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ABSTRACT   

The long-standing interior problem has been recently revisited, leading to promising results on exact local reconstruction 
also referred to as interior tomography. To date, there are two key computational ingredients of interior tomography. The 
first ingredient is inversion of the truncated Hilbert transform with prior sub-region knowledge. The second is 
compressed sensing (CS) assuming a piecewise constant or polynomial region of interest (ROI). Here we propose a 
statistical approach for interior tomography incorporating the aforementioned two ingredients as well. In our approach, 
projection data follows the Poisson model, and an image is reconstructed in the maximum a posterior (MAP) framework 
subject to other interior tomography constraints including known subregion and minimized total variation (TV). A 
deterministic interior reconstruction based on the inversion of the truncated Hilbert transform is used as the initial image 
for the statistical interior reconstruction. This algorithm has been extensively evaluated in numerical and animal studies 
in terms of major image quality indices, radiation dose and machine time. In particular, our encouraging results from a 
low-contrast Shepp-Logan phantom and a real sheep scan demonstrate the feasibility and merits of our proposed 
statistical interior tomography approach.  

Keywords: Computed tomography (CT), interior tomography, compressed sensing (CS), truncated Hilbert transform, 
maximum a posterior (MAP) reconstruction 
 

1. INTRODUCTION  
Reconstruction from the truncated projection data associated with lines through the region-of-interest (ROI) is usually 
called interior problem, which has been studied for a long time 1-3. The conventional wisdom is that the interior problem 
does not have a unique solution 1. Recently, it has been reported that the interior problem is solvable if some additional 
prior information is available in advance. This new exactness-oriented local reconstruction methodology is referred to as 
interior tomography 4. 

To date, there are two key computational ingredients of interior tomography. One ingredient is inversion of the 
truncated Hilbert transform (THT) with prior sub-region knowledge 5-10, which is based on the concept of the 
differentiated back-projection (DBP) 11-13. Its main idea is to use the analytic continuation technique to extend the known 
sub-region to the whole ROI. In numerical implementation, first chords/PI-lines are defined passing through the known 
sub-region, then the DBP along each line is computed, finally certain methods, such as projection onto convex set 
(POCS) 5, 9, 13 and singular value decomposition (SVD) 8, are applied to invert the truncated Hilbert transform (THT) to 
determine the 1-D image on the line. Another ingredient is compressed sensing (CS) assuming a piecewise constant or 
polynomial ROI 14-17. Its main idea is to define an appropriate sparsifying transform and an associated objective function, 
and then the minimization of the objective function will lead to the true image in ROI. A commonly used sparsifying 
transform is discrete gradient transform (DGT) and the associated objective function is the sum of DGT, which is usually 
called total variation (TV), and then the interior ROI can be exactly reconstructed via a TV minimization. 
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The two aforementioned methods based on THT or CS is exactly for noiseless data when the precise prior 
knowledge on a subregion in an ROI is known or the ROI is indeed piecewise constant or polynomial 18. However, these 
methods did not take into account the statistical nature of projection data, and will not work well in the case of low count 
data. In fact, the projection measurements should be assumed to obey certain specific statistical distribution 19-21. Because 
the well-known statistical iterative reconstruction (SIR) algorithm can accommodate the physical models of data 
acquisition protocols and demonstrate a better bias-variance performance, it is much more promising than other 
reconstruction methods.  

In this paper, we propose a statistical interior tomography approach to obtain a better performance of interior 
tomography for practical CT applications.  In the next section, we will describe our algorithm scheme. In Section 3, the 
experimental results for both simulated and real data are shown. Finally, we will discuss the related issues and conclude 
the paper in the last Section 4. 

2. METHODOLOGY 
In this section, a SIR algorithm will be developed to solve the interior problem. First, we will review the original SIR 
idea. Then, we describe the CS method for regularization and POCS methods for initialization. These ingredients will be 
then integrated into our statistical interior tomography scheme. 

2.1 SIR algorithm 

For simplicity, we assume that the x-ray source is monochromatic and the measurements follow a Poisson distribution, 

iy ~ { }ip
iPoisson b e− , 1, , Ii N= L ,                                                            (1)  

where iy  is the measurement along the thi  projection path with ip
ib e−  being the expected value, ib  the blank scan 

factor, ip  the linear integral of linear attenuation coefficient along  the thi projection path and IN  is the number of x-

ray paths. For SIR, the object is discretized as rectangular pixels, ip  can be discretized as follows, 
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where il  is the x-ray path, ( ), ,x y zμ  the linear attenuation coefficient of the material at a 3-D location ( ), ,x y z , JN  

the number of the pixels, { }ija=A  the system matrix which accounts for the system geometry, ( )1 , ,
JNμ μ ′

Lμ = , 

and the symbol “ ′ ” represents a transpose operator. For the thi  x-ray path and the thj  pixel, ija  can be calculated as the 
normalized intersection area between the pixel and the ray beam. 

Because the measurements along diverse x-ray paths are independent of each other in a statistical sense, the joint 
probability distribution of the data acquisition process can be expressed as  
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and the corresponding log-likelihood function (ignoring the constant terms) can be written as 
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From the statistical perspective, the original image can be reconstructed by maximizing a posteriori (MAP) of 
function ( )P yμ . Since the natural logarithm is monotonically increasing, the maximization of a posteriori ( )P yμ  

Proc. of SPIE Vol. 7804  78041I-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/13/2013 Terms of Use: http://spiedl.org/terms



 

 

can be carried out by maximizing its logarithm. According to the Bayesian rule ( ) ( ) ( ) ( )P P P P=y y yμ μ μ , the 

image reconstruction task is equivalent to the maximization of the following objective function 

( ) ( ){ }arg max lnL P+y
μ

μ = μ μ  ,                                                             (5) 

where ( )ln P μ  expresses the prior knowledge on the object. Because ( )ln P μ  is a regularization term, we denote it as 

( )R μ  and the objective function can be rewritten as 
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Applying a second-order Taylor’s expansion to function ( ) p
i i ig p y p b e−= +  around an estimated line integral 
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 19, Eq. (6) can be expressed as  
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The regularization term ( )R μ  usually penalizes the difference among neighboring pixels since the intensities of 
adjacent pixels are normally similar. A general form of the regularization term is 

( ) ( )
1

J

j

N

kj j k
j k C

R β ω ϕ μ μ
= ∈

= −∑∑μ ,                                                           (8) 

where β  is an empirical scalar to tradeoff the data fidelity and regularization term, kjω  is the weights on differential 

components, jC  is the neighborhood of the thj  pixel, and ϕ  is a potential function that determines the effect of the 
differential component. 

2.2 CS method 

In the ideal case of noise-free data, the inversion procedure using the CS method can be expressed as follows 

1
min , . .s tΨ Φ

u
u u = b ,                                                                 (9) 

where Φ  is measurement matrix, b  is the vector of measurements, u  is the vector of pixels value, Ψu  is a 
sparsifying transform of u , and “

1
” represents the 1l  norm. Among all the existing sparsifying transforms, the 

discrete gradient transform (DGT) is most commonly used. The sum of DGT for each pixel is usually called total 
variation (TV) of an image. In a 2-D image space, the linear attenuation coefficient jμ  of the thj  pixel can be re-
denoted in dual subscripts as  

,j m nμ μ= , ( )1j m W n= − × + , 1, 2, ,m H= L , 1, 2, ,n W= L ,                             (10) 

where W  and H  are respectively the width and height of the 2-D image array, and JN W H= × . Then, the TV of an 
image can be expressed as, 
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The CS method can be incorporated into the SIR framework in Eq. (7) by substituting ( )R μ  with 
1

β Ψμ . If we 
choose the DGT as sparsifying transform of an image, we arrive at a CS based SIR framework for minimizing the 
following objective function 
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      There are various ways to minimize the above objective function. While Tang et al 22 employed the Gauss-Siedel 
scheme, in this paper we will use an alternative minimization method in terms of soft-threshold filtering 23. Therein, for 
the CS based image reconstruction expressed in Eq. (9), the data fidelity step with the simultaneous algebraic 
reconstruction technique (SART) 24 and the TV minimization step via soft-threshold filtering are performed in an 
alternative manner. Similarly, to minimize the objective function Eq. (12), we deal with the log-likelihood term 
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μ
μ  alternatively. With the separable paraboloid 

surrogate subject to non-negativity, each update for the log-likelihood term is obtained as follows 
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2.3 Inversion of THT by POCS 

When there is a known subregion inside an ROI, the interior problem can be solved by the inversion of THT with the 
POCS method. First, a set of chord/PI lines are constructed, which go through both the known and unknown regions in 
the ROI.  The linear attenuation coefficient ( ), ,x y zμ  on such a chord/PI-line L  is re-denoted as ( )f t , where t  is 

the 1-D coordinate along L . Let the support of ( )f t  on L  be [ ]1 2,c c , the interval of the ROI on L  be ( )3 4,c c , the 

interval of known sub-region on L be ( )5 6,c c , and these constants satisfy 1 3 5 6 4 2c c c c c c≤ ≤ < ≤ ≤ .  

Second, the THT along each chord/PI-line inside the ROI is computed by the DBP method, which can be expressed 
as 

( ) ( ) ( )( )
2

1

1 c

L
c

dsg t PV f s H f t
t sπ

= =
−∫ , ( )3 4,t c c∈ .                                         (14) 

By the Tricomi formula, ( )f t  can be recovered from its Hilbert transform ( )g t  
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where ( )
2

1

1 c

f
c

C f t dt
π

= ∫  is a known quantity (the projection along the chord).  
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Third, THT along each chord is inverted by the POCS method. Because Eq. (15) can not be directly used to interior 
problem, the POCS method is commonly used to solve f  from Eq. (14). It assumes that the 1-D function f  belongs to 

the intersection of J  convex sets 1 2, , , JC C CL . If the projection operators onto these convex sets are denoted as 

1 2, , , JP P PL , POCS can be expressed as 1
1 1

k k
J Jf P P P f+

−= L , where k  indicates the iteration time. In other 

words, the interior problem is essentially to find ( ) ( )2f t L∈   in the intersection of the convex sets: 

( ) ( )( ) ( ) ( ){ }2
1 3 4, ,C f L Hf t g t t c c= ∈ = ∈  
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( ) ( ) [ ]{ }2
5 max 1 2, ,C f L f t f t c c= ∈ ≤ ∈  

where ( )0f t  and maxf  are the ideal image function and its upper bound, respectively. More convex sets can be 
introduced if additional convex constraints are available. 

2.4 Scheme of statistical interior tomography 

As shown in Figure. 1, the proposed statistical interior tomography scheme combines the THT-based and CS-based 
interior reconstruction algorithms in a statistical framework. While the result of the THT-based interior reconstruction is 
used as the initial guess, the CS-based interior tomography is implemented to minimize the log-likelihood term and the 
TV term alternatively.  

 
Figure.1. Scheme of the proposed statistical interior tomography 
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3. EXPERIMENTS AND RESULTS 
The proposed statistical interior tomography was evaluated in both numerical simulation and practical applications.  

3.1 Numerical Simulation 

In the numerical simulations, we used a low contrast 2-D Shepp-Logan phantom. A fan-beam geometry and an equi-
spatial virtual detector were assumed. The virtual detector was centered at the system origin and always perpendicular to 
the line from the system origin to the x-ray source. The distance from the x-ray source to the system origin was 57 cm 
and the detector included 360 elements with a total length of 10.8 cm. For a full scan, we equi-angularly collected 1080 
projections with 2×106 photons per detector element and 360 projections with 5×104 photons, respectively. 

The simulated statistical interior reconstruction consists of two major steps: THT-based reconstruction and CS-
based reconstruction. In the THT-based reconstruction, chords/PI- lines were constructed along the horizontal direction, 
and the image values on a subregion of each chord were precisely known in advance. The ROI for the THT-based 
reconstruction was an inscribed square inside the FOV as illustrated in Fig.2. The reconstructed images covered an FOV 
of radius in a 256×256 matrix. On each chord, the ROI covered 96 pixels with a known sub-region of 6 pixels. The DBP 
was carried out only in the square ROI. The maximum iteration number was 500. In the CS-based reconstruction, the 
ROI was defined by the local scanning beam. An ordered subsets strategy was adopted to accelerate the TV 
minimization based SIR. The maximum iteration number was 20 with 20 subsets.  

0.9

0.95

1

1.05

1.1

 
Figure. 2 The 2D Shepp-Logan phantom within a display window [0.9 1.1]. 

 
We evaluated the results of the THT-based reconstruction (denoted by THT), the CS-based statistical reconstruction 

initialized by a zero image (denoted by SIRCS-Zero) and the CS-based statistical reconstruction initialized by the result 
of the THT (denoted by SIRCS-THT). Figure. 3 showed the reconstructed images by different reconstruction schemes. It 
can be observed that the images reconstructed by the THT are much noisy, especially in the condition of 360 projections 
with 5×104 photons. The noise intensity in the results reconstructed by other algorithms was lower and more stable. 
Moreover, the results reconstructed by SIRCS-Zero had a bias but the SIRCS-THT achieved the best performance. 
Representative profiles along the line a  (see Figure.2) of the reconstructed images were shown in Figure. 4. The 
reconstruction accuracy of the THT was affected by the pixel position. That is, the closer to the known subregion, the 
more accurate the result is, which is consistent with the theoretical analysis on stability of interior tomography 5. 
Compared to the other two schemes, THT showed much stronger noise. The SIRCS-Zero had weaker noise, but a larger 
bias. It may be due to several factors such as the iteration number, pixel size, image sparsify, etc. However, SIRCS-THT 
seems always converging to the truth. 

We selected a rectangular sub-region b (see Figure.2) in the left ellipse with the true attenuation coefficient 0.94. 
The reconstructed results of the sub-region b using the three methods in the cases of 1080 views and 2×106 photons were 
evaluated in Table 1in terms of average error ε , maximum error maxε  and standard variation σ . The standard 
variation with THT was the largest. The bias with SIRCS-Zero was the greatest. The performance of SIRCS-THT 
outperformed the other two methods consistently, being the closest to the phantom image. 
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Figure. 3. Images reconstructed in the ROI by the  SIRCS-Zero, THT, and SIRCS-THT schemes. The display window is [0.9 1.1] for 

all the images. 
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Figure. 4. Profile of the reconstructed images along the line a indicated in Fig. 2. While the left is from 1080 projections  and 2×106  

photons, the right is from 360 projections and 5×104 photons. 
 
Table 1. Comparisons of THT, SIRCS-Zero and SIRCS-THT in terms of average error, maximum error and standard deviation. 

Conditions Methods ε  maxε  σ  

1080 Views 
2×106 Photons 

THT 0.0064 0.0266 0.0066 
SIRCS-Zero 0.0205 0.0258 0.0020 
SIRCS-THT 0.0061 0.0073 0.0004 
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3.2 Real CT data 

To demonstrate the feasibility of the statistical interior reconstruction for practical applications, we performed a CT scan 
of a living sheep, which was approved by the University of Iowa and Virginia Tech IACUC committees. The chest of the 
sheep was scanned in fan-beam geometry on a SIEMENS 64-Slice CT scanner. The radius of the x-ray source scanning 
trajectory was 57 cm. Over a 360° range, 1160 projections were uniformly collected. For each projection, 672 detector 
elements were equi-angularly distributed to define a FOV of radius 25.05 cm. In our experiments, two scans were 
performed with a normal dose (100kVp, 150mAs) and a low dose (80kVp, 17mAs), respectively. We first reconstructed 
the entire lung cross-section in a 512×512 matrix covering a 29.06 cm×29.06 cm region from the normal dose full-scan 
dataset. Then, a subregion of radius 6 pixels was selected in a trachea, where the attenuation coefficient was known to be 
zero. After that, a circular region of radius 60 pixels around the trachea was chosen as an ROI. Finally, only the 
projection data through the ROI were kept to simulate an interior scan. In this situation, the PI-lines were constructed 
along all radial directions from the center of the trachea. The maximum iteration number of THT was fixed as 500. The 
maximum iteration number of the SIR was 40 with 40 subsets. Because the sheep is live, the images of the two scans at 
the normal and low dose levels were slightly different due to physiological motion. Therefore, the reference images were 
reconstructed from the corresponding full scan datasets, respectively. To improve the image quality, the reference images 
were reconstructed using the SIR method instead of the commonly used filtering backprojection (FBP) method. 

 
Fig. 6. Images in the ROI reconstructed by SIRCS-Zero, THT, and SIRCS-THT from normal and lose dose datasets. Display window 

 is [-700HU 800HU] (1HU = 0.018/mm). 

Fig. 6 showed the images reconstructed by the aforementioned three reconstruction schemes with different dose 
levels. It can be observed that the images reconstructed by the THT have a lower spatial resolution. One reason is that 
the PI-lines were constructed along radial directions, and the interpolation was required for a coordinate transformation 
25. The results reconstructed by the other two algorithms had a higher spatial resolution and SIRCS-Zero also led to a 
bias as what we noticed in the numerical simulations. Typical profiles of the results were shown in Fig.7. It is noticed 
that while THT smoothened the image, the other two methods reserved more details. SIRCS-Zero still suffered from a 
substantial bias. Although the SIRCS-THT performed much better than both THT and SIRCS-Zero methods, there were 
still some residual artifacts especially near the peripheral region of the ROI. We are developing more sophisticated 
algorithms to suppress this kind of artifacts. 

Because the ideal image is not known, it would be meaningless to compute the average error and standard deviation 
against the gold standard. Instead, we evaluated the results reconstructed with the three methods from that reconstructed 
from the normal dose datasets in terms of spatial resolution and an image quality assessment (IQA) index SSIM 26. The 
results were shown in Table 2. While the SSIM measures were computed in reference of the globally reconstructed 
images, spatial resolution was estimated across the internal border of the trachea as the full-width-of-half-maximum 
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(FWHM) of the line spread function fitted into the Gaussian form 27. Compared to the reference images, SIRCS-THT 
had the best structural similarity according to SSIM. Besides, SIRCS-THT produced a highest spatial resolution. SIRCS-
Zero did not work as well as SIRCS-THT but it outperformed THT 
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Fig. 7. Typical profile of the reconstructed results. The upper and bottom rows are respectively from normal and lose dose data. The 

 left and right columns are respectively along the horizontal and vertical central lines of ROI. 

 

Table 2. Comparisons of the THT, SIRCS-Zero and SIRCS-THT methods in terms of spatial resolution and SSIM. 

Conditions Methods Resolution (mm) SSIM 

1160 Views 
Normal Dose 

THT 2.6939 0.8423 
SIRCS-Zero 1.7688 0.8948 
SIRCS-THT 1.5967 0.9138 

 

4. DISCUSSION AND CONCLUSION 
From the above experimental results, THT-based interior tomography did not have any significant bias but it is noise-
sensitive. Besides, as demonstrated in Fig.4 the accuracy and robustness of this algorithm become less further away from 
the known subregion. Since the PI-lines are constructed around a known subregion, they are usually not consistent with 
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the Cartesian grid, and the involved interpolation will reduce the spatial resolution as well. On the other hand, the 
proposed CS-based statistical interior tomography has distinct merits in both noise and resolution aspects. In the 
numerical simulation, satisfactory results have been obtained even in the case of 360 views and 5×104 photons. Using the 
IQA index SSIM to assess the results from real CT datasets, the images reconstructed using this method have produced a 
better structural similarity in reference to the globally reconstructed counterpart. The spatial resolution comparison has 
also illustrated that the proposed method has a better spatial resolution. However, TV minimization based interior 
tomography assumes the smooth property of ROI images, and produce suboptimal results when this assumption is 
significantly violated. In this regard, the high order TV (HOT) minimization approach would be a promising tool 17. 
Additionally, this algorithm must be stopped after finitely many iterations. Hence, SIRCS with a zero initial image 
usually leads to a biased result. When the THT result is used as an initial guess, SIRCS has been shown to arrive at a 
globally optimal result very reliably. From another point of view, the THT based initialization adds the Hilbert 
constraint, which incorporates the known subregion into the final result. Therefore, the SIRCS-THT method not only has 
a strong anti-noise power and better structural details but also it is capable of eliminating any potential bias effectively.  

In conclusion, we have proposed a statistical interior tomography approach by combining THT-based interior 
tomography, CS-based interior tomography and a statistical reconstruction framework. Our simulation and experiments 
have shown that it is a powerful and useful tool for local CT reconstruction in practice application. 
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