissues are obtained from
XCOM.43, 44 Three amalgam dental fillings are inserted into
the phantom as shown in Fig. 2(a). Projection datasets of the
phantom with and without metals are simulated. The poly-
chromatic x-ray is simulated and each detector bin receives
1 000 000 photons on average in the case of vacant scan;
beam hardening effect and poisson noise are simulated.45 The
distance between the x-ray source and the rotation center is
100 cm and the distance between the x-ray source and detec-
tor is 150 cm. The projection is generated according to the
equispatial fanbeam CT geometry with 512 detector bins and
660 projection views over 360◦.

The CatPhan R© 600 phantom (The Phantom Laboratory,
Inc., Salem, NY), the head-and-neck of two patients (pa-
tients 1 and 3) and the pelvis of a patient (patient 4) were

FIG. 3. The LUC weight vector υ and the LUC uniform vector C of the nu-
merical jaw phantom with metals. (a) the initial image of TV-LUC algorithm,
and (b) and (c) the corresponding LUC weight vector and LUC uniform vec-
tor, respectively. (c) is piecewise constant, which consists of two uniform
regions, C0 and C1.

scanned on a kV onboard imaging (OBI) system integrated
in a TrueBeamTM medical linear accelerator (Varian Medical
System, Palo Alto, CA). The head of patient 2 was scanned on
a Siemens SOMATOM Sensation 16 scanner CT using heli-
cal scanning geometry. After rebinning process, the acquired
multislice dataset has been converted into a stack of fanbeam
sinograms,46 each associated with one horizontal z-slice. The
measurements of CatPhan R© 600 phantom, patients 1 and 3,
were acquired with 364 projection views over 200◦ in full-fan
mode with a bowtie filter and the measurement of patient 4
was acquired with 656 projection views over 360◦ in half-fan
mode with a bowtie filter. For Varian Medical System, dis-
tances from the x-ray source to the rotation center and to the
detector are 100 and 150 cm, respectively. Its imaging detec-
tor size is 30 × 40 cm consisting of 768 × 1024 pixels (0.388
× 0.388 mm per-pixel) and projection data at each view is
down-sampled by a factor of 2. The measurement of patient
2 has 1160 projection views over 360◦ and the number of
detector bins is 672, the corresponding FOV is 25 cm
and distance from the x-ray source to the rotation center

FIG. 4. Comparison of prior images. (a) reconstructed image of the jaw phantom without metals, which can be regarded as the ground truth. (b) the precorrected
image by linear interpolation, and (c)–(h) the prior images for different methods. (c)–(e) are generated from (b), they are FP-MAR prior, NMAR prior and the
proposed initial prior images, respectively. (f)–(h) are obtained by TV-LUC-zero, TV, and TV-LUC algorithms, respectively, in which (g) and (h) are initialized
with (e). The image display window width and window level are (WW = 1500 HU, WL = 100 HU).
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FIG. 5. The reconstruction of the numerical jaw phantom. (a) FBP reconstruction of the numerical jaw phantom without metallic implants, and (b) the uncor-
rected image with metallic implants. (c)–(h) the corrected results by LI-MAR, FP-MAR, NMAR, HMAR-zero, HMAR-TV, and HMAR, respectively. (i)–(p)
correspond to the magnifications of partial (a)–(h), respectively. The window width and window level are (WW = 1500 HU, WL = 100 HU) for (a)–(h) and
(WW = 750 HU, WL = 0 HU) for (i)–(p), respectively.

is 57 cm. The CT tube voltage is 100 kV for CatPhan R© 600
phantom, patients 1 and 3, 120 kV for patient 2 and 125 kV for
patient 4. The tube current is 140 mA for CatPhan R© 600 phan-
tom, 20 mA for patients 1 and 3 and 80 mA for patient 4; x-ray
pulse length at each projection view is 13 ms for CatPhan R©

600 phantom and 20 ms for patients 1, 3 and 4. Patient 2
was scanned with 496 mAs. The CatPhan R© 600 phantom
contains no metal in it, so we simulate three metals located
in air holes of the phantom as illustrated in Fig. 8(b). The
x-rays passing through the metals are regarded as metal traces,
and the projection information is absolutely missing. There is
almost no difference between this quasi-realistic case and the
realistic case of metals inserted and we can hence assess the
MAR methods objectively and quantitatively since the ground
truth is known. Central slice projection data of CatPhan R© 600
phantom is chosen for reconstruction. The chosen representa-
tive slices of patients 1, 3 and 4 are just a little far from the

central slice and, therefore, reconstruction and forward pro-
jection can be assumed approximately as 2D fanbeam case.
The reconstructed slices of patients 1–4 contain dental fill-
ings, a clip, a metal implant and a screw, respectively. All
these reconstructed images are of 512 × 512 pixels, with
pixel sizes 0.776 × 0.776 mm for CatPhan R© 600 phantom,
patients 1–3, and 1 × 1 mm for patient 4, which ensures that
all scanned objects are contained in the reconstructed images.
In addition, Parker weights47 and offset detector weights48, 49

are adopted to deal with short-scan (patients 1 and 3) and off-
set detector (patient 4) in reconstruction, respectively.

IV. RESULTS

In this paper, the linear interpolation MAR method, MAR
method in Ref. 18, MAR method in Ref. 21, and the pro-
posed method are denoted as LI-MAR, FP-MAR, NMAR,
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and HMAR, respectively. FP-MAR is a typical forward pro-
jection based method for flat-detector CT, while NMAR
can be regarded as an improved forward projection based
method. The LI-MAR, FP-MAR, and NMAR methods are
selected for comparison with the proposed HMAR. We im-
plemented those methods because their codes are not avail-
able in public. We try to reproduce these methods faithfully
except one detail for FP-MAR implementation. In its origi-
nal literature, FP-MAR was proposed to deal with metal ar-
tifacts for flat-detector CT and the three-dimensional linear
interpolation-based MAR was adopted to obtain a precor-
rected image. Since the proposed HMAR is to mainly deal
with severe metal artifacts for 2D CT, for a fair comparison,
the widely used LI-MAR (Refs. 7 and 39) is adopted to gener-
ate precorrected image in obtaining prior image for FP-MAR
and NMAR.

In order to understand the TV-LUC reconstruction algo-
rithm better, it is compared with its two degenerate versions,
the iteration starting from uniform zero image rather than
from f ip (denoted as TV-LUC-zero algorithm) and the other
is without LUC (denoted as TV algorithm). In implementa-
tion of the two versions, all parameters and procedures are
the same as the TV-LUC algorithm. Correspondingly, the
HMAR method is degenerated into two versions and denoted
as HMAR-zero and HMAR-TV, which are implemented for
comparison on phantom datasets. For convenient representa-
tion, HMAR-zero, HMAR-TV, and HMAR are collectively
named as HMAR type methods.

Reconstructed images are displayed with different window
settings. In each group of the illustrated images, arrows em-
phasize the positions of the metallic implants and the severe
metal artifacts to be discussed. In order to evaluate the MAR

methods quantitatively, several 8 × 8 ROIs are selected for an-
alyzing their mean CT number and standard deviation (SD).
The ROI position is chosen where the artifacts are severe.
Moreover, in order to assess these methods globally, we com-
pute the root mean square error (RMSE) between pixel in-
tensities of the corrected images f corr and the ground truth
f groundtruth. Let the k-tissue be either soft tissue or bone tissue,
then RMSE of the k-tissue is given by Eq. (14), where Tk indi-
cates the set of the k-tissue pixels and Nk is the pixel number
of the k-tissue,

RMSEk−tissue =

√√√√∑
i

(
f corr

i − f
groundtruth
i

)2

Nk

, f corr
i ∈ Tk.

(14)

IV.A. Numerical jaw phantom

Figure 2 shows the simulated jaw phantom with dental fill-
ings. The corresponding LUC weight vector and LUC uni-
form vector at the beginning of TV-LUC iteration are shown
in Fig. 3. Figure 4 compares the prior images produced by
various methods. Comparing images shown in Figs. 4(f)–4(h)
with those in Figs. 4(c) and 4(d), the HMAR type methods can
recover the variance in soft tissue and the tooth shape pointed
by the arrow better. However, there exist obvious dark and
bright artifacts in soft tissue region next to the large metal in
Fig. 4(g), while the constrained prior image in Fig. 4(h) can
prevent generation of such kind of artifacts by using LUC.

Figure 5 shows reconstructed images of the numerical
jaw phantom before and after the corrections made by the

FIG. 6. Mean CT number and the SD for the ROIs in Fig. 5.
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FIG. 7. (a) is RMSE of the four prior image generations versus the num-
ber of subiteration. The horizontal axis is the number of subiteration and
the vertical axis is RMSE between the prior image at each subiteration and
the ground truth (where the metal pixels are excluded). (b) is HMAR cor-
rected image corresponding to Fig. 5(h). (c) is the corrected image by us-
ing the constrained prior image obtained by the TV-LUC-zero algorithm
with 8 main loop iterations (TV-LUC-zero8) and with optimized parame-
ters, in which the window width and window level are (WW = 750 HU,
WL = 0 HU).

various MAR methods. Figure 5(a) is the reconstructed image
without metallic implants, which can be regarded as the
ground truth. As can be seen in Fig. 5(b), the uncorrected
image suffers severe metal artifacts in the presence of mul-
tiple large dental fillings. All the six MAR methods can re-
duce metal artifacts in different degrees, among them HMAR
corrected image is the closest to the ground truth, by observa-
tion. To be specific, the tooth pointed by arrow 1 is next to the
large metal [refer to Fig. 4(a)] and its shape is distorted greatly
in LI-MAR corrected image. For the results of FP-MAR and
NMAR, as illustrated in Figs. 5(d) and 5(e), this bone tissue
remains almost in the same distorted shape as in prior im-
ages shown in Figs. 4(c) and 4(d). While prior images of the
HMAR-zero, HMAR-TV, and HMAR are all obtained by the
constrained iterative reconstruction, the tooth can be restored
to a large extent from information of the unaffected projec-
tion dataset. Hence, these three proposed methods can repair
the tooth much better than the other three MAR methods, as
can be seen in Figs. 5(c)–5(h). Regarding the streak artifacts

TABLE I. RMSE of soft tissue and bone in the numerical jaw phantom (HU).

LI-MAR FP-MAR NMAR HMAR-zero HMAR-TV HMAR

Soft tissue 86.3 68.1 55.6 34.9 45.5 25.7
Bone 453.5 406.5 369.9 221.8 193.9 156.0

that remain after correction, we choose the regions pointed by
arrows 2 and 3 for analysis. Clearly, the three HMAR type
methods have better performance compared to the compet-
ing methods. Among them, result of the HMAR method has
the lightest artifacts, while the performance of the LI-MAR
is the worst. In addition, all the four small low contrast soft
tissues located in the upper middle part of the phantom can be
clearly observed in the NMAR and three HMAR type meth-
ods corrected images, among which the result of HMAR is the
best. In comparison, only two or three low contrast tissues can
be recognized after LI-MAR and FP-MAR corrections. From
the crosswise comparative analysis among the three HMAR
type methods, the HMAR corrected image is the best in
Figs. 5(n)–5(p). It can be observed that the streak artifacts in
Fig. 5(n) are relatively severe and there exist obvious bright
and dark artifacts at the soft tissues pointed by arrows 4 and
5 in Fig. 5(o). In contrast, HMAR can reduce these artifacts
and obtain pixel values very close to the ideal ones as shown
in Fig. 5(p). To sum up, Figure 5 demonstrates that HMAR
has better performance in artifacts suppression than the other
MAR methods, especially for recognition of the low con-
trast structure and the bone tissue restoration near the large
metal.

The mean CT number and the standard deviation of each
ROI [refer to Fig. 5(a)] in each reconstructed image are shown
in Fig. 6. Generally, HMAR has the mean CT number that is
closest to the ground truth and also has the minimum standard
deviation in most ROI. The maximum standard deviation of
these 8 ROIs is about 13 HU in the ground truth image, and is
about 16, 25, and 16 HU in the corrected images based on the
HMAR-zero, HMAR-TV, and HMAR methods, respectively,
while the data reach more than 50 HU in the other three cor-
rected images. The biased errors of the mean CT number in
ROI 6 and ROI 7 are smaller in HMAR corrected image, at
around 21 and 23 HU, respectively, compared with more than
202 and 128 HU in LI-MAR, FP-MAR, and NMAR corrected
images.

Table I shows that the three HMAR type methods can
reach much lower RMSE for both soft tissue and bone than
LI-MAR, FP-MAR, and NMAR. Specifically, the HMAR
correction has the least RMSE for both soft and bone tis-
sues. Comparison of data of the three HMAR type meth-
ods shows that the initialization with f ip and the LUC in
HMAR method have a positive effect on bringing down
the RMSE.

Figure 7(a) shows the RMSE curves in the iteration pro-
cess of TV-LUC-zero, TV, and TV-LUC with two main loop
iterations as indicated before, as well as the TV-LUC-zero
algorithm with eight main loop iterations (denoted as TV-
LUC-zero8). It can be observed from Fig. 7(a) that RMSE of
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FIG. 8. The reconstruction of the CatPhan R© 600 phantom. (a) FBP reconstructed image of the real scanned dataset without metal interts, and (b) simulates
three metal inserts in the phantom as indicated with arrows. (c)–(h) the corrected results by LI-MAR, FP-MAR, NMAR, HMAR-zero, HMAR-TV, and HMAR,
respectively. The window width and window level are (WW = 750 HU, WL = 0 HU).

TV-LUC decreases monotonically and TV-LUC can reach a
RMSE lower than TV-LUC-zero and TV with two main loop
iterations, so the LUC and initialization with f ip are nec-
essary to produce a good prior image with fewer iterations.
Since we cannot prove the convexity of objective function
(5), the algorithm might converge to different local minima
with different initial values. But the simulation result shows
that TV-LUC-zero8 can also reach a low RMSE which is very
close to TV-LUC, and both the obtained prior image and the
corrected image are much similar to the HMAR. It can be
validated further by comparing the corrected images shown
in Figs. 7(b) and 7(c). To sum up, a good initial initialization
is helpful to fast achieve a good prior image in the iterations
of TV-LUC.

IV.B. CatPhan R© 600 phantom

Figure 8 shows experimental results on the real dataset
scanned from the CatPhan R© 600 phantom. Figure 8(a) is re-
garded as ground truth for the following evaluation. Three
simulated metals pointed by arrows are inserted in the ground
truth image, as shown in Fig. 8(b). It is clear that the arti-
facts are most severe in LI-MAR corrected image and are the
lightest in images corrected by the three HMAR type meth-
ods, which is similar to the situation of the numerical phan-
tom simulation. As indicated by arrow 1, the bright streak
artifacts between the metal and the bone equivalent material
are obvious in LI-MAR, FP-MAR, and NMAR corrected im-
ages, while the artifacts are removed completely in the three
HMAR type methods corrected images. Similarly, the streak

FIG. 9. Mean CT number and the SD for the ROIs in Fig. 8.
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TABLE II. RMSE of soft tissue and bone equivalent materials in CatPhan R©

600 phantom (HU).

LI-MAR FP-MAR NMAR HMAR-zero HMAR-TV HMAR

Soft tissue 18.4 13.4 13.1 11.6 13.0 11.0
Bone 105.7 39.5 35.5 14.3 18.0 14.2

artifacts indicated by arrows 2 and 3 in images corrected by
the three HMAR type methods are weaker than that by LI-
MAR, FP-MAR, and NMAR. Besides, the artifacts near the
largest metal in HMAR corrected image are slightly weaker
than in the HMAR-zero and HMAR-TV corrected images.

Figure 9 shows the mean CT number and the standard de-
viation of each ROI [refer to Fig. 8(b)] in the reconstructed
images. Standard deviations of these 4 ROIs in FP-MAR,
NMAR, and the three HMAR type methods corrected im-
ages are similar to the ground truth image. In general, the cor-
rected images based on the three HMAR type methods have
the mean CT number closer to the ground truth in these ROIs.

The RMSE of soft tissue and bone equivalent materials
in CatPhan R© 600 phantom is given in Table II. The data in
Table II follow a trend similar to that in Table I. HMAR has
the least RMSE for both the soft tissue and the bone equiva-
lent materials, followed by HMAR-zero and HMAR-TV.

IV.C. Patients’ measurements

Figure 10 shows head CT images of patient 1, in the pres-
ence of two big dental fillings distributed on both sides of
the lower jaw. Since the metals are big and surrounded by
both soft tissue and bone tissue, generally it is hard for MAR
methods to get artifact-free results. It can be observed that
there exist severe metal artifacts in the uncorrected images
shown in Figs. 10(b) and 10(g). Although all these four MAR
methods can reduce the artifacts significantly, as shown in
Figs. 10(c)–10(f) and Figs. 10(h)–10(k), quality of images of
the three competing methods is still unsatisfactory. They can-
not remove the dark artifact in the soft tissue near the outer
side of the teeth as indicated by the arrow 1. Even worse,
some false structures emerge when the FP-MAR and NMAR
methods are applied, as shown by arrows 2–4, which are easy
to be taken for lesions or other tissue structures. HMAR can
avoid introducing these new artifacts and reduce metal arti-
facts more effectively. Although some artifacts remain in the
HMAR corrected image, they are lighter compared to images
corrected by other MAR methods. The reason why HMAR
can achieve such a good result is attributed to its better prior
image.

In order to explain the mechanism of producing false struc-
tures in FP-MAR and NMAR corrected images and why
HMAR is superior, we illustrate their prior images and two
representative profiles in Fig. 11. All FP-MAR prior, NMAR
prior, and initial HMAR prior classify some soft equivalent
tissue wrongly as air, as pointed out by the arrow. The wrong
classification tissue is repaired in the constrained HMAR

FIG. 10. Patient 1, slice through two big dental fillings distributed on both
sides of the lower jaw. (a) and (b) the uncorrected images, the two arrows
in (a) indicate the dental fillings. (c)–(f) the corrected results by LI-MAR,
FP-MAR, NMAR, and HMAR, respectively. (g)–(k) correspond to the mag-
nifications of partial (b)–(f), respectively. The window width and window
level are (WW = 4000 HU, WL = 1000 HU) for (a), (WW = 1500 HU,
WL = 100 HU) for (b)–(f), and (WW = 750 HU, WL = 0 HU) for (g)–(k),
respectively.

prior image by its TV-LUC algorithm. Thus, only HMAR
corrected image can restore the soft tissue. For clear illustra-
tion, two profiles in soft tissue region along with two lines,
as indicated in Fig. 11(a), are shown in Figs. 11(f) and 11(g).
Comparisons of the prior images are shown in Figs. 11(b)–
11(e). All FP-MAR prior, NMAR prior, and initial HMAR
prior images contain artifacts because the pixel intensities
along the lines fluctuate around the soft-bone tissue thresh-
old. Segmenting images by threshold causes discontinuity for
FP-MAR prior and NMAR prior as shown in Figs. 11(f) and
11(g) (refer to the sharp fluctuation along the profiles). Thus,
the false edges emerge and result in false structures in the
corrected images. In contrast, the constrained HMAR prior
adopts the iterative process to prevent the sharp false edges.
As a result, artifacts in the initial prior image are suppressed
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FIG. 11. Comparison of the prior images of MAR methods, (a) the LI-MAR reconstruction where the metals are not inserted back to the image, and (b)–(e) the
FP-MAR prior image, NMAR prior image, initial HMAR prior image and constrained HMAR prior image, respectively, in which the window width and window
level are (WW = 1500 HU, WL = 100 HU). (f) and (g) are the profiles comparison of the prior images at the vertical line and the horizontal line indicated in
(a), respectively.

FIG. 12. Patient 1, slice through three adjacent dental fillings in the upper jaw. (a) and (b) the uncorrected images, the three arrows in (a) point out the dental
fillings, and (c)–(f) the corrected results by LI-MAR, FP-MAR, NMAR, and HMAR, respectively. (b)–(f) are the magnifications of partial images. The window
width and window level are (WW = 4000 HU, WL = 1000 HU) for (a) and (WW = 750 HU, WL = 0 HU) for (b)–(f), respectively.
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FIG. 13. The head CT images show patient 2 with a cerebral artery aneurysm after clipping surgery. (a) and (b) are the uncorrected images, the arrows in
(a) point out the clip, and (c)–(f) the corrected results by LI-MAR, FP-MAR, NMAR, and HMAR, respectively. The window width and window level are
(WW = 4000 HU, WL = 1000 HU) for (a) and (WW = 200 HU, WL = 50 HU) for (b)–(f), respectively.

greatly. Therefore, the profiles are smoother in the constrained
HMAR prior than that in the other prior images, as shown in
Figs. 11(f) and 11(g). Moreover, as shown in Fig. 11(e), CT
number variance in soft tissues has been recovered to a large
extent in the constrained HMAR prior image, which makes it
closer to the ground truth.

Figure 12 shows some other head CT images of patient
1, in which there are three adjacent dental fillings in the
upper jaw. It is clear that HMAR can obtain a better cor-
rected image, reducing the dark streak artifacts indicated
by arrow 1 more dramatically than the other three MAR
methods. Besides, unlike the other three MAR methods,

FIG. 14. Patient 3, slice through a single metal in head. (a) and (b) the uncorrected images, the arrow in (a) points out the metal, and (c)–(f) the corrected
results by LI-MAR, FP-MAR, NMAR, and HMAR, respectively. (b)–(f) are the magnifications of partial images. The window width and window level are
(WW = 4000 HU, WL = 1000 HU) for (a) and (WW = 750 HU, WL = 0 HU) for (b)–(f), respectively.
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FIG. 15. Patient 4, slice through a fixation screw in the pelvis. (a) and (b) the uncorrected images, the arrow in (a) points out the screw, and (c)–(f) the corrected
results by LI-MAR, FP-MAR, NMAR, and HMAR, respectively. (b)–(f) are the magnifications of partial images. The window width and window level are (WW
= 4000 HU, WL = 1000 HU) for (a) and (WW = 750 HU, WL = 0 HU) for (b)–(f), respectively.

HMAR can prevent the false structures as indicated by
arrow 2.

Patient 2 is a 59 year-old female with diffused subarach-
noid hemorrhage in the basal cisterns and sylvian fissures.50

Figures 13(a) and 13(b) show a metallic clip in the region
of cerebral artery aneurysm in head CT images. The uncor-
rected and LI-MAR corrected images contained massive ar-
tifacts. FP-MAR and NMAR can alleviate artifacts to some
extent and HMAR can remove artifacts better and enable
visualization of tissues around the clip, as can be seen in
Figs. 13(d)–13(f). As highlighted in the rectangular region in
Fig. 13(f), the bright hemorrhage and the surrounding dark
cerebral edema can be clearly observed. HMAR indicates a
superior artifact removal effect and the ability for imaging di-
agnosis after clipping surgery.

Figure 14 shows head CT images of patient 3, in which
there is a single small metal. It can be seen from Fig. 14(c)
that LI-MAR has very limited ability to reduce streak artifacts
and it even introduces new slight artifacts. In comparison, FP-
MAR, NMAR, and HMAR methods can suppress metal arti-
facts dramatically, and the intensity of the remaining artifacts
pointed by arrow 1 is similar, as shown in Figs. 14(d)–14(f).
Since the remaining artifacts in LI-MAR corrected image are
not severe, it is easy to get a good prior image even by us-
ing a simple thresholding technique (such as the tissue-class
model). Therefore, all forward projection based MAR meth-
ods can achieve results with few artifacts.

Figure 15 shows pelvis CT images of patient 4, in which
there is a metallic screw. It can be seen from Fig. 15 that all the
four methods can remove metal artifacts almost completely. In
this projection dataset, although there is still no prior informa-
tion for LI-MAR, the projections around the metal trace are
very flat, so linear interpolation is a good estimation of the
missing projection caused by small metal.21 With more prior
information than LI-MAR, it is easy to obtain good results
from the three prior image based MAR methods.

The above-mentioned five sets of CT slices were blind re-
viewed by two radiologists (Reviewers A and B). The five CT
images in each set were displayed side by side in a random
order, and the reviewers were allowed to zoom in and out and
adjust window width and window level. Regarding the overall
image quality and visual conspicuity of anatomic recognition,
images in each set were ranked from 1 (the best image) to
5 (the worst image).51 The ranking results are as shown in Ta-
ble III. Uncorrected images are always regarded as the worst
and all MAR methods have a positive effect on image quality.
HMAR is ranked as the best for all patients’ scans by both
radiologists. The rank of NMAR is 2.1 on average, followed
by FP-MAR and LI-MAR whose mean ranks are 3.1 and 3.2,
respectively.

All MAR methods were implemented on an Intel(R)
Core(TM) i7-2600 CPU, 3.40GHz with 4GB of RAM–PC
platform, using MATLAB. Our code was not optimized for bet-
ter speed and only one core of CPU was utilized to run the

TABLE III. Rank of image quality assigned by two radiologists.

Patient 1 Patient 1
@lower jaw @upper jaw Patient 2 Patient 3 Patient 4

A B A B A B A B A B Mean

Uncorrected 5 5 5 5 5 5 5 5 5 5 5.0
LI-MAR 3 3 4 3 4 4 4 4 2 1 3.2
FP-MAR 4 4 3 4 2 2 3 3 2 4 3.1
NMAR 2 2 2 2 3 3 1 1 4 1 2.1
HMAR 1 1 1 1 1 1 1 1 1 1 1.0
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code. Taking patients 1 and 3, for example, computation time
of LI-MAR, FP-MAR, NMAR, and HMAR was 80s, 145s,
144s, and 299s, respectively, to obtain 512 × 512 corrected
images from the 512 bins by 364 views raw data.

V. DISCUSSION AND CONCLUSION

Finding a good prior image is crucial in forward projection
based methods. In our work, we find that the prior image be-
ing a “coarse” or “smooth” version of the ground truth may be
a very good choice because it seizes both sides of the problem.
One is that it has the streak artifacts removed, which avoids
introduction of the artifacts; and the other is that it avoids the
wrong tissues classification introduced by forcing unified in-
tensity just as the competing methods do. Therefore, by us-
ing prior information of this “coarse” image, we can com-
plete projection and simultaneously prevent bringing streak
artifacts and false structures in the corrected image.

Some iterative MAR algorithms using incomplete projec-
tion, such as the TV based MAR methods32, 33 and the con-
strained optimization based MAR (Ref. 27) may achieve good
results, but the key problem is how to strike a balance between
image details and regularization. Parameters selection for the
balance is based on the image content and the noise level.
Thus, parameters are usually chosen empirically in each case.
On the contrary, an over smoothed image is acceptable as a
good prior image and thus the parameters and iteration stop-
ping criteria in HMAR method are easy to set. Meanwhile, the
proposed LUC component is efficient to deal with the severe
ill-posed problem around metal. As a result, all parameters in
HMAR method are fixed for every case in this study, which
will benefit its applications.

The general goal is to promote the CT image quality and
meanwhile, lower computational cost as much as possible.
For MAR methods, CT image reconstruction and forward
projection account for a dominant proportion of compu-
tational time. Both FP-MAR and NMAR need three con-
ventional FBP reconstructions and two forward projections,
while HMAR need two extra iterations for reconstruction. Al-
though HMAR need more computational cost than FP-MAR
and NMAR, it has better correction performance. In addition,
HMAR needs fewer main iterations compared with other OS
based accelerated iterative MAR algorithms, e.g., the MAR
method in Ref. 20 needs seven main iterations in the MAP
reconstruction procedure. In short, HMAR can find a good
trade-off between image quality and computational efficiency.

Although the HMAR method is developed for 2D CT, it
can also be applied to 3D cases slice by slice as demonstrated
in the patients’ experiments. Besides, since the number of pa-
tients is not sufficient, statistical analysis of ranking results is
not carried out. In order to further validate the effectiveness of
the proposed method, we will test HMAR on more patients’
measurements and statistically analyze results in our future
work.

In conclusion, this paper proposes a novel HMAR method
based on forward projection. The key idea is to find a good
prior image by the proposed TV iterative reconstruction with
the local uniformity constraint around metals, and the itera-

tion is initialized with a precorrected image to save the com-
putations. Then the raw projection is completed by the for-
ward projection of the prior image. Experimental results show
that the HMAR can reduce metal artifacts significantly and re-
store image information successfully, especially in the case of
severe metal implants. In the future, we will focus on validat-
ing the HMAR method on more metallic implants cases.

ACKNOWLEDGMENTS

This work was partly supported by the National Science
Foundation of China (NSFC) through Grant No. 61172163
and the Research Fund for the Doctoral Program of Higher
Education of China through Grant No. 20110201110011. The
authors would like to thank Dr. Hengyong Yu for providing
the dataset with the clip, thank Dr. Qiong Xu for helpful dis-
cussions on metal artifact reduction, and thank radiologists
Dr. Lijun Sun, Dr. Jie Gao, and Dr. Yumiao Zhang’s help on
CT image quality evaluation. The authors are also grateful
to the anonymous reviewers for their valuable comments and
suggestions.

a)Author to whom correspondence should be addressed. Electronic mail:
xqmou@mail.xjtu.edu.cn

1D. D. Robertson, P. J. Weiss, E. K. Fishman, D. Magid, and P. S. Walker,
“Evaluation of CT techniques for reducing artifacts in the presence of
metallic orthopedic implants,” J. Comput. Assist. Tomogr. 12, 236–241
(1988).

2M. L. Kataoka, M. G. Hochman, E. K. Rodriguez, P. J. P. Lin, S. Kubo, and
V. D. Raptopolous, “A review of factors that affect artifact from metallic
hardware on multi-row detector computed tomography,” Curr. Probl Diagn.
Radiol. 39, 125–136 (2010).

3B. De Man, J. Nuyts, P. Dupont, G. Marchal, and P. Suetens, “Metal streak
artifacts in x-ray computed tomography: A simulation study,” IEEE Trans.
Nucl. Sci. 46, 691–696 (1999).

4B. De Man, J. Nuyts, P. Dupont, G. Marchal, and P. Suetens, “Reduction
of metal streak artifacts in x-ray computed tomography using a transmis-
sion maximum a posteriori algorithm,” IEEE Trans. Nucl. Sci. 47, 977–981
(2000).

5B. De Man, J. Nuyts, P. Dupont, G. Marchal, and P. Suetens, “An iterative
maximum-likelihood polychromatic algorithm for CT,” IEEE Trans. Med.
Imaging 20, 999–1008 (2001).

6J. F. Williamson, B. R. Whiting, J. Benac, R. J. Murphy, G. J. Blaine,
J. A. O’Sullivan, D. G. Politte, and D. L. Snyder, “Prospects for quantita-
tive computed tomography imaging in the presence of foreign metal bodies
using statistical image reconstruction,” Med. Phys. 29, 2404–2418 (2002).

7W. Kalender, R. Hebel, and J. Ebersberger, “Reduction of CT artifacts
caused by metallic implants,” Radiology 164, 576–577 (1987).

8G. H. Glover and N. J. Pelc, “An algorithm for the reduction of metal clip
artifacts in CT reconstructions,” Med. Phys. 8, 799–807 (1981).

9C. Xu, F. Verhaegen, D. Laurendeau, S. A. Enger, and L. Beaulieu, “An al-
gorithm for efficient metal artifact reductions in permanent seed implants,”
Med. Phys. 38, 47–56 (2011).

10A. H. Mahnken, R. Raupach, J. E. Wildberger, B. Jung, N. Heussen,
T. G. Flohr, R. W. Gunther, and S. Schaller, “A new algorithm for metal
artifact reduction in computed tomography: In vitro and in vivo evaluation
after total hip replacement,” Invest. Radiol. 38, 769–775 (2003).

11J. Wei, L. Chen, G. A. Sandison, Y. Liang, and L. X. Xu, “X-ray CT high-
density artefact suppression in the presence of bones,” Phys. Med. Biol. 49,
5407–5418 (2004).

12M. Oehler and T. Buzug, “Statistical image reconstruction for inconsistent
CT projection data,” Methods Inf. Med. 46, 261–269 (2007).

13S. Y. Zhao, D. D. Roberston, G. Wang, B. Whiting, and K. T. Bae,
“X-ray CT metal artifact reduction using wavelets: An application for
imaging total hip prostheses,” IEEE Trans. Med. Imaging 19, 1238–1247
(2000).

Medical Physics, Vol. 40, No. 4, April 2013

http://dx.doi.org/10.1097/00004728-198803000-00012
http://dx.doi.org/10.1067/j.cpradiol.2009.05.002
http://dx.doi.org/10.1067/j.cpradiol.2009.05.002
http://dx.doi.org/10.1109/23.775600
http://dx.doi.org/10.1109/23.775600
http://dx.doi.org/10.1109/23.856534
http://dx.doi.org/10.1109/42.959297
http://dx.doi.org/10.1109/42.959297
http://dx.doi.org/10.1118/1.1509443
http://dx.doi.org/10.1118/1.595032
http://dx.doi.org/10.1118/1.3519988
http://dx.doi.org/10.1097/01.rli.0000086495.96457.54
http://dx.doi.org/10.1088/0031-9155/49/24/001
http://dx.doi.org/10.1109/42.897816


041910-17 Zhang et al.: A hybrid metal artifact reduction algorithm 041910-17

14B. Kratz and T. M. Buzug, “Metal artifact reduction in computed tomogra-
phy using nonequispaced Fourier transform,” Nuclear Science Symposium
Conference Record (NSS/MIC) (IEEE, Orlando, FL, 2009), pp. 2720–2723.

15Y. Zhang, L. Zhang, X. R. Zhu, A. K. Lee, M. Chambers, and L. Dong,
“Reducing metal artifacts in cone-beam CT images by preprocess-
ing projection data,” Int. J. Radiat. Oncol., Biol., Phys. 67, 924–932
(2007).

16W. J. H. Veldkamp, R. M. S. Joemai, A. J. van der Molen, and J. Geleijns,
“Development and validation of segmentation and interpolation techniques
in sinograms for metal artifact suppression in CT,” Med. Phys. 37, 620–628
(2010).

17J. Wu, C. T. Shih, S. J. Chang, T. C. Huang, J. Y. Sun, and T. H. Wu,
“Metal artifact reduction algorithm based on model images and spatial in-
formation,” Nucl. Instrum. Methods Phys. Res. A 652, 602–605 (2011).

18D. Prell, Y. Kyriakou, M. Beister, and W. A. Kalender, “A novel forward
projection-based metal artifact reduction method for flat-detector computed
tomography,” Phys. Med. Biol. 54, 6575–6591 (2009).

19M. Bal and L. Spies, “Metal artifact reduction in CT using tissue-class mod-
eling and adaptive prefiltering,” Med. Phys. 33, 2852–2859 (2006).

20C. Lemmens, D. Faul, and J. Nuyts, “Suppression of metal artifacts in CT
using a reconstruction procedure that combines MAP and projection com-
pletion,” IEEE Trans. Med. Imaging 28, 250–260 (2009).

21E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. Kachelriess, “Nor-
malized metal artifact reduction (NMAR) in computed tomography,” Med.
Phys. 37, 5482–5493 (2010).

22C. S. Olive, M. R. Kaus, V. Pekar, K. Eck, and L. Spies, “Segmentation
aided adaptive filtering for metal artifact reduction in radio-therapeutic CT
images,” Proc. SPIE 5370, 1991–2002 (2004).

23G. Wang, M. W. Vannier, and P. C. Cheng, “Iterative x-ray cone-beam to-
mography for metal artifact reduction and local region reconstruction,” Mi-
crosc. Microanal. 5, 58–65 (1999).

24G. Wang, D. L. Snyder, J. A. OSullivan, and M. W. Vannier, “Iterative
deblurring for CT metal artifact reduction,” IEEE Trans. Med. Imaging 15,
657–664 (1996).

25D. D. Robertson, J. Yuan, G. Wang, and M. W. Vannier, “Total hip prosthe-
sis metal-artifact suppression using iterative deblurring reconstruction,” J.
Comput. Assist. Tomogr. 21, 293–298 (1997).

26D. L. Snyder, J. A. O’Sullivan, R. J. Murphy, D. G. Politte, B. R. Whiting,
and J. F. Williamson, “Image reconstruction for transmission tomography
when projection data are incomplete,” Phys. Med. Biol. 51, 5603–5619
(2006).

27X. Zhang, J. Wang, and L. Xing, “Metal artifact reduction in x-ray com-
puted tomography (CT) by constrained optimization,” Med. Phys. 38,
701–711 (2011).

28E. Y. Sidky, C. M. Kao, and X. H. Pan, “Accurate image reconstruction
from few-views and limited-angle data in divergent-beam CT,” J. X-Ray
Sci. Technol. 14, 119–139 (2006).

29E. Y. Sidky and X. C. Pan, “Image reconstruction in circular cone-beam
computed tomography by constrained, total-variation minimization,” Phys.
Med. Biol. 53, 4777–4807 (2008).

30H. Y. Yu and G. Wang, “Compressed sensing based interior tomography,”
Phys. Med. Biol. 54, 2791–2805 (2009).

31L. Ritschl, F. Bergner, C. Fleischmann, and M. Kachelrieß, “Improved total
variation-based CT image reconstruction applied to clinical data,” Phys.
Med. Biol. 56, 1545–1561 (2011).

32Y. Zhang, X. Mou, and H. Yan, “Weighted total variation constrained re-
construction for reduction of metal artifact in CT,” Nuclear Science Sympo-
sium and Medical Imaging Conference (2010 NSS/MIC) (IEEE, Knoxville,
TN, 2010), pp. 2630–2634.

33X. Zhang, J. Wang, and L. Xing, “Metal artifact reduction in computed to-
mography by constrained optimization,” Proc. SPIE 7622, 76221T (2010).

34J. Choi, M. Kim, W. Seong, and J. Ye, “Compressed sensing metal arti-
fact removal in dental CT,” in Proceedings of the Sixth IEEE International
Conference on Symposium on Biomedical Imaging: From Nano to Macro
(IEEE, Boston, MA, 2009), pp. 334–337.

35M. Abdoli, R. A. J. O. Dierckx, and H. Zaidi, “Metal artifact reduction
strategies for improved attenuation correction in hybrid PET/CT imaging,”
Med. Phys. 39, 3343–3360 (2012).

36D. Xia, J. C. Roeske, L. Yu, C. A. Pelizzari, A. J. Mundt, and X. Pan,
“A hybrid approach to reducing computed tomography metal artifacts in
intracavitary brachytherapy,” Brachytherapy 4, 18–23 (2005).

37J. Choi, K. S. Kim, M. W. Kim, W. Seong, and J. C. Ye, “Sparsity driven
metal part reconstruction for artifact removal in dental CT,” J. X-Ray Sci.
Technol. 19, 457–475 (2011).

38F. E. Boas and D. Fleischmann, “Evaluation of two iterative techniques for
reducing metal artifacts in computed tomography,” Radiology 259, 894–
902 (2011).

39O. Watzke and W. A. Kalender, “A pragmatic approach to metal artifact
reduction in CT: Merging of metal artifact reduced images,” Eur. Radiology
14, 849–856 (2004).

40S. Mazin and N. Pelc, “SU-EE-A4-03: Metal artifact reduction algorithm
for x-ray CT using a three-pass approach,” Med. Phys. 36, 2432 (2009).

41G. Herman and L. Meyer, “Algebraic reconstruction techniques can be
made computationally efficient,” IEEE Trans. Med. Imaging 12, 600–609
(1993).

42H. Erdogan and J. Fessler, “Ordered subsets algorithms for transmission
tomography,” Phys. Med. Biol 44, 2835–2851 (1999).

43International Commission on Radiation Units and Measurements, “Tissue
substitutes in radiation dosimetry and measurements,” ICRU Report No.
44 (ICRU Publications, Washington, DC, 1989).

44M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey,
R. Sukumar, D. S. Zucker, and K. Olsen, “XCOM: Photon Cross Sections
Database, NIST Standard Reference Database 8 (XGAM),” The National
Institute of Standards and Technology (NIST), Gaithersburg, MD, 2009, see
http://www.nist.gov/pml/data/xcom/index.cfm.

45S. Tang, X. Mou, Y. Yang, Q. Xu, and H. Yu, “Application of projection
simulation based on physical imaging model to the evaluation of beam
hardening corrections in x-ray transmission tomography,” J. X-Ray Sci.
Technol. 16, 95–117 (2008).

46F. Noo, M. Defrise, and R. Clackdoyle, “Single-slice rebinning method for
helical cone-beam CT,” Phys. Med. Biol. 44, 561–570 (1999).

47S. Wesarg, M. Ebert, and T. Bortfeld, “Parker weights revisited,” Med.
Phys. 29, 372–378 (2002).

48G. Wang, “X-ray micro-CT with a displaced detector array,” Med. Phys.
29, 1634–1636 (2002).

49E. Hansis, J. Bredno, D. Sowards-Emmerd, and S. Lingxiong, “Iterative
reconstruction for circular cone-beam CT with an offset flat-panel detec-
tor,” Nuclear Science Symposium Conference Record (NSS/MIC) (IEEE,
Knoxville, TN, 2010), pp. 2228–2231.

50H. Y. Yu, K. Zeng, D. K. Bharkhada, G. Wang, M. T. Madsen, O. Saba,
B. Policeni, M. A. Howard, and W. R. K. Smoker, “A segmentation-based
method for metal artifact reduction,” Acad. Radiol. 14, 495–504 (2007).

51J. M. Verburg and J. Seco, “CT metal artifact reduction method correcting
for beam hardening and missing projections,” Phys. Med. Biol. 57, 2803–
2818 (2012).

52W. Zhuang, S. S. Gopal, and T. J. Hebert, “Numerical evaluation of meth-
ods for computing tomographic projections,” IEEE Trans. Nucl. Sci. 41,
1660–1665 (1994).

Medical Physics, Vol. 40, No. 4, April 2013

http://dx.doi.org/10.1016/j.ijrobp.2006.09.045
http://dx.doi.org/10.1118/1.3276777
http://dx.doi.org/10.1016/j.nima.2011.01.041
http://dx.doi.org/10.1088/0031-9155/54/21/009
http://dx.doi.org/10.1118/1.2218062
http://dx.doi.org/10.1109/TMI.2008.929103
http://dx.doi.org/10.1118/1.3484090
http://dx.doi.org/10.1118/1.3484090
http://dx.doi.org/10.1117/12.535346
http://dx.doi.org/10.1017/S1431927699000057
http://dx.doi.org/10.1017/S1431927699000057
http://dx.doi.org/10.1109/42.538943
http://dx.doi.org/10.1097/00004728-199703000-00024
http://dx.doi.org/10.1097/00004728-199703000-00024
http://dx.doi.org/10.1088/0031-9155/51/21/015
http://dx.doi.org/10.1118/1.3533711
http://dx.doi.org/10.1088/0031-9155/53/17/021
http://dx.doi.org/10.1088/0031-9155/53/17/021
http://dx.doi.org/10.1088/0031-9155/54/9/014
http://dx.doi.org/10.1088/0031-9155/56/6/003
http://dx.doi.org/10.1088/0031-9155/56/6/003
http://dx.doi.org/10.1118/1.4709599
http://dx.doi.org/10.1016/j.brachy.2004.11.001
http://dx.doi.org/10.1148/radiol.11101782
http://dx.doi.org/10.1007/s00330-004-2263-y
http://dx.doi.org/10.1118/1.3181113
http://dx.doi.org/10.1109/42.241889
http://dx.doi.org/10.1088/0031-9155/44/11/311
http://www.nist.gov/pml/data/xcom/index.cfm
http://dx.doi.org/10.1088/0031-9155/44/2/019
http://dx.doi.org/10.1118/1.1450132
http://dx.doi.org/10.1118/1.1450132
http://dx.doi.org/10.1118/1.1489043
http://dx.doi.org/10.1016/j.acra.2006.12.015
http://dx.doi.org/10.1088/0031-9155/57/9/2803
http://dx.doi.org/10.1109/23.322963

