A comparative study of two modeling approaches in neural networks

Zong-Ben Xua, Hong Qiaob, Jigen Penga, Bo Zhangc,*

*a Institute for Information and System Sciences, Xi’an Jiaotong University, Xi’an, China
b Department of Computation, UMIST, P.O. Box 88, Sackville Street, Manchester M60 1QD, UK
c School of Mathematical and Information Sciences, Coventry University, Coventry CV1 5FB, UK

Received 16 April 2002; accepted 28 May 2003

Abstract

The neuron state modeling and the local field modeling provides two fundamental modeling approaches to neural network research, based on which a neural network system can be called either as a static neural network model or as a local field neural network model. These two models are theoretically compared in terms of their trajectory transformation property, equilibrium correspondence property, nontrivial attractive manifold property, global convergence as well as stability in many different senses. The comparison reveals an important stability invariance property of the two models in the sense that the stability (in any sense) of the static model is equivalent to that of a subsystem deduced from the local field model when restricted to a specific manifold. Such stability invariance property lays a sound theoretical foundation of validity of a useful, cross-fertilization type stability analysis methodology for various neural network models.

q 2003 Elsevier Ltd. All rights reserved.

Keywords: Static neural network modeling; Local field neural network modeling; Recurrent neural networks; Stability analysis; Asymptotic stability; Exponential stability; Global convergence; Globally attractive

1. Introduction

In the current neural network research, two fundamental modeling approaches are commonly adopted: either using the neuron states (the first approach) or using the local field states of neurons (the second approach) as basic variables to describe the dynamical evolution rule of a neural network. The recurrent back-propagation networks (Almeida, 1988; Pineda, 1987; Rohwer & Forrest, 1987), for instance, provide a typical example of the first approach. The networks, as in their standard form and as a direct generalization of the well-known back-propagation network (Hertz, Krogh, & Palmer, 1994), are modeled by

\[\frac{dv_i}{dt} = -v_i + g_i \left(\sum_{j=1}^{N} w_{ij} v_j + \theta_i \right), \quad i = 1, 2, \ldots, N. \]

(1)

Here \(v_i \) is the state of neuron \(i \) with

\[u_i = \sum_{j=1}^{N} w_{ij} v_j + \theta_i \]

being its local field, \(g_i \) the activation function of neuron \(i \), \(\theta_i \) the external input imposed on neuron \(i \), \(w_{ij} \) the synaptic connectivity value between neuron \(i \) and neuron \(j \), and \(N \) the number of neurons in the networks. On the other hand, the famous Hopfield networks (Hopfield, 1982; Hopfield & Tank, 1986) are examples of the second approach and can be described in terms of the local field state \(u_i \), \(i = 1, 2, \ldots, N \), of neurons as

\[C_i \frac{du_i}{dt} = -\frac{u_i}{R_i} + \sum_{j=1}^{N} w_{ij} g(u_j) + I_i, \quad i = 1, 2, \ldots, N, \]

(2)

where \(v_i = g(u_i) \) gives the state of neuron \(i \), and \(C_i, R_i \) and \(I_i \) are fixed physical parameters. We henceforth call the first approach the static neural network modeling and the second approach the local field neural network modeling. Correspondingly, a neural network modeled in terms of their neuron states such as Eq. (1) will be referred to as a static neural network model, whilst a network modeled in
In this paper we consider the following generic static neural network model

$$\frac{dx}{dt} = -x + G(Wx + q), \quad x(0) = x_0 \in \mathbb{R}^N$$ \hspace{1cm} (3)

and the local field neural network model

$$\frac{dy}{dt} = -y + W G(y) + q, \quad y(0) = y_0 \in \mathbb{R}^N$$ \hspace{1cm} (4)

where $x = (x_1, x_2, \ldots, x_N)$ is the neuron states, $y = (y_1, y_2, \ldots, y_N)$ is the local fields, $W = (w_{ij})_{N \times N}$ is the synaptic weight matrix and $G : \mathbb{R}^N \to \Omega \subseteq \mathbb{R}^N$ is the nonlinear activation mapping with Ω being a convex subset of \mathbb{R}^N. Depending on the specific application, the nonlinear mapping G may be defined component wisely or otherwise. In the former case, G is of the form:

$$G(y) = (g_1(y_1), g_2(y_2), \ldots, g_N(y_N))^T,$$

where g_i representing the activation function acted on neuron i, where A^T stands for the transpose of A.

It should be observed that the model (3) includes not only the recurrent back-propagation networks (Almeida, 1988; Pineda, 1987; Rohwer & Forrest, 1987), but also other extensively studied neural networks such as the optimization type networks proposed by Bouzerdoum and Pattison (1993), Forti and Tesi (1995), Friesz, Bernstein, Mehta, Tobin, and Ganjilzadeh (1994), Liang and Wang (2000a,b), Xia (1996), Xia and Wang (1998) and Xia and Wang (2000), the brain-state-in-a-box (BSB) type networks (Li, Michel, & Porod, 1989; Varga, Elek, & Zak, 1996). Similarly, the Eq. (4) models not only the Hopfield-type networks (Hopfield, 1982; Hopfield & Tank, 1986), but also the bidirectional associative memory (BAM) type networks (Kosko, 1988) as well as the cellular neural networks (CNNs) in Chua and Yang (1988), Park, Kim, Park, and Lee (2001) and Roska and Vandovalle (1995).

It should also be noticed that the static neural network model (3) and the local field model (4) can be correlated in a straightforward way if the matrix W is invertible (i.e. nonsingular). In this case, the two models can be transferred equivalently from one to the other. This trivial situation will not be considered here, so the nonsingularity of W will not be assumed in this paper.

2. Relationship between dynamics of the two models

In this section the relationships between the dynamics of the models (3) and (4) are systematically clarified in terms of their trajectory transformation property, equilibrium correspondence property, stability, superior nontrivial attractive manifold property, asymptotic stability and global convergence. From the relationships clarified, a stability-invariance property of the models will be concluded in a sense to be specified later. We also point out some open questions related to the equivalence of the stability between Eqs. (3) and (4).

2.1. Coherent systems

Besides the basic systems (3) and (4), we will also study the following four closely related systems:

$$\frac{dx}{dt} = -x + G(Wx + q), \quad x(0) = x_0 \in \text{CoR}(G)$$ \hspace{1cm} (3.1)

$$\frac{dx}{dt} = -x + G(Wx + q), \quad x(0) = x_0 \in \text{CoR}(GWq)$$ \hspace{1cm} (3.2)

$$\frac{dy}{dt} = -y + W G(y) + q, \quad y(0) = y_0 \in \text{R}(W_q)$$ \hspace{1cm} (4.1)

$$\frac{dy}{dt} = -y + W G(y) + q, \quad y(0) = y_0 \in \text{R}(GW) + q$$ \hspace{1cm} (4.2)

where W_q is the affine transformation defined by $W_q x = Wx + q$. These four systems are exactly the Eqs. (3) and (4) when restricted to the specific manifolds $\text{CoR}(G)$, $\text{CoR}(GW_q)$, $\text{R}(W_q)$ and $\text{R}(GW) + q$, respectively, where $\text{R}(G)$ denotes the range of operator G and $\text{CoR}(G)$ denotes the closed, convex hull of $\text{R}(G)$ (i.e. the smallest closed convex set containing $\text{R}(G)$). We will show below that these four systems can indeed be defined, in other words, $\text{CoR}(G)$,
$\mathbb{R}(W_x)$ and $\mathbb{R}(W_G)+q$ do form invariant sets or manifolds of Eqs. (3) and (4), respectively.

We will assume throughout this paper the existence of a unique solution $x(t,x_0)$ to Eq. (3) and a unique solution $y(t,y_0)$ to Eq. (4) for any given initial states x_0, y_0 in \mathbb{R}^N (which is the case, e.g. when G is locally Lipschitz continuous). As usual, the solution $x(t,x_0)$ is also called a trajectory of Eq. (3) through x_0 denoted henceforth by $\Gamma_1(x_0)$ (correspondingly, the trajectory $y(t,y_0)$ of Eq. (4) through y_0 is denoted by $\Gamma_2(y_0)$). A subset $D \subset \mathbb{R}^N$ is said to be an invariant set of the system (3) if $x_0 \in D$ implies $\Gamma_1(x_0) \subset D$.

We first clarify the trajectory transformation relationship between systems (3) and (4.1).

Theorem 1. Trajectory transformation relationship. If $\Gamma_1(x_0)$ is the trajectory of Eq. (3) through $x_0 \in \mathbb{R}^N$, then $W\Gamma_1(x_0) + q$ is the trajectory of Eq. (4.1) through $y_0 = Wx_0 + q$, that is, $\Gamma_2(Wx_0 + q) = W\Gamma_1(x_0) + q$.

Conversely, if $y(t) = \Gamma_2(Wx_0 + q)$ is the trajectory of Eq. (4.1) through $y_0 = Wx_0 + q$ for some $x_0 \in \mathbb{R}^N$, then $x(t,x_0)$, defined by

$$
x(t,x_0) = e^{-\theta t}x_0 + \frac{1}{\tau} e^{-\theta t} \int_0^t e^{\theta \tau} G(y(s))ds,
$$

is the trajectory of Eq. (3) through x_0, that is, $\Gamma_1(x_0) = x(t,x_0)$.

Proof. First, let $\Gamma_1(x_0) = x(t,x_0)$. Then $x(t,x_0)$ solves the Eq. (3), that is,

$$
\tau \frac{dx(t,x_0)}{dt} = -x(t,x_0) + G(Wx(t,x_0) + q).
$$

Multiplying both sides of this equation with W gives the result

$$
\tau \frac{d[Wx(t,x_0)+q]}{dt} = -Wx(t,x_0) - q + WG(Wx(t,x_0)+q) + q.
$$

This leads to

$$
y(t) = e^{-\theta t}y(0) + \frac{1}{\tau} e^{-\theta t} \int_0^t e^{\theta \tau} WG(y(s))ds + (1 - e^{-\theta t})q
$$

$$
= e^{-\theta t}[y(0) - q] + \frac{1}{\tau} e^{-\theta t} W \int_0^t e^{\theta \tau} G(y(s))ds + q
$$

$$
= W(e^{-\theta t}x_0 + \frac{1}{\tau} e^{-\theta t} \int_0^t e^{\theta \tau} G(y(s))ds) + q
$$

$$
= Wx(t,x_0) + q,
$$

where $x(t,x_0)$ is defined as in Eq. (5). On the other hand, a direct calculation using Eq. (5) shows that

$$
\frac{dx(t,x_0)}{dt} = -x(t,x_0) + G(Wx(t,x_0) + q).
$$

From Eq. (6) it then follows that

$$
\frac{dx(t,x_0)}{dt} = -x(t,x_0) + G(Wx(t,x_0) + q).
$$

That is, $x(t,x_0)$ is the trajectory of Eq. (3) through x_0. The Proof of Theorem 1 is thus complete. \[\square\]

Theorem 2. Invariance-manifold property

(i) Any closed convex manifold Σ, containing $\mathbb{R}(GW_q)$ (or $\mathbb{R}(G)$), is an invariant manifold for system (3).

(ii) $\mathbb{R}(W_x)$ is an invariant manifold for Eq. (4).

(iii) $\mathbb{R}(W_G) + q$ is an invariant manifold for Eq. (4) provide $\mathbb{R}(G)$ is bounded and convex.

Proof. (i) Let $x = x(t,x_0)$ be a solution of Eq. (3) starting from $x_0 \in \Sigma$ and let $L(x) = Wx + q$. Then, by the theory of differential equations (see, e.g. Verhulst, 1990), we have

$$
x(t,x_0) = e^{-\theta t}x(0) + \frac{1}{\tau} e^{-\theta t} \int_0^t e^{\theta \tau} G(L(x(s)))ds
$$

$$
= e^{-\theta t}x_0 + (1 - e^{-\theta t}) \frac{e^{\theta \tau} G(L(x(s)))ds}{(1 - e^{-\theta t}) \tau}
$$

(7)
Write
\[
I(t) = \frac{e^{-\lambda t} \int_0^t e^{\lambda s} G(L(x(s))) ds}{1 - e^{-\lambda t}}.
\]

Then Eq. (7) implies that, since \(e^{-\lambda t} \in (0,1)\) and \(\Sigma\) is a convex set, \(x(t,x_0) \in \Sigma\) if \(I(t) \in \Sigma\). Thus in order to prove (i) it is enough to prove that \(I(t) \in \Sigma\). Note that
\[
(1 - e^{-\lambda t}) = \int_0^t e^{-\lambda s} ds = \lim_{n \to \infty} \sum_{k=1}^n e^{-\lambda k} \Delta t_k
\]
and
\[
e^{-\lambda t} \int_0^t e^{\lambda s} G(L(x(s))) ds = \int_0^t e^{-\lambda s} G(L(x(t-r))) dr
\]
\[
= \lim_{n \to \infty} \sum_{k=1}^n e^{-\lambda k} G(L(x(t-\xi_k))) \Delta t_k.
\]
So \(I(t) = \lim_{n \to \infty} I_n(t)\) with
\[
I_n(t) = \frac{\sum_{k=1}^n (e^{-\lambda k} \Delta t_k) G(L(x(t-\xi_k)))}{\sum_{k=1}^n e^{-\lambda k} \Delta t_k}.
\]

Now let
\[
\lambda_k = e^{-\lambda k} \Delta t_k / \sum_{k=1}^n e^{-\lambda k} \Delta t_k.
\]

Then \(\lambda_k \in [0,1]\) and \(\sum_{k=1}^n \lambda_k = 1\) so, \(I_n(t) \in \Sigma\) for any \(n\) since \(G(L(x(t-\xi_k))) \in \Re(G) \subseteq \Sigma\) by the assumption and \(\Sigma\) is convex. Thus \(I(t) \in \Sigma\) since \(\Sigma\) is closed, which completes the proof of (i).

(ii) Let \(\Pi = \Re(W) + q\). Then for \(y_0 \in \Pi\) there is an \(x_0 \in \Re^N\) such that \(y_0 = \Re(W)x_0 + q\). Let \(x(t,x_0)\) be the solution of Eq. (3) through \(x_0\). Then it is easy to verify that \(y(t,y_0) := \Re(W)x(t,x_0) + q\) is a solution of Eq. (4) through \(y_0\). Clearly, \(y(t,y_0) \in \Re(W) + q\). This proves (ii).

(iii) If \(\Re(G)\) is a bounded convex set, then \(\Re\Re(G) = \Re(G)\). Taking \(\Sigma = \Re(G)\) and arguing as in the proof of (i) we obtain that \(\Gamma_2(y_0) \in \Re\Re(G) + q\) whenever \(y_0 \in \Re\Re(G) + q\). To complete the proof we need to show that \(\Re\Re(G) = \Re(WG)\) by using the fact that \(W\) is linear and \(\Re(G)\) is bounded. First, it is clear that \(\Re(WG) \subseteq \Re\Re(G)\). Now if \(x \in \Re(WG)\), then there is a sequence \\{WG(x_j)\\} such that \(\lim_{j \to \infty} WG(x_j) = x\). Since \(\{G(x_j)\}\) is bounded, we may assume without loss of generality that \(\lim_{j \to \infty} G(x_j) = x^*\) for some \(x^* \in \Re(G)\). From the linearity of \(W\) it follows that \(x = \lim_{j \to \infty} WG(x_j) = WX^*\), which implies that \(x \in \Re(WG)\). So \(\Re(WG) \subseteq \Re\Re(G)\). Consequently, \(\Re\Re(G) = \Re(WG)\), which completes the proof of Theorem 2.

\textbf{Remark 1.} (i) From the proof of Theorem 2 it is easily seen that Theorem 2 (i) is actually true for any generic nonlinear operator \(L\), not necessarily restricted to the affine transformation case as defined in Eqs. (3) and (4). This may manifest an exclusive feature of the static neural network model (3).

(ii) Theorem 2 says that any solutions \(x(t,x_0)\) and \(y(t,y_0)\) will remain in the manifolds \(\Re\Re(G)\), \(\Re\Re(GW_q)\) and \(\Re\Re(WG) + q\) if they are initialized from them. It says, however, nothing about what would happen if the solutions are not starting from the manifolds. Theorem 3 provides us with some information in this case.

\textbf{Theorem 3. Attractive manifold property}

(i) For any \(x_0 \in \Re^N\) the trajectory \(\Gamma_1(x_0)\) exponentially approaches to \(\Re\Re(G)\) (or \(\Re\Re(GW_q)\)) in the sense that
\[
d(x(t,x_0), \Re\Re(G)) \leq e^{-\lambda t} d(x_0, \Re\Re(G)),
\]
where \(d(x, \Sigma) = \inf_{y \in \Sigma} \|x - y\|\) denotes the distance of \(x\) to the set \(\Sigma\).

(ii) For any \(y_0 \in \Re^N\) the trajectory \(\Gamma_2(y_0)\) exponentially approaches to \(\Re(W_q)\) (or \(\Re(WG) + q\) in the case when \(\Re(G)\) is bounded and convex) in the sense that
\[
d(y(t,y_0), \Re(W) + q) \leq e^{-\lambda t} d(y_0, \Re(W) + q).
\]

\textbf{Proof.} (i) It follows from Eq. (7) that for any \(x_1 \in \Re\Re(G)\) (or \(\Re\Re(GW_q)\)),
\[
x(t,x_0) = e^{-\lambda t}(x_0 - x_1) + e^{-\lambda t} x_1 + \frac{1}{\tau} \int_0^t e^{\lambda s} G(L(x(s))) ds.
\]
Let
\[
z(t) = e^{-\lambda t} x_1 + \frac{1}{\tau} \int_0^t e^{\lambda s} G(L(x(s))) ds.
\]

Then argue as in the proof of Theorem 2 to obtain that \(z(t) \in \Re\Re(G)\) (or \(\Re\Re(GW_q)\)) for all \(t \geq 0\). Thus,
\[
d(x(t,x_0), \Re\Re(G)) \leq \|x(t,x_0) - z(t)\| \leq e^{-\lambda t} \|x_1 - x_0\|
\]
for any \(x_1 \in \Re\Re(G)\), which implies Eq. (8).

(ii) For any \(y_1 \in \Re(W) + q\) there is an \(x_1 \in \Re^N\) such that \(y_1 = \Re(W)x_1 + q\). Thus we have
\[
y(t,y_0) = e^{-\lambda t}(y_0 - y_1) + e^{-\lambda t} y_1 + \frac{1}{\tau} \int_0^t e^{\lambda s} (WG(y(s)) + q) ds
\]
\[
= e^{-\lambda t}(y_0 - \Re(W)x_1 + q) + e^{-\lambda t}(Wx_1 + q)
\]
\[
+ \frac{1}{\tau} \int_0^t e^{\lambda s} (WG(y(s)) + q) ds
\]
\[
=: e^{-\lambda t}(y_0 - \Re(W)x_1 + q) + z(t).
\]

Similar argument as in the proof of Theorem 2 together with the convexity and closedness of \(\Re(W_q)\) (or \(\Re(WG) + q\)) gives that \(z(t) \in \Re(W_q)\) (or \(\Re(WG) + q\)). Thus it follows
Identical cardinal number of equilibria. Theorem 5.

Proof. Let \(\text{Card}(F_1^{-1}(0)) \) and \(\text{Card}(F_2^{-1}(0)) \) denote the cardinal numbers of the equilibrium state sets \(F_1^{-1}(0) \) and \(F_2^{-1}(0) \), respectively. We will show that \(\text{Card}(F_1^{-1}(0)) = \text{Card}(F_2^{-1}(0)) \) by proving that there exists a bijective mapping between \(F_1^{-1}(0) \) and \(F_2^{-1}(0) \). In fact, consider the mapping \(P : F_1^{-1}(0) \to F_2^{-1}(0) \) defined by

\[
F_2^{-1}(0) \ni y = G(y^*) = x^* \in F_1^{-1}(0).
\]

By Theorem 4, \(G \) is well-defined. First, \(G \) is injective since, if \(P(y^*_1) = P(y^*_2) \) for some \(y^*_1, y^*_2 \in F_2^{-1}(0) \) then, by the definition of equilibrium state of Eq. (4), \(y^*_i = WG(y^*_i) + q \) (\(i = 1, 2 \)) so that \(y^*_1 = WG(y^*_1) + q = WG(y^*_2) + q = y^*_2 \). Finally, \(P \) is surjective since, for any \(x^* \in F_1^{-1}(0) \), we have \(x^* = G(Wx^* + q) \) so, if \(y^* = Wx^* + q \) then, by Theorem 4, \(y^* \in F_2^{-1}(0) \), that is, \(x^* = G(y^*) \). This proves the theorem. \(\square \)

From the Proof of Theorem 5 it follows that the nonlinear activation mapping \(G \), when restricted to the equilibrium state set \(F_1^{-1}(0) \), is invertible no matter whether or not the activation mapping \(G \) itself is invertible. In this case, the inverse \(G^{-1} \) can be given by

\[
G^{-1}(x^*) = Wx^* + q, \quad \forall x^* \in F_1^{-1}(0).
\]

Similarly, we can conclude that \(W \), when restricted to \(F_2^{-1}(0) \), is regular even though \(W \) itself may not be regular. Thus, \(x^* \in F_1^{-1}(0) \) if and only if \(y^* = G^{-1}(x^*) \in F_2^{-1}(0) \). Conversely, \(y^* \in F_2^{-1}(0) \) if and only if \(x^* = G(y^*) \in F_1^{-1}(0) \). A pair of equilibria \(x^* \) and \(y^* \) possessing such a property will be called a pair of mutually mapped equilibria of system (3) and (4), denoted henceforth by \((x^*, y^*) \). With such understanding, we state and prove a series of stability–invariance properties of systems (3) and (4.1) in Section 2.3.

2.3. Stability–invariance properties

We first recall some notion and notations from the theory of dynamical systems (taking Eq. (3) as an example). A point \(x^* \) is said to be a \(\omega \)-limit point of \(\Gamma_1(x_0) \) if there is a subsequence \(\{ t_i \} \) such that \(x^* = \lim_{i \to \infty} x(t_i, x_0) \). All the \(\omega \)-limit points of \(\Gamma_1(x_0) \) constitute the \(\omega \)-limit set of \(\Gamma_1(x_0) \), denoted henceforth by \(\omega(\Gamma_1(x_0)) \). The \(\omega \)-limit set is invariant under the dynamics. The equilibrium point \(x^* \) is said to be stable if any trajectory of Eq. (3) can stay within a small neighborhood of \(x^* \) whenever the initial state \(x_0 \) is close to \(x^* \). The equilibrium point \(x^* \) is said to be attractive if there is a neighborhood \(\mathcal{B}(x^*) \), called the attraction basin of \(x^* \), such that any trajectory of Eq. (3) initialized from a state in \(\mathcal{B}(x^*) \) will approach \(x^* \) as time goes to infinity. An equilibrium state is said to be asymptotically stable if it is both stable and attractive. Further, the equilibrium state \(x^* \) is said to be exponentially stable if there exist a constant \(\alpha > 0 \) and a strictly increasing function \(M \) such that

\[
\|x(t, x_0) - x^*\| \leq M(\|x_0 - x^*\|)e^{-\alpha t}.
\]
If, in addition, \(M(x) = Ks \) (i.e. \(M \) is linear) for an absolute constant \(K \) in Eq. (13) then \(x^* \) is said to be exponentially stable in the sense of Liapunov. The equilibrium state \(x^* \) is globally asymptotically stable (globally exponentially stable) if it is asymptotically stable (exponentially stable) and \(\Xi(x^*) = \mathbb{R}^N \).

Correspondingly to the global stability notion, we say that a system (say, Eq. (3)) is globally convergent if \(x(t, x_0) \) converges to an equilibrium state of Eq. (3) for every initial point \(x_0 \in \mathbb{R}^N \). Note that the limit of \(x(t, x_0) \) may be different for different \(x_0 \). The system (3) is said to be exponentially convergent if it is globally convergent with the limiting state \(x^* \) satisfying Eq. (13). We need the following two simple lemmas.

Lemma 1. Let \(W \) be an \(N \times N \) matrix and let \(B \) be the unit open ball of \(\mathbb{R}^N \) centered at zero and with radius 1, i.e. \(B = \{ x \| \| x \| < 1 \} \). Set \(W(B) = \{ Wx \| x \in B \} \). Then there is a constant \(\delta > 0 \) such that

\[
\delta B \cap \mathcal{R}(W) \subseteq W(B), \quad \text{whenever } \delta_1 \leq \delta.
\]

Proof. It is clear that \(W(B) \) is a neighborhood of 0 in the subspace \(\mathcal{R}(W) \subseteq \mathbb{R}^N \). Thus there is an open set \(U \) in the space \(\mathcal{R}(W) \) such that \(0 \in U \subseteq W(B) \). Since \(U \) is a relatively open set of \(\mathbb{R}^N \), then there must be an open set \(V \) in \(\mathbb{R}^N \) such that \(U = V \cap \mathcal{R}(W) \). Clearly, \(V \) is a neighborhood of 0 in \(\mathbb{R}^N \). Thus there is a constant \(\delta > 0 \) such that, whenever \(\delta_1 \leq \delta \), we have \(\delta_1 B \cap \mathcal{R}(W) \subseteq V \cap \mathcal{R}(W) \subseteq W(B) \). This proves the lemma. \(\square \)

Lemma 2. If \(\mathcal{R}(G) \) is bounded and convex, then \(\mathcal{R}(WG) + q = \mathcal{R}(G)W(G) + q \).

Proof. The inclusion \(W(\mathcal{R}(G)) + q \subseteq \mathcal{R}(WG) + q \) is trivial. To prove the inverse inclusion, take any fixed \(y \in \mathcal{R}(WG) + q \) and assume that \(\{ y \} \subseteq \mathbb{R}^N \) is a sequence such that \(y = \lim_{n \to \infty} WG(y_n) + q \). Let \(x_i = G(y_i) \). Then \(x_i \in \mathcal{R}(G) \). Since \(\mathcal{R}(G) \) is bounded, we may assume without loss of generality that \(\lim_{n \to \infty} x_i = \lim_{n \to \infty} G(y_n) = x \) for some \(x \in \mathcal{R}(G) \). It follows that \(y = \lim_{n \to \infty} WG(y_n) + q = \lim_{n \to \infty} Wx_i + q = Wx + q \). This means that \(y \in W(\mathcal{R}(G)) \) so \(\mathcal{R}(WG) \subseteq \mathcal{R}(G) \). Consequently, \(\mathcal{R}(WG) + q = \mathcal{R}(WG) + q \). The lemma is thus proved. \(\square \)

With the above lemmas, we are now in a position to examine the relationship among the stability of models (3), (4), (3.1), (3.2), (4.1) and (4.2).

Theorem 6. Stability. Let \((x^*, y^*) \in F_1^{-1}(0) \times F_2^{-1}(0) \) be any pair of mutually mapped equilibria of systems (3) and (4). Assume that \(G \) is a Lipschitzian, that is, there is a positive constant \(L(G) \) such that

\[
\| G(y_1) - G(y_2) \| \leq L(G) \| y_1 - y_2 \|, \quad \forall y_1, y_2 \in \mathbb{R}^N.
\]

Then \(x^* \), as an equilibrium state of Eq. (3), is stable if and only if \(y^* \), as an equilibrium state of Eq. (4.1), is stable.

Proof. ‘\(\Rightarrow \)’ If \(x^* \in F_1^{-1}(0) \) is stable, then for any \(\epsilon > 0 \) there is \(\delta_1(\epsilon) > 0 \) such that, whenever \(\| x_0 - x^* \| < \delta_1(\epsilon) \), we have

\[
\| x(t, x_0) - x^* \| < \| \mathcal{R}(W) \| \| W \| \| t \| < \epsilon \quad \forall t \geq 0.
\]

Let \(\delta < \delta_1(\epsilon) \) be so small that \(\delta \mathcal{B} \cap \mathcal{R}(W) \subseteq \delta_1(\epsilon) \mathcal{B} \mathcal{W}(W) \). (By Lemma 1 this is possible.) We now prove that for \(y_0 \in \mathcal{R}(W) + q \),

\[
\| y(t, y_0) - y^* \| < \epsilon
\]

whenever \(\| y_0 - y^* \| < \delta(\epsilon) \), which together with Lemma 2 implies that \(y^* \), as an equilibrium state of system (4.1), is stable.

For any \(y_0 \in \mathcal{R}(W) + q \) and \(y^* \in F_2^{-1}(0) \) we have \(y_0 - y^* \in \mathcal{R}(W) \), so \(y_0 - y^* \in \delta_1(\epsilon) \mathcal{B} \mathcal{W}(W) \) whenever \(\| y_0 - y^* \| < \delta_1(\epsilon) \). Thus there is a \(z_0 \in \delta_1(\epsilon) \mathcal{B} \mathcal{W}(W) \) so that we can write \(y_0 - y^* = Wz_0 \) or equivalently, \(y_0 = Wz_0 + x^* \) and \(q \). From Theorem 1 it follows that if \(x(t) \) is the solution of system (3) through \(x_0 = z_0 + x^* \), then \(y(t, y_0) = Wx(t) + q \) is the unique solution of Eq. (4.1) passing through \(y_0 \). So, for any \(t > 0 \), we have

\[
\| y(t, y_0) - y^* \| = \| Wx(t) - Wx^* \| \leq \| \mathcal{W} \| \| t \| \| x(t) - x^* \|.
\]

This, together with Eq. (14), and on noting that \(\| x_0 - x^* \| = \| z_0 \| \leq \delta_1(\epsilon) \), implies that \(\| y(t, y_0) - y^* \| < \epsilon \), as expected. ‘\(\Leftarrow \)’. Given any \(\epsilon > 0 \), by assumption there is a \(\delta_1(\epsilon) > 0 \) such that for \(y_0 \in \mathcal{R}(W) + q \), we have \(\| y(t, y_0) - y^* \| < \epsilon/[2L(G)] \) for \(t \geq 0 \) whenever \(\| y_0 - y^* \| < \delta_1(\epsilon) \). Letting

\[
\delta(\epsilon) = \min \left\{ \frac{\delta_1(\epsilon)}{2L(G)} \right\}
\]

we can prove that for any \(x_0 \in \mathbb{R}^N \), \(\| x(t, x_0) - x^* \| < \epsilon \) provided \(\| x_0 - x^* \| < \delta_\epsilon \). In fact, let \(y_0 = Wx_0 + q \). Then \(y_0 \in \mathcal{R}(W) + q \) and satisfies that \(\| y_0 - y^* \| < \delta_1(\epsilon) \) whenever \(\| x_0 - x^* \| < \delta_\epsilon \). So, by Theorem 1, we can write \(y(t, y_0) = Wx(t, x_0) + q \). Further, we have

\[
\| y(t, y_0) - y^* \| < \frac{\epsilon}{2L(G)}
\]

whenever \(\| y_0 - y^* \| < \delta_\epsilon \). From Eq. (5) it thus follows that

\[
\| x(t, x_0) - x^* \| \leq e^{-\epsilon t/2L(G)} \| x_0 - x^* \|
\]

\[
+ \left[\frac{1}{2} e^{-\epsilon t/2L(G)} \right] \int_0^t e^{\epsilon s/2L(G)} \| G(y(s)) - G(y^*) \| ds
\]

\[
= e^{-\epsilon t/2L(G)} \| x_0 - x^* \| + \left[\frac{1}{2} e^{-\epsilon t/2L(G)} \right] \int_0^t e^{\epsilon s/2L(G)} \| G(y(s)) - G(y^*) \| ds
\]

\[
< \frac{\epsilon}{2} + \frac{1}{2} e^{-\epsilon t/2L(G)} \int_0^t e^{\epsilon s/2L(G)} ds < \epsilon.
\]

This implies the stability of \(x^* \) since \(\epsilon \) is arbitrary. The theorem is thus proved. \(\square \)
Theorem 7. Attractivity and global convergence
Let the conditions of Theorem 6 be satisfied.

(i) x^* is globally attractive for the system (3) if and only if y^* is globally attractive (in the manifold $\mathcal{R}(W_0)$) for the system (4.1).

(ii) The system (3) is globally convergent if and only if the system (4.1) is globally convergent.

Proof. Under the assumption of the theorem, systems (3) and (4) have a unique solution, denoted by $x(t, x_0)$ and $y(t, y_0)$, respectively. Note that $y(t, y_0)$ is also the unique solution of Eq. (4.1) when restricted to the manifold $\mathcal{R}(W_0)$. If $x(t, x_0)$ converges to an equilibrium state x^* of Eq. (3) for $x_0 \in \mathbb{R}^3$, then $y(t, W_0 + q) = Wx(t, x_0) + q$ is the unique solution of Eq. (4) through $y_0 = Wx_0 + q$ (Theorem 1). Since W is a matrix, it follows directly that $y(t, W_0 + q)$ converges to the state $y^* = Wx^* + q$ (clearly, $y^* \in F_2^{-1}(0)$ iff $x^* \in F_2^{-1}(0)$). We now prove that the convergence of $y(t, W_0 + q)$ to y^* implies the convergence of $x(t, x_0)$ to x^*. Consider the unique solution $x(t, x_0)$ of Eq. (3) initialized from x_0. Let us assume that $y(t, y_0)$ converges to an equilibrium state y^* of Eq. (4) with $y_0 = Wx_0 + q$. Then, by the uniqueness of solution to Eq. (4), $y(t, W_0 + q) = Wx(t, x_0) + q$. It also follows by Theorem 4 that $y^* = Wx^* + q$. Thus, we have $y(t, W_0 + q) = y^* = Wx(t, x_0) - x^* \rightarrow 0$ as $t \rightarrow \infty$. So, for any given $\varepsilon > 0$ there is a positive constant T_ε such that

$$\|y(t, W_0 + q) - y^*\|_2 \leq \varepsilon/L(G) \quad \text{whenever} \quad t > T_\varepsilon.$$

On the other hand, we have from Eq. (3) that

$$\frac{d}{dt}\|x(t, x_0) - x^*\|^2 \leq \frac{1}{\tau}L(G)e^{-\frac{\varepsilon}{\tau}} \times \left[\int_s^t e^{\frac{\varepsilon}{\tau}r}[r, W_0 + q] - y^*\right]dr,$$

which holds for any $t > s > 0$. Taking $t > s > T_\varepsilon$ in this inequality, we then obtain that

$$\|x(t, x_0) - x^*\|^2 \leq e^{-\frac{\varepsilon}{\tau}t}\|x(s, x_0) - x^*\|^2 + \frac{e^{-\frac{\varepsilon}{\tau}t}}{\tau} \int_s^t e^{\frac{\varepsilon}{\tau}r}dr,$$

which gives that

$$\lim_{t \rightarrow \infty}\|x(t, x_0) - x^*\| = 0.$$

Since ε is arbitrary, we conclude that $\lim_{t \rightarrow \infty}\|x(t, x_0) - x^*\| = 0$. That is, $x(t, x_0)$ converges to the equilibrium state x^*. This completes the proof of the theorem. □

Theorem 8 extends the equivalence between the global convergence of systems (3) and (4.1) to the case of exponential convergence.

Theorem 8. Exponential convergence
Assume that the activation mapping G is a Lipschitzian. Then Eq. (3) is exponentially convergent if Eq. (4.1) is exponentially convergent.

Proof. ’⇒’: If system (3) is exponentially convergent, then there is an $x^* \in F_1^{-1}(0)$ such that the solution $x(t, x_0)$ exponentially converges to x^* in the sense of Eq. (13). Let $y_0 = Wx_0 + q$. Then, by Theorems 1 and 4, $y(t, y_0) = Wx(t, x_0) + q$ is the unique solution of Eq. (4) through y_0 and $y^* = G^{-1}(x^*) = Wx^* + q \in F_2^{-1}(0)$. Since $y_0 - y^* = W(x_0 - x^*)$, then by making use of the generalize inverse of W (say, the Moore–Penrose inverse W^+ (see, e.g. Rao & Mitra, 1971) we can write $x_0 - x^* = W^+(y_0 - y^*)$. Thus we obtain from Eq. (13) that

$$\|y(t, y_0) - y^*\| = \|Wx(t, x_0) - x^*\| \leq \|W\|M(\|x_0 - x^*\|e^{-\alpha t}) \leq \|W\|M(\|W^+\|\|y_0 - y^*\|e^{-\alpha t})$$

$$= M_1(\|y_0 - y^*\|e^{-\alpha t}),$$

where $M_1(s) = \|W\|M(\|W^+\|s)$. That is, the system (4.1) is exponentially convergent.

‘⇐’: Suppose that for any fixed $y_0 \in \mathcal{R}(W) + q$, the solution $y(t, y_0)$ exponentially converges to y^* in the sense of Eq. (16), where $y^* \in F_2^{-1}(0)$. Then it follows from Theorem 4 that $x^* = G(y^*)$ is an equilibrium state of Eq. (3). Further we have from Eq. (12) that $y^* = G^{-1}(x^*) = Wx^* + q$. Now if $x(t, x_0)$ is the unique solution of Eq. (3) through x_0 then $y(t, W_0 + q) = Wx(t, x_0) + q$ is the solution of Eq. (4) through $y_0 = Wx_0 + q$. From Eq. (16) it follows that

$$\|Wx(t, x_0) - x^*\| = \|y(t, W_0 + q) - y^*\| \leq M_1(\|W_0 + q - y^*\|e^{-\beta t}) = M_1(\|W\|\|x_0 - x^*\|e^{-\beta t}) \leq M_1(\|W\|\|x_0 - x^*\|e^{-\beta t}),$$

where $M_1(s) = \|W\|M(\|W^+\|s)$. That is, the system (4.1) is exponentially convergent.

Let $V(t, x_0) = x(t, x_0) - x^*$. Then

$$\frac{dV(t, x_0)}{dt} = -V(t, x_0) + G(Wx(t, x_0) + q) - G(Wx^* + q),$$

from which we obtain that

$$\frac{d}{dt}\|V(t, x_0)\| \leq -\|V(t, x_0)\| + \|G(Wx(t, x_0) + q) - G(Wx^* + q)\|$$

$$\leq -\|V(t, x_0)\| + L(G)\|W(x(t, x_0) - x^*)\|.$$
This combined with Eq. (17) implies that

$$
\|V(t,x_0)\| \leq e^{-\tau t}\|V(0,x_0)\| + \frac{1}{\tau} L(G)e^{-\beta t}t
\times \int_0^t e^{\tau s}(1/e)e^{(1-\alpha)\beta s} ds
\leq e^{-\tau t}\|x_0-x^*\| + \frac{L(G)}{\tau} e^{-\beta t}t
\times \int_0^t e^{(1-\alpha)\beta s} M_1(||W||\|x_0-x^*\|) ds
\leq f(t)\max\{M_1(||W||\|x_0-x^*\|),\|x_0-x^*\|\},
$$

(18)

where

$$f(t) = e^{-\tau t} + \frac{1}{\tau} L(G)e^{-\beta t} t
\int_0^t e^{\beta s} ds.
$$

We now estimate the function $f(t)$. First, if $\tau \beta = 1$ then we have

$$f(t) = e^{-\tau t} + \frac{L(G)}{\tau} e^{-\beta t} \leq \left(1 + \frac{L(G)}{e}\right) e^{-(1-\alpha)\beta t}.
$$

Now if $\tau \beta \neq 1$ then it follows that

$$f(t) = e^{-\tau t} + \frac{L(G)}{\tau - \beta} e^{-\beta t} \leq \left(1 + \frac{L(G)}{1-\beta}\right) e^{-\min\{1/\beta\}\beta t}.
$$

Thus and from Eq. (18) we derive Eq. (13) with

$$MK = \max\{M_1(||W||\|x_0-x^*\|),\|x_0-x^*\|\},
$$

where

$$K = \begin{cases}
1 + \frac{L(G)}{1-\beta}, & \tau \beta \neq 1 \\
1 + \frac{L(G)}{\tau}, & \tau \beta = 1
\end{cases}
$$

and

$$\alpha = \begin{cases}
\min\{1/\beta\}, & \tau \beta \neq 1 \\
\frac{1-\beta}{\tau}, & \tau \beta = 1
\end{cases}
$$

This means that the system (3) is globally exponentially convergent, which completes the proof of the theorem. □

As a direct consequence of Theorems 6–8, we immediately arrive at the following basic stability–invariance results on models (3) and (4.1).

Theorem 9. Stability–invariance between Eqs. (3) and (4.1)

Assume that G is a Lipschitz continuous mapping and that (x',y') is a pair of mutually mapped equilibrium states of Eqs. (3) and (4). Then the stability of systems (3) and (4.1) is invariant in the following sense.

(i) x' is stable (asymptotically stable/exponentially stable) if and only if y' is stable (asymptotically stable/exponentially stable).

(ii) x' is globally asymptotically stable (globally exponentially stable) if and only if y' is globally asymptotically stable (globally exponentially stable).

(iii) System (3) is globally convergent (globally exponentially convergent) if and only if system (4.1) is globally convergent (globally exponentially convergent).

Remark 3. The stability–invariance property stated in Theorem 9 should be precisely understood. It means that x' is stable in a sense (say, globally or asymptotically) if and only if y' is so in exactly the same sense (namely, globally or asymptotically). However, it should be carefully discriminated that ‘x’ is stable in system (3)’ makes sense in the topology of \mathbb{R}^N since Eq. (3) is a dynamical system defined on the whole space \mathbb{R}^N, whereas ‘x’ is stable in system (3.1)’ then makes sense in the topology of $C\Omega R(G)$, which is, of course, a relative topology of \mathbb{R}^N, since Eq. (3.1) is a dynamical system defined on the manifold $C\Omega R(G)$.

It is natural to ask the question: can such types of stability–invariance be extended to other pair of systems such as Eqs. (3) and (4), (3.1) and (4.1), (3.1) and (4.2), or (3.2) and (4.2)? We cannot answer such a question in general, but an easy observation shows that such stability invariance property can indeed be extended to Eqs. (3.1) and (4.2), as stated in Theorem 10.

Theorem 10. Stability–invariance between Eqs. (3.1) and (4.2)

Assume that G is a Lipschitz continuous mapping and that (x',y') is any pair of mutually mapped equilibrium states of Eqs. (3.1) and (4.2). Then the stability of systems (3.1) and (4.2) is invariant in the sense that

(i) x' is stable (asymptotically stable or exponentially stable) if and only if y' is stable (asymptotically stable or exponentially stable);

(ii) x' is globally asymptotically stable (globally exponentially stable) if and only if y' is globally asymptotically stable (globally exponentially stable);

(iii) system (3.1) is globally convergent (globally exponentially convergent) if and only if system (4.2) is globally convergent (globally exponentially convergent).

Proof. From the Proof of Theorems 7–8 we know that to prove the theorem it suffices to prove $\Re(WG) + q = W\Re(G) + q$ in the case when $\Re(G)$ is bounded and convex. This is, however, the result of Lemma 2. So the theorem is thus proved. □

2.4. An inequitable relation

We now go further with an attempt to explore the relationship between the stability of the original systems (3) and (4).
Theorem 11. Assume that G is a Lipschitz continuous mapping and that (x^*, y^*) is any pair of mutually mapped equilibrium states of Eqs. (3) and (4). Then

(i) y^* is exponentially attractive (globally exponentially attractive) if x^* is exponentially stable (globally exponentially stable) in the sense of Liapunov;

(ii) system (4) is globally convergent if system (3) is globally exponentially convergent in the sense of Liapunov.

Proof. We only prove (i). The proof of (ii) is similar.

Denote by $B(x, r)$ the open ball in \mathbb{R}^N centered at x and with radius r. Assume that x^* is an exponentially stable equilibrium state of system (3). Then there exist positive constants C, α, r such that, whenever $x_0 \in B(x^*, r)$,

$$
\|x(t, x_0) - x^*\| \leq Ce^{-\alpha t}\|x_0 - x^*\|, \quad \forall t \geq 0.
$$

(19)

We now verify that there exist two positive constants δ, β and a function $M(s) > 0$ such that for any $y_0 \in B(y^*, \delta)$,

$$
\|y(t, y_0) - y^*\| \leq M(\|y_0 - y^*\|)e^{-\beta t}, \quad \forall t \geq 0.
$$

(20)

To this end, let $F(y) = G(y + y^*) - G(y^*)$ and take the transformations $u(t) = x(t, x_0) - x^*$ and $v(t) = y(t, y_0) - y^*$ to transform systems (3) and (4) into

$$
\begin{align*}
\frac{d}{dt} u(t) &= -u(t) + F(Wu(t)), \quad u(0) = x_0 - x^* \quad (21) \\
\frac{d}{dt} v(t) &= -v(t) + WF(v(t)), \quad v(0) = y_0 - y^* \quad (22)
\end{align*}
$$

Under such transformations, the equilibria pair (x^*, y^*) of Eqs. (3) and (4) is changed into the equilibria pair $(u^*, v^*) = (0, 0)$ of systems (21) and (22). Further, $u^* = 0$ is exponentially stable in the sense that for any $u_0 \in B(0, r)$,

$$
\|u(t)\| \leq Ce^{-\alpha t}\|u_0\|, \quad t \geq 0.
$$

(23)

where $u(t)$ is the unique solution of Eq. (21) with the initial state $u(0) = x_0 - x^*$. This standard global stability property of system (21) ensures the validity of an in-depth inverse Liapunov function theorem (see, e.g. Theorem 4.5 in (Khalil, 1992, pp. 180)). This theorem implies that for system (21) there is an energy function

$$
E : B(0, r) \rightarrow \mathbb{R}^N
$$

(24)

such that

(P1) E is equivalent to the norm of \mathbb{R}^N, that is, there are positive constants C_1 and C_2 such that

$$
C_1\|u\|^2 \leq E(u) \leq C_2\|u\|^2;
$$

(P2) E is differentiable (almost everywhere) and $\|\nabla E(u)\| \leq C_3\|u\|$ for some positive constant C_3; and

(P3) E is a strict energy function of Eq. (21) in the sense that

$$
\langle \nabla E(u), -u + F(Wu) \rangle \leq -C_4\|u\|^2
$$

for some positive constant $C_4 (> 2C_2)$.

We are now in a position to prove the exponential attractiveness of the equilibrium state $v^* = 0$ for system (22). This we do in the following four steps.

Step 1. Note first that using the matrix W, \mathbb{R}^N can be decomposed into the direct sum $\mathbb{R}^N = \mathbb{R}(W) \oplus \text{Ker}(W^T)$, where $\text{Ker}(W^T)$ is the kernel space of W^T (i.e. $\text{Ker}(W^T) = \{x : W^Tx = 0\}$) which is orthogonal to $\mathbb{R}(W)$. Thus there are two orthogonal projections P_1 (from \mathbb{R}^N onto $\mathbb{R}(W)$) and P_2 (from \mathbb{R}^N onto $\text{Ker}(W^T)$) such that for any $x \in \mathbb{R}^N$, we can write $x = P_1x + P_2x$. In view of the orthogonal property of the two projections, the system (22) can be rewritten as

$$
\begin{align*}
\frac{d}{dt} P_1v(t) &= -P_1v(t) + WF(v(t)), \\
\frac{d}{dt} P_2v(t) &= -P_2v(t), \quad v(0) = y_0 - y^*
\end{align*}
$$

or in the integral form as

$$
\begin{align*}
P_1v(t) &= e^{-\tau t}P_1v(0) + \frac{1}{\tau} \int_0^t e^{\tau s}WF(v(s))ds, \\
P_2v(t) &= e^{-\tau t}P_2v(0), \quad v(0) = y_0 - y^*.
\end{align*}
$$

(25)

Now $P_1v(0) \in \mathbb{R}(W)$ so $P_1v(0) = Wx_0$ for some $x_0 \in \mathbb{R}^N$. It then follows from Eq. (25) that

$$
P_1v(t) = W\left(e^{-\tau t}x_0 + \frac{1}{\tau} \int_0^t e^{\tau s}F(v(s))ds\right).
$$

(26)

Then Eq. (25) can be written in the form

$$
\begin{align*}
\frac{d}{dt} z(t) &= -z(t) + F(v(t)) = -z(t) + F(Wz(t) + e^{-\tau t}P_2v(0)), \\
\frac{dz}{dt}(t) &= -z(t) + F(v(t)) = -z(t) + F(Wz(t) + e^{-\tau t}P_2v(0)).
\end{align*}
$$

(27)

Step 2. To prove that there is a $T > 0$ such that $z(t) \in B(0, \delta)$ for $t \in [0, T)$ (so E in Eq. (24) can be applied to $z(t)$) and further that for $t \in (0, T)$,

$$
\|z(t)\| \leq e^{-k_1\tau} \sqrt{\frac{C_2}{C_1}} \|x_0\| + \frac{k_2}{|1 - k_1|\sqrt{C_1}} < re^{-k_1\tau}
$$

(28)

whenever $v(0) \in B(0, \delta)$ for some sufficiently small $\delta > 0$, where k_1 and k_2 are positive constants to be specified later. First, by Lemma 1 we can take a positive constant $\delta < 2C_2 - C_4(1/2 + C_3 L(G))$ such that $\delta B(0, 1) \cap \mathbb{R}(W) \subseteq$...
\(\gamma WB(0, 1) \), where \(L(G) \) is the Lipschitz constant of \(G \) and

\[
\gamma = \min \left\{ \frac{r}{2} \sqrt{\frac{C_1}{C_2}} \right\}.
\]

For any \(v \in \delta B(0, 1) = B(0, \delta) \) one has \(P_1 v \in B(0, \delta) \) so there exists an \(s \in B(0, \gamma) \) such that \(P_1 v = Wx \) and

\[
\frac{C_2}{C_1} \|v\| + \frac{C_4 C_0 L(G)}{2 C_2 - C_0 C_1} \delta < r.
\]

Thus, for \(v_0 = v(0) \in B(0, \delta) \) we have \(v_1 = P_1 v_0 + P_2 v_0 = Wx_0 + P_2 v_0 \) with \(x_0 \in B(0, \gamma) \) satisfying the above inequality. Since, from Eq. (26), we have \(z(0) = x_0 \in B(0, r) \), then the openness of \(B(0, r) \) together with the continuity of \(G \) ensure that there is a \(T > 0 \) such that \(z(t) \in B(0, r) \) for all \(t \in (0, T) \).

Now differentiate \(E \) along the curve \(z(t) \) in the interval \((0, T)\) and make use of Eq. (27) and (P1)–(P3) to obtain that

\[
\frac{dE(z(t))}{dt} = \langle \nabla E(z(t)), \frac{dz(t)}{dt} \rangle = \langle \nabla E(z(t)), -z(t) \rangle + F(Wz(t)) + \langle \nabla E(z(t)), F(Wz(t) + e^{-\nu t} P_2 v_0) \rangle - F(Wz(t)) \leq -C_4 \|z(t)\|^2 + L(G) \|P_2 v_0\| C_3 \|z(t)\| e^{-\nu t} \leq -\frac{C_4}{2C_2} E(z(t)) + \frac{C_4 L(G) \delta}{\sqrt{C_1}} \sqrt{E(z(t))} e^{-\nu t}.
\]

Let \(V(t) = \sqrt{E(z(t))} \). Then the above inequality implies that

\[
\frac{dV(t)}{dt} \leq -\frac{C_4}{2C_2} V(t) + \frac{C_4 L(G) \delta}{2 \sqrt{C_1}} e^{-\nu t} = -k_1 V(t) + k_2 e^{-\nu t},
\]

(29)

where

\[
k_1 = \frac{C_4}{2C_2}, \quad k_2 = \frac{C_4 L(G) \delta}{2 \sqrt{C_1}}.
\]

We may assume without loss of generality that \(k_1 < 1 \). From Eq. (29) it follows that

\[
V(t) \leq e^{-k_1 \nu t} V(0) + \frac{k_2}{1 - k_1} (e^{-k_1 \nu t} - e^{-\nu t}) \leq e^{-k_1 \nu t} \left(V(0) + \frac{k_2}{1 - k_1} \right).
\]

This together with (P2) and Eq. (29) implies Eq. (28).

Step 3. We show that \(z(t) \in B(0, r) \) and satisfies Eq. (28) for all \(t \geq 0 \).

Suppose this is not true. Then there would be a \(T_1 \) such that \(z(t) \in B(0, r), \forall t \in [0, T_1) \), but \(z(T_1) \notin B(0, r) \).

Then the same argument as in deriving Eq. (28) gives

\[
\|z(T_1)\| \leq 2e^{-k_1 \nu T_1} < r,
\]

which contradicts the fact that \(z(T_1) \notin B(0, r) \). The claim is true.

Step 4. It follows from Eqs. (27) and (28) that, whenever \(v_0 \in B(0, \delta) \),

\[
\|v(t)\| = \|P_1 v(t)\| + \|P_2 v(t)\| = \|Wz(t)\| + \|e^{-\nu t} P_2 v_0\| \leq \|W\| \|z(t)\| + e^{-\nu t} \|P_2 v_0\| \leq \|W\| \|e^{-k_1 \nu t} + e^{-\nu t} P_2 v_0 - y^*\| \leq M(\|y_0 - y^*\|) e^{-\beta \nu t},
\]

where \(M(s) = s + \|W\| r \) and \(\beta = \min \{k_1, 1\} \). Since \(v(t) = y(t, y_0) - y^* \) then this implies that

\[
\|y(t, y_0) - y^*\| \leq M(\|y_0 - y^*\|) e^{-\beta \nu t}
\]

for all \(t > 0 \) as long as \(y_0 \in B(y^*, \delta) \). This means that \(y^* \), as an equilibrium state of Eq. (4), is exponentially attractive. The theorem is thus proved.

\[\square \]

2.5. Open questions

From Theorems 7–11 the relationship among dynamics of the six models (3), (4), (3.1), (3.2), (4.1) and (4.2) can be summarized in Fig. 1.

From Fig. 1 it is seen that, as far as stability is concerned, the models (3) and (4.1) as well as (3.1) and (4.2) are equivalent. This may be of great benefit in conducting stability analysis of various dynamical neural networks. However, the relationship between stability of the models (3) and (4) may not be equivalent, as hinted in Theorem 11. In particular, the following open questions may deserve further investigation:

(Q1) Is there any equivalent stability property (P) between the models (3) and (4)? Precisely, is the stability, asymptotical stability or exponential stability of the equilibrium state \(x^* \) of Eq. (3) equivalent to the stability, asymptotical stability or exponential stability of the equilibrium state \(y^* \) of Eq. (4)?

(Q2) In the statement (i) of Theorem 11 can the exponential (or globally exponential) attractivity of \(y^* \) be replaced

\[
\text{Model (3)} \quad \Rightarrow \quad \text{Model (3-1)} \quad \Rightarrow \quad \text{Model (3-2)}
\]

\[\text{\$ \$ \$} \]

\[
\text{Model (4)} \quad \Rightarrow \quad \text{Model (4-1)} \quad \Rightarrow \quad \text{Model (4-2)}
\]

Fig. 1. Relationships among dynamics of the six models (3), (3.1), (3.2), (4), (4.1), and (4.2). Here \(\Rightarrow \Rightarrow \) means that if the former model has the property (P) then the latter model has the same property, \(\Rightarrow \Rightarrow \) means that the former model has the property (P) iff the latter model has the property (P). The property (P) may be any stability concept such as local stability, asymptotic stability, exponential stability, attractivity, convergence, or any of their global counterparts.
by the exponential (or globally exponential) stability of y^τ in the Liapunov sense? or can the exponential (or globally exponential) stability of x^τ in the Liapunov sense be replaced with the exponential (or globally exponential) stability of x^τ in the normal sense as in Eq. (13)? (Note that in the Proof of Theorem 11, we have actually verified every fact of the exponential stability of y^τ except that $M(s)$ is linear.)

(Q3) Is the stability condition of system (4.1) intrinsically weaker than that of system (4)? Or to be more specific, does there exist a set of conditions that guarantees the stability for system (4.1) in certain sense but not for Eq. (4)?

We strongly believe that any positive solution to one of these questions will yield significant impact on the stability analysis of nonlinear dynamical systems in general and of neural networks in particular.

3. An application example

In this section we give an example to illustrate how the comparison theory developed in Section 2 can be efficiently applied to derive new results on stability of neural networks. A more extensive and systematical application of the theory will be presented in (Qiao et al., 2003).

Consider the following BCOp-type neural networks:

$$\frac{dx_i}{dt} = - x_i + g_i \left(x_i - \alpha_1 \sum_{j=1}^{N} Q_{ij} x_j + q_i \right), \quad i = 1, 2, \ldots, N,$$

where $x = (x_1, x_2, \ldots, x_N)^T$, $q = (q_1, q_2, \ldots, q_N)^T$ with constant q_i ($i = 1, \ldots, N$), and $Q = (Q_{ij})_{N \times N}$ and $A = \text{diag}(\alpha_1, \alpha_2, \ldots, \alpha_N)$ are $N \times N$ matrices with α_i ($i = 1, \ldots, N$) being positive parameters. The function g_i in Eq. (30) is the one-dimensional nearest point projection defined by

$$g_i(s) = \begin{cases} a_i & s \leq a_i, \\ s & s \in [a_i, b_i], \\ b_i & s \geq b_i. \end{cases}$$

The BCOp-type neural networks (30) have been studied in recent years by many authors (see, e.g. Arik & Tavanoğlu, 2000; Bouzerdoum & Pattison, 1993; Forti & Tesi, 1995; Friesz et al., 1994; Liang & Wang, 2000a,b; Xie, 1996; Xia & Wang, 1998; Xia & Wang, 2000 and the references quoted there). The application aim of such networks is to solve a bound-constraint quadratic optimization problem:

$$\min E(x) = x^T Q x + x^T q + c \quad \text{s.t. } a_i \leq x_i \leq b_i,$$

$$i = 1, 2, \ldots, N$$

For such an application it is known that the global convergence of the networks is a prerequisite. The latest result on global convergence of the networks states that the trajectory of Eq. (30) will globally and exponentially converge to the unique solution of Eq. (30) when Q is positive definite and $(I - AQ)$ is invertible (Liang & Si, 2001; Liang & Wang, 2000a,b). We now apply the comparison theory established in Section 2 to improve and generalize this convergence result of Eq. (30).

The BCOp-type neural network (30) is clearly of the type of static neural network model (3). So, by the stability invariance between systems (3) and (4.1) (Theorem 9), the network (30) is globally (or globally exponentially) convergent iff the following system, when restricted to the invariant manifold (W_q) with $W = I - AQ$, is so:

$$\frac{dy_i}{dt} = -y_i + \left(g_i(y_i) - \alpha_1 \sum_{j=1}^{N} Q_{ij} g_j(y_j) \right) + q_i,$$

$$i = 1, 2, \ldots, N.$$ \tag{33}$$

The system (33) is a special case of the Hopfield-type neural networks (4) of which the stability and convergence have been thoroughly studied (see, e.g. Chen & Amari, 2001a; Fang & Kincaid, 1996; Forti & Tesi, 1995; Guan, Chen, & Qin, 2000; Liang & Si, 2001; Matsuoka, 1991; Qiao, Peng, & Xu, 2001; Yang & Dillon, 1994; Zhang, Heng, & Fu, 1999). The fundamental results on globally exponential stability and convergence for Eq. (4) can be summarized, for instance, in Theorem 12.

Theorem 12. Assume that $G = (g_1, g_2, \ldots, g_N)^T$ in Eq. (4) is diagonally nonlinear with each g_i being Lipschitz continuous (that is, $|g_i(s) - g_i(t)| \leq L_i |s - t|$ for any $s, t \in \mathbb{R}$). For any diagonal matrix $\Gamma = \text{diag}\{\xi_1, \xi_2, \ldots, \xi_N\}$ we write $M = L^{-1} - W$

$$M(\Gamma) = L^{-1} \Gamma - \frac{\Gamma W + W^T \Gamma}{2},$$

where $L = \text{diag}\{L_1, L_2, \ldots, L_N\}$. Then the system (4) has a unique equilibrium state y^*. Further, y^* is globally exponentially stable if there is a positive definite diagonal matrix Γ such that, for any $i \in \{1, 2, \ldots, N\}$, one of the following conditions (C) and (CI)–(C4) is satisfied:

(C) $M(\Gamma)$ is positive definite,

(CI) $L_i^{-1} \xi_i - \xi_i w_i > \sum_{j=1}^{N} \xi_j |w_{ij}|$,

(C2) $L_i^{-1} \xi_i - \xi_i w_i > \sum_{j=1}^{N} \xi_j |w_{ji}|$,

(C3) $L_i^{-1} \xi_i - \xi_i w_i > \frac{1}{2} \sum_{j=1}^{N} |\xi_j w_{ij} + \xi_j w_{ji}|$,

(C4) $\lambda_{\min}(M(\Gamma)) > 0$ (i.e. the matrix measure $\mu(-\Gamma M) < 0$), where $\lambda_{\min}(A)$ stands for the smallest eigenvalue of the matrix A.

http://www.paper.edu.cn
Applying Theorem 12 to the system (33) with $W = I - AQ$ and g_i being defined as in Eq. (31) (so $L_i = 1$ in this case) and then making use of Theorem 9 we obtain the following result on the exponential convergence of the system (30), where $\Omega = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_N, b_N]$.

Theorem 13. Convergence of BCOp-type NNs

For any $x_0 \in \Omega$ there is a unique solution $x(t, x_0)$ to the BCOp-type neural networks (30). The solution converges exponentially to the unique equilibrium state of Eq. (30) if there is a positive definite diagonal matrix $\Gamma = \text{diag}(\xi_1, \xi_2, \ldots, \xi_N)$ such that $\Gamma Q + Q^T \Gamma$ is positive definite. In particular, this is true when one of the following conditions (D1)–(D4) is satisfied:

\begin{align*}
(D1) & \xi_i Q_{ii} > \sum_{j=1}^N \xi_j |Q_{ij}|, \\
(D2) & \xi_i Q_{ii} > \sum_{j=1}^N \xi_j Q_{ij}, \\
(D3) & \xi_i Q_{ii} > \frac{1}{2} \sum_{j=1}^N \xi_j Q_{ij} + \xi_i Q_{ii}, \\
(D4) & \lambda_{\text{min}}(\Gamma Q) > 0.
\end{align*}

Theorem 13 improved and generalized the latest-known convergence result for the BCOp-type neural networks in the sense that the invertibility of $(I - AQ)$ as well as the positive definiteness of Q itself are no longer required. This application example illustrates the potential usefulness of the comparision theory developed in the present paper.

4. Concluding remarks

We have developed a comparison theory for two fundamental modeling approaches, the neuron state modeling and the local field modeling approaches, in the current neural network research. Two representative models (3) and (4), as well as their coherent models (3.1), (3.2), (4.1) and (4.2), have been studied in detail in terms of their dynamics including the trajectory transfer property, the equilibrium state correspondence property, the nontrivial attractive manifold property, the global convergence and stability in various senses. From the analysis it has been concluded that (i) the trajectories of systems (3) and (4.1) can be transferred from one to the other (Theorem 1), (ii) the equilibria of systems (3) and (4) are mutually corresponded in a specific one-to-one manner (more precisely, via the nonlinear mapping G) (Theorems 4 and 5), (iii) the nontrivial attractive manifolds of systems (3) and (4) are $\text{Clos}(G(i))$, $\text{Clos}(G(Wg_i))$, $\text{Clos}(Wg_i)$ and $\text{Clos}(GW) + q_i$, respectively (Theorem 3), and (iv) the stability of systems (3) and (4.1), as well as (3.1) and (4.2), is exactly the same in the local, global, asymptotic or exponential sense. However, such an equivalent stability property is not yet clear for the models (3) and (4) though some preliminary result is available (Theorem 11). The comparison theory has been applied to a BCOp-type neural network to illustrate its usefulness.

Our results obtained have shed light on consistency and inconsistency of the neuron state and local field modeling approaches. Further, it is observed that in the current neural network research, the neuron state and local field modeling are applied very often in a mutually irrelatated manner so that the two approaches have hardly ever been cross-fertilized. Certain types of neural networks such as the Hopfield-type models have been studied extensively, and thus many deep results have been obtained for the models so far (see, e.g. Arik & Tavsanoglu, 2000; Chen & Amari, 2001a,b; Cohen & Grossberg, 1983; Guan et al., 2000; Hirsch, 1989; Juang, 1999; Liang & Si, 2001; Liang & Wu, 1999; Qiao et al., 2001; Zhang et al., 1999). In contrast, some other types of neural networks such as the recurrent back-propagation type networks have attracted only little attention and thus fall short of a systematic and in-depth theoretical analysis (Almeida, 1988; Haykin, 1994; Hertz et al., 1994; Pineda, 1987; Rohwer & Forrest, 1987). The relationships obtained in this paper among the dynamics of Eqs. (3), (3.1), (3.2), (4), (4.1), and (4.2) may contribute to the formalization of certain new, powerful, cross-fertilizing type approaches for neural network analysis, leading to new and deep stability results for less studied networks, as demonstrated in Section 3 for BCOp-type neural networks. Moreover, for example, based on the stability invariance property of Eqs. (3) and (4.1) (Theorem 9) as well as the implication relation between Eqs. (4) and (4.1) (see Fig. 1 in Section 2.5), we can naturally propose to study the recurrent back-propagation networks (1) by means of the Hopfield-type neural networks (2). This may form a new methodology for stability analysis of the recurrent back-propagation type neural networks. Such a cross-fertilizing approach will be explored in detail in (Qiao et al., 2003).

Finally, we would like to call for a positive or negative solution to any of the open questions proposed in Section 2.5. Answering these questions is by no means only for the purpose of clarifying models (3) and (4). It can also make a significant impact on the general dynamical system theory. In view of Theorem 11 as well as the stability equivalence between Eqs. (3) and (4.1) (note that Eq. (4.1) may be viewed as a subsystem of Eq. (4)), we conjecture that models (3) and (4) may not be equivalent as far as the stability is concerned. If so, some counterexamples have to be constructed.

Acknowledgements

The research of Z.-B. Xu and J. Peng was supported by the National Hi-Tech R&D (863) Project of China under the grant 2001AA113182 and NNSF of China under the grant 10101019. The authors thank the Editor and the reviewers for their valuable comments and suggestions which helped improve the paper greatly.
References

