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A NOVEL DUAL APPROACH TO NONLINEAR SEMIGROUPS
OF LIPSCHITZ OPERATORS

JIGEN PENG AND ZONGBEN XU

Abstract. Lipschitzian semigroup refers to a one-parameter semigroup of
Lipschitz operators that is strongly continuous in the parameter. It con-
tains C0-semigroup, nonlinear semigroup of contractions and uniformly k-
Lipschitzian semigroup as special cases. In this paper, through developing
a series of Lipschitz dual notions, we establish an analysis approach to Lips-
chitzian semigroup. It is mainly proved that a (nonlinear) Lipschitzian semi-
group can be isometrically embedded into a certain C0-semigroup. As ap-
plication results, two representation formulas of Lipschitzian semigroup are
established, and many asymptotic properties of C0-semigroup are generalized
to Lipschitzian semigroup.

1. Introduction

Let X and Y be Banach spaces over the same coefficient field K (= R or C),
and let C ⊂ X and D ⊂ Y be their subsets. A mapping T from C into D is called
Lipschitz operator if there exists a real constant M > 0 such that

(1.1) ‖ Tx− Ty ‖≤M ‖ x− y ‖, ∀x, y ∈ C,
where the constant M is commonly referred to as a Lipschitz constant of T . Clearly,
if the mapping T is a constant (that is, there exists a vector y0 ∈ D such that
Tx = y0 for all x ∈ C), then T is a Lipschitz operator.

Let Lip(C,D) denote the space of Lipschitz operators from C into D, and for
every T ∈ Lip(C,D) let L(T ) denote the minimum Lipschitz constant of T , i.e.,

(1.2) L(T ) = sup
x,y∈C,x 6=y

‖ Tx− Ty ‖
‖ x− y ‖ .

Then, it can be shown that the nonnegative functional L(·) is a seminorm of
Lip(C,D) and hence (Lip(C,D), L(·)) is a seminormed linear space. From the
definition (1.2) it is seen that L(T ) = 0 if and only if T is a constant. Hence, if Q
stands for the subspace of constant operators, then the quotient space Lip(C,D)/Q
is a Banach space. Moreover, let x0 ∈ C and let

Lipx0(C,D) = {T ∈ Lip(C,D) : Tx0 = 0},
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then, it can be shown that Lipx0(C,D) is isometrically isomorphic to Lip(C,D)/Q
and hence is a Banach space [12].

Obviously, a bounded linear operator T from X into Y belongs to Lip0(X,Y )
and L(T ) is equal to its operator norm ‖T ‖. Moreover, it is easy to show that for
any pair of T ∈ Lip(C,D1) and S ∈ Lip(D1, D), the inequality L(ST ) ≤ L(T )L(S)
holds. Hence, the seminorm L(·) can be viewed as a nonlinear generalization of
operator norm of bounded linear operator.

Definition 1. A one-parameter family {Tt}t≥0 of Lipschitz operators from C into
itself is called a Lipschitzian semigroup on C, if it possesses the following two
properties: (i) T0 = I (the identity operator of C), TtTs = Tt+s for all t, s ≥ 0; and
(ii) for every x ∈ C the mapping t 7→ Ttx is continuous at t = 0.

Furthermore, if limt→0+ L(Tt − I) = 0, then the Lipschitzian semigroup {Tt}t≥0

is said to be uniformly continuous.

Remark 1. (i) From Definition 1, if {Tt}t≥0 is a Lipschitzian semigroup, then for
all x ∈ C the mapping t 7→ Ttx is continuous in the domain interval [0,+∞).

(ii) C0-semigroup [5, 11], semigroups of contractions [2, 10], semigroups of ω-
type [10], and uniformly k-Lipschitzian semigroups [7] are all special examples of
Lipschitzian semigroups. So, Lipschitzian semigroup is a more general type of
operator semigroup.

Definition 2. Let {Tt}t≥0 be a Lipschitzian semigroup on C, and let

D(A) =
{
x ∈ C : the limit lim

t→0+
t−1(Ttx− x) exists in X

}
.

If D(A) is nonempty, then we say that {Tt}t≥0 possesses a generator A, which is
defined by

A : D(A) ⊂ C → X, Ax = lim
t→0+

Ttx− x
t

.

It should be noted that, unlike semigroups of linear operators, a nonlinear Lips-
chitzian semigroup may have no generator. In fact, an example of a semigroup of
contractions without generator was given in [2].

Operator semigroup is an important research subject in operator theory and its
application fields, since the solution propagator of abstract system x′(t) = Ax(t)
often corresponds to a type of operator semigroup. The semigroup is linear if A is
linear, and it is nonlinear if A is not linear. The theory of linear semigroup has now
secured its position as important area in the field of functional analysis since the
foundation work of Hille and Yosida [8]. However, to the author’s knowledge, the
systemic research on nonlinear semigroups has been mainly focused on semigroup
of contractions [2, 10]. Up to now, there has not been a systemic analysis work on
general Lipschitzian semigroup. Recently, Dorroh and Neuberger [6] studied the
semigroup of continuous transformations and really suggested a heuristic way to
analyze nonlinear semigroup in terms of Lie generators.

In this paper our purpose is to develop a new approach to Lipschitzian semigroup.
This approach is based on the Lipschitz dual ideas suggested in [12]. In Section 2
we introduce a dual notion of Lipschitz operator, named Lipschitz dual operator,
and then prove several important properties of Lipschitz operator and its Lipschitz
dual operator. Based on these, in Section 3 we consider the semigroup consisting
of the Lipschitz dual operators of Lipschitzian semigroup. It is shown that under
a proper condition this semigroup is a C∗0 -semigroup [3] and hence corresponds to
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a certain C0-semigroup. This C0-semigroup can be viewed as a linear extension
of Lipschitzian semigroup under an isometrical mapping. As application results,
two representation formulas of Lipschitzian semigroup are established in Section 4
and many asymptotic properties of Lipschitzian semigroup are proved in Section 5,
respectively.

The following notation will be used in this paper:

I : The identity operator for any space.
B(E) : The space of bounded linear operators of Banach space E;
E∗ : The dual space of Banach space E;

yσ
w∗→ y : The convergence in the weak∗-topology;
T ∗ : The dual operator of bounded linear operator T.

2. Dual notion of Lipschitz operator

In this section we define a dual notion of Lipschitz operator, named Lipschitz
dual operator, and then prove some properties of the space of Lipschitz operators
on C. The set C is henceforth assumed to be closed unless otherwise stated.

If T ∈ Lip(C,C), then it is easy to verify that for all f ∈ Lip(C,K) the functional
g, defined by g(x) = f(Tx) for all x ∈ C, belongs to Lip(C,K). So, for every
T ∈ Lip(C,C) we can define an operator from Lip(C,K) into itself as follows.

Definition 3. Let T ∈ Lip(C,C). Then, the operator T l∗ : Lip(C,K)→ Lip(C,K)
defined by

(2.1) (T l∗f)(x) = f(Tx), ∀f ∈ Lip(C,K), x ∈ C.

is called the Lipschitz dual operator of T .

It follows from the definition (2.1) that when C = X and T is linear, the restric-
tion of T l∗ to X∗ is just the dual operator T ∗ of T . This shows that Lipschitz dual
operator is a nonlinear extension of the dual operator of bounded linear operator.
Actually, Lipschitz dual operator inherits many properties of dual operator, such
as these stated in the following proposition.

Proposition 1 ([12]). Let T ∈ Lip(C,C). Then, the Lipschitz dual operator T l∗

of T is linear and bounded, and the operator norm ‖ T l∗ ‖ of T l∗ is equal to L(T ).

Proof. The linearity of T l∗ is clear. Since we have that, for all f ∈ Lip(C,K),

L(T l∗f) = sup
x,y∈X,x 6=y

| (T l∗f)(x) − (T l∗f)(y) |
‖x− y‖

= sup
x,y∈X,x 6=y

| f(Tx)− f(Ty) |
‖x− y‖

≤ sup
x,y∈X,x 6=y

L(f) · ‖Tx− Ty‖
‖x− y‖

≤ L(T ) · L(f),

we know that T l∗ is a linear and bounded operator of Lip(C,K) with ‖T l∗‖ ≤ L(T ).
Next, we prove the converse inequality L(T ) ≤ ‖T l∗‖. For each f ∈ X∗ let fC
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denote the restriction of f to the subset C. Then, we know that fC belongs to
Lip(C,K) and L(fC) ≤ ‖f‖. With this in hand, we can show that, ∀x, y ∈ C,

‖Tx− Ty‖ = sup
f∈X∗, ‖f‖≤1

|f(Tx)− f(Ty)|

= sup
f∈X∗, ‖f‖≤1

|fC(Tx)− fC(Ty)|

≤ sup
f∈X∗, L(fC)≤1

|(T l∗fC)(x)− (T l∗fC)(y)|

≤ sup
f∈Lip(C,K), L(f)≤1

L(T l∗f)‖x− y‖

≤ ‖T l∗‖ ‖x− y‖.
Which indicates that L(T ) ≤ ‖T l∗‖. Therefore, the proof is completed. �

Let x0 ∈ C. It is easy to verify that every x ∈ C corresponds to a bounded
linear functional, vx, of Lipx0(C,K) in such a manner that vx(f) = f(x) for all
f ∈ Lipx0(C,K). Let jx0 denote the mapping x 7→ vx from C into the dual space
Lipx0(C,K)∗ of Lipx0(C,K). Then, it follows that jx0(x0) = 0 and

(2.2)
(
jx0(x)

)
(f) = vx(f) = f(x), ∀x ∈ C, f ∈ Lipx0(C,K).

It can be further shown that jx0 is an isometry, that is, ‖jx0(x)− jx0(y)‖ = ‖x− y‖
for all x, y ∈ C. Therefore, C is isometrically embedded into Lipx0(C,K)∗ with jx0

being the isometrical mapping (see also [1]).
Let Gx0 = span{jx0(x) : x ∈ C}, i.e., let Gx0 be the closure of the subspace of

Lipx0(C,K)∗ spanned linearly by the set {jx0(x) : x ∈ C}. Then, we can prove
the following important result.

Proposition 2. Let x0 ∈ C. Then, the Banach space Lipx0(C,K) is isometrically
isomorphic to the dual space G∗x0

of Gx0 .

Proof. Since Gx0 is a subspace of the dual space Lipx0(C,K)∗ of Lipx0(C,K),
then by [9, Theorem 4.6.2] G∗x0

is isometrically isomorphic to the quotient space
Lipx0(C,K)∗∗/G⊥x0

, where Lipx0(C,K)∗∗ is the bidual dual space of Lipx0(C,K)
and G⊥x0

⊂ Lipx0(C,K)∗∗ is the annihilator of Gx0 . Hence, to complete the proof
we only show that Lipx0(C,K) is isometrically isomorphic to Lipx0(C,K)∗∗/G⊥x0

.
For each A ∈ Lipx0(C,K)∗∗ let fA denote the functional on C defined by

(2.3) fA(x) = A(jx0(x)), ∀x ∈ C.
Obviously, fA(x0) = 0 because jx0(x0) = 0. And, by the isometry property of jx0

we have that, for all x, y ∈ C,

|fA(x)− fA(y)| = |A(jx0(x)) −A(jx0(y))|
≤ ‖A‖ · ‖jx0(x)− jx0(y)‖
≤ ‖A‖ · ‖x− y‖.(2.4)

Hence, fA belongs to Lipx0(C,K) with L(fA) ≤ ‖A‖.
Let Γ denote the mapping A 7→ fA from Lipx0(C,K)∗∗ into Lipx0(C,K). Then,

the formula (2.3) and the inequality (2.4) imply that Γ is linear and bounded with
‖Γ‖ ≤ 1. Moreover, from (2.3) it is seen that Γ(A) = 0 for all A ∈ G⊥x0

. Hence, if
Ã, B̃ ∈ Lip(C,K)∗∗/G⊥x0

satisfy that Ã = B̃, then, Γ(B) = Γ(A) for all B ∈ B̃ and
A ∈ Ã.
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Let Φ : Lipx0(C,K)∗∗/G⊥x0
→ Lipx0(C,K) be defined as

(2.5) Φ(Ã) = Γ(A), ∀Ã ∈ Lipx0(C,K)∗∗/G⊥x0
,

where Ã represents the equivalent class with respect to A ∈ Lipx0(C,K)∗∗. Then,
it is seen that if Γ is surjective and G⊥x0

is identical with the null space of Γ, then Φ
is an isomorphism. Noticing this, we divide the remainder of the proof into three
steps.

Step 1: Prove that Γ is a surjection.
Let J be the natural embedding mapping from Lipx0(C,K) into its bidual space

Lipx0(C,K)∗∗. Then, it follows from formulas (2.2) and (2.3) that, for all f ∈
Lipx0(C,K),

(2.6) Γ(J(f))(x) =
(
J(f)

)
(jx0(x)) =

(
jx0(x)

)
(f) = f(x), ∀x ∈ C,

that is, Γ(J(f)) = f . Hence, Γ is surjective because f ∈ Lipx0(C,K) is arbitrary.
Step 2: Prove that the null space N(Γ) of Γ is identified with G⊥x0

.
Let A ∈ G⊥x0

. Then, A(m) = 0 for all m ∈ Gx0 and particularly A(jx0(x)) = 0
for all x ∈ C. Hence, by formula (2.3) we obtain that

Γ(A)(x) = fA(x) = A(jx0(x)) = 0, ∀x ∈ C.
That is, Γ(A) = 0. Hence, G⊥x0

⊂ N(Γ) because of the arbitrariness of A ∈ G⊥x0
.

Conversely, if A ∈ N(Γ), then A(jx0(x)) = fA(x) = Γ(A)(x) = 0 for all x ∈ C.
That is, A(m) = 0 for all m ∈ {jx0(x) : x ∈ C}. Now that Gx0 = span{jx0(x) : x ∈
C}, we have that A(m) = 0 for all m ∈ Gx0 . Hence, A ∈ G⊥x0

and then N(Γ) ⊆ G⊥x0

since A ∈ N(Γ) is arbitrary. Therefore, N(Γ) = G⊥x0
, as claimed.

Step 3: Prove that Φ is an isometry.
Let Ã ∈ Lipx0(C,K)∗∗/G⊥x0

, which is induced by A ∈ Lipx0(C,K)∗∗. Since
G⊥x0

= N(Γ), we have that Γ(A) = Γ(B) for all B ∈ Ã. Hence, noticing that
‖Γ‖ ≤ 1, we obtain that

(2.7) ‖Φ(Ã)‖ = ‖Γ(A)‖ = inf
B∈Ã
‖Γ(B)‖ ≤ inf

B∈Ã
‖B‖ = ‖Ã‖.

On the other hand, substituting f = Γ(A) into equality (2.6) yields that

(2.8) Γ(J(Γ(A))) = Γ(A).

Since N(Γ) = G⊥x0
, it follows from (2.8) that ˜J(Γ(A)) = Ã. Thus, by using the

isometry property of J we obtain that

‖Ã‖ = ‖ ˜J(Γ(A))‖ ≤ ‖J(Γ(A))‖ = ‖Γ(A)‖ = ‖Φ(Ã)‖.(2.9)

This, together with inequality (2.7), implies that ‖Φ(Ã)‖ = ‖Ã‖. Therefore, Φ is
an isometry from Lipx0(C,K)∗∗/G⊥x0

onto Lipx0(C,R). �
Remark 2. Since Gx0 ⊂ Lipx0(C,K)∗, it follows from Proposition 2 that the weak∗-
topology of Lipx0(C,K) is really induced by the bilinear form 〈·, ·〉1 defined by

(2.10) 〈m, f〉1 = m(f), ∀f ∈ Lipx0(C,K),m ∈ Gx0 ,

where m(f) represents the value of the functional m at f .

Let Q be the subspace of constant functionals on C, and let Lip(C,K)/Q be
the quotient space of Lip(C,K) with respect to Q. In the following, by using
Proposition 2 we will show that Lip(C,K)/Q is a dual space and hence can be
equipped with a weak∗-topology. To this end, we first prove the lemma below.
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Lemma 1. Let q be the quotient mapping from Lip(C,K) onto Lip(C,K)/Q. Then,
(i) for all f ∈ Lip(C,K) it holds that ‖q(f)‖ = L(f) and; (ii) for all T ∈ Lip(C,C),
q(T l∗f) = q(T l∗g) whenever q(f) = q(g).

Proof. (i) Let f ∈ Lip(C,K). Then, it follows from definition (1.2) that L(f) =
L(g) for all g ∈ Lip(C,K) satisfying g − f ∈ Q. Since f − g ∈ Q for all g ∈ q(f),
we have that ‖q(f)‖ = inf

g∈q(f)
L(g) = L(f).

(ii) Let T ∈ Lip(C,C). If q(f) = q(g), then, f − g ∈ Q. And, since (T l∗f)(x)−
(T l∗g)(x) = f(Tx)− g(Tx) for all x ∈ C, we thus have that T l∗f − T l∗g ∈ Q, i.e.,
q(T l∗f) = q(T l∗g). �

In the following, we will let q denote the quotient mapping from Lip(C,K) onto
Lip(C,K)/Q, and for every f ∈ Lip(C,K) let fx0 ∈ Lipx0(C,K) be defined by
fx0(x) = f(x)− f(x0) for all x ∈ C.

Corollary 1. Let x0 ∈ C. Then, Lip(C,K)/Q is isometrically isomorphic to the
dual space G∗x0

of Gx0 , and the weak∗-topology of Lip(C,K)/Q is characterized by

Gx0 as follows: Let {fσ} be a net of Lip(C,K), f ∈ Lip(C,K), then, q(fσ) w
∗
→ q(f)

if and only if

(2.11) 〈m, (fσ)x0〉1 → 〈m, fx0〉1, ∀m ∈ Gx0

where 〈·, ·〉1 is defined as in Remark 2. Particularly, if the net {fσ} is bounded,

then q(fσ) w
∗
→ q(f) if and only if (fσ)x0(x)→ fx0(x) for all x ∈ C.

Proof. Let x0 ∈ C, and let Θ : Lip(C,K)/Q→ Lipx0(C,K) be defined by

(2.12)
(
Θ(q(f))

)
(x) = f(x)− f(x0), ∀f ∈ Lip(C,K), x ∈ C.

Then, it is not hard to show that Θ is an isometrical isomorphic mapping from
Lip(C,K)/Q onto Lipx0(C,K). Hence, by Proposition 2 we know that Lip(C,K)/Q
is isometrically isomorphic to G∗x0

.
Let fσ, f ∈ Lip(C,K). Since Θ is an isomorphic mapping, the weak∗ convergence

of the net {q(fσ)} in Lip(C,K)/Q is really equivalent to the weak∗ convergence
of the net {Θ(q(fσ))} in Lipx0(C,K). Hence, by Proposition 2 and Remark 2,

q(fσ) w
∗
→ q(f) iff

(2.13) 〈m,Θ(q(fσ))〉1 → 〈m,Θ(q(f))〉1, ∀m ∈ Gx0 .

From the formula (2.12) it is seen that the relation (2.13) is really equivalent to the

relation (2.11). That is, q(fσ) w
∗
→ q(f) iff

(2.14) 〈m, (fσ)x0〉1 → 〈m, fx0〉1, ∀m ∈ Gx0 .

If {fσ} is bounded, then, noticing that Gx0 = span{jx0(x) : x ∈ C}, we find
that the relation (2.14) is really equivalent to

(2.15) (fσ)x0(x) = 〈jx0(x), (fσ)x0〉1 → 〈jx0(x), fx0〉1 = fx0(x), ∀x ∈ C.

That is, q(fσ) w
∗
→ q(f) if and only if (fσ)x0(x) → fx0(x) for all x ∈ C. Therefore,

the proof is completed. �
Remark 3. It follows from formula (2.11) that the weak∗-topology of Lip(C,K)/Q
is really induced by the bilinear form 〈·, ·〉2 defined by

(2.16) 〈q(f),m〉2 = 〈m, fx0〉1, ∀f ∈ Lip(C,K),m ∈ Gx0 ,
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where 〈·, ·〉1 is defined as in (2.10). We see that

(2.17) 〈q(f), jx0(x)〉2 = f(x)− f(x0), ∀f ∈ Lip(C,K), x ∈ C.

3. Lipschitz dual semigroup of Lipschitzian semigroup

Let {Tt}t≥0 be a Lipschitzian semigroup on C, and for every t ≥ 0 let Dt denote
the Lipschitz dual operator of Tt (i.e., Dt = T l∗t ). Then, by Proposition 1 we know
that each Dt is a bounded linear operator of Lip(C,K). Moreover, it is not hard to
verify that {Dt}t≥0 satisfies the semigroup property: D0 = I and DtDs = Dt+s for
all t, s ≥ 0. Therefore, the one-parameter class {Dt}t≥0 is a semigroup of bounded
linear operators of the seminormed linear space Lip(C,K).

In this section, through analysis on the semigroup {Dt}t≥0, we will derive a
C0-semigroup into which {Tt}t≥0 is isometrically embedded.

Proposition 3. Let q be the quotient mapping from Lip(C,K) onto Lip(C,K)/Q.
Define for every t ≥ 0 the mapping D̃t : Lip(C,K)/Q→ Lip(C,K)/Q as follows:

(3.1) D̃t(q(f)) = q(Dtf), ∀f ∈ Lip(C,K).

Then, the set {D̃t}t≥0 possesses the following properties (a)-(d):
(a) For all t ≥ 0, D̃t is linear and bounded, and ‖D̃t‖ = L(Tt).
(b) {D̃t}t≥0 is an operator semigroup on Lip(C,K)/Q, that is, D̃0 = I and

D̃t+s = D̃tD̃s for all t, s ≥ 0.

(c) For all t ≥ 0, D̃t is weak∗-weak∗ continuous, that is, D̃t(q(fσ)) w
∗
→ D̃t(q(f))

whenever q(fσ) w
∗
→ q(f).

(d) For all f ∈ Lip(C,K), the mapping t 7→ D̃t(q(f)) is continuous in the
weak∗-topology of Lip(C,K)/Q in the open interval (0,∞).

Proof. By Lemma 1 we see that (3.1) is well defined for all t ≥ 0, that is, if
q(f) = q(g), then q(Dtf) = q(Dtg) for all t ≥ 0.

(a) The linearity of D̃t is clear. By Lemma 1 and Proposition 1 we have that

‖D̃t‖ = sup
‖q(f)‖≤1

‖D̃t(q(f))‖ = sup
‖q(f)‖≤1

‖q(Dtf)‖

= sup
‖q(f)‖≤1

L(Dtf) = sup
L(f)≤1

L(Dtf) = ‖Dt‖

= L(Tt).

Hence, D̃t is bounded and ‖D̃t‖ = L(Tt).
(b) It follows directly from the formula (3.1) that D̃0 = I. Let t, s ≥ 0. Since by

the semigroup property of {Dt}t≥0 it holds that, ∀f ∈ Lip(C,K),

D̃t+s(q(f)) = q(Dt+sf) = q(DtDsf) = D̃t(q(Dsf)) = D̃tD̃s(q(f)),

we have that D̃tD̃s = D̃t+s. Therefore, {D̃t}t≥0 is a semigroup of Lip(C,K)/Q.

(c) Let t > 0 and let q(fσ) w
∗
→ q(f). Then, the net {fσ} ⊂ Lip(C,K) is bounded

and by Corollary 1 it holds that fσ(x) − fσ(x0) → f(x) − f(x0) for all x ∈ C.
Hence, the net {Dtfσ} is bounded, and for all x ∈ C,

(Dtfσ)(x)− (Dtfσ)(x0) = fσ(Ttx)− fσ(Ttx0)
= fσ(Ttx)− fσ(x0)− (fσ(Ttx0)− fσ(x0))
→ f(Ttx) − f(Ttx0) = (Dtf)(x)− (Dtf)(x0).
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Therefore, applying Corollary 1 to the net {q(Dtfσ)} we obtain that q(Dtfσ) w∗→
q(Dtf), that is, D̃t(q(fσ)) w

∗
→ D̃t(q(f)) according to (3.1).

(d) Let t0 > 0 and f ∈ Lip(C,K). We shall prove that D̃t(q(f)) w
∗
→ D̃t0(q(f)) as

t→ t0 as follows.
Using the semigroup property of {Dt}t≥0, we can easily show that the real

function a(t) = log ‖Dt‖ is a subadditive in the interval [0,+∞). So, by [8, Th.
7.4.1] we know that the function ‖Dt‖ is bounded in any closed subinterval of
(0,+∞). Particularly, the net {Dtf : 0.5t0 ≤ t ≤ 1.5t0} is bounded. Since for all
x ∈ C,

(Dtf)(x) = f(Ttx)→ f(Tt0x) = (Dt0f)(x) as t→ t0,

then by Corollary 1 we have that q(Dtf) w
∗
→ q(Dt0f) as t→ t0. That is, D̃t(q(f)) w

∗
→

D̃t0(q(f)) as t→ t0 in terms of (3.1). Therefore, the proof is completed. �
Corollary 2. Let x0 ∈ C. Then, there exists a semigroup {St}t≥0 of bounded
linear operators of Banach space Gx0 such that

(a) {D̃t}t≥0 is the dual semigroup of {St}t≥0, i.e., D̃t = S∗t for all t ≥ 0;
(b) 〈q(f), St(jx0(x))〉2 = f(Ttx)−f(Ttx0) for all t ≥ 0, f ∈ Lip(C,K) and x ∈ C,

where 〈·, ·〉2 is defined as in (2.16); and
(c) for all m ∈ Gx0 the mapping t 7→ Stm is continuous in the strong topology

of Gx0 in the open interval (0,+∞).

Proof. Let t ≥ 0. Since the operator D̃t is weak∗-weak∗ continuous, then by the
famous representation theorem [9] we know that there exists a bounded linear
operator St on Gx0 such that D̃t is the dual operator of St, i.e.,

〈q(f), Stm〉2 = 〈D̃t(q(f)),m〉2, ∀f ∈ Lip(C,K),m ∈ Gx0 .

Particularly, for all x ∈ C, f ∈ Lip(C,K) it holds that

〈q(f), St(jx0(x))〉2 = 〈D̃t(q(f)), jx0 (x)〉2 = 〈q(Dtf), jx0(x)〉2
= (Dtf)(x) − (Dtf)(x0) = f(Ttx)− f(Ttx0).(3.2)

Therefore, the statements (a) and (b) are derived.
Let s > 0. Then, it follows from the last equality (3.2) that, for all x ∈ C,

‖St(jx0(x)) − Ss(jx0(x))‖
= sup

‖q(f)‖=1

∣∣〈q(f), St(jx0(x))− Ss(jx0(x))〉2
∣∣

≤ sup
L(f)=1

(
|f(Ttx)− f(Tsx)|+ |f(Ttx0)− f(Tsx0)|

)
≤ ‖Ttx− Tsx‖+ ‖Ttx0 − Tsx0‖.

Hence, St(jx0(x))→ Ss(jx0(x)) as t→ s since {Tt}t≥0 is a Lipschitzian semigroup
on C. Equivalently, Stm → Ssm for all m ∈ span{jx0(x) : x ∈ C}. Now, let
m ∈ Gx0 . Then, for all ε > 0 there exists an m′ ∈ span{jx0(x) : x ∈ C} such that
‖m−m′‖ < ε

2 . So, it is deduced that

lim sup
t→s

‖Stm− Ssm‖

≤ lim sup
t→s

(
‖Stm′ − Ssm′‖+ ‖(St − Ss)(m−m′)‖

)
≤ ε · sup

0.5s≤t≤1.5s
‖St‖.



NONLINEAR SEMIGROUPS OF LIPSCHITZ OPERATORS 417

Since {St}≥0 is an operator semigroup, by [8, Th. 7.4.1] we know that t 7→ ‖St‖
is bounded in any compact set of (0,+∞). Particularly, t → ‖St‖ is bounded in
[0.5s, 1.5s]. Therefore, by the arbitrariness of ε, we conclude from the last inequality
that Stm → Ssm as t → s. That is, the mapping t 7→ Stm is strongly continuous
in (0,+∞). The statement (c) is proved. �

Recall from [3] that a semigroup {Wt}t≥0 of bounded linear operators on the
dual space E∗ is called C∗0 -semigroup if it satisfies that for each t > 0 the operator
Wt is weak∗-weak∗ continuous, and that for all y ∈ E∗ the mapping t 7→ Wty is
continuous at t = 0 in the weak∗-topology of E∗. Bratteli and Robinson [3] proved
that a C∗0 -semigroup is really a dual semigroup of a certain C0-semigroup. We
see from Proposition 3 and its corollary that {D̃t}t≥0 would be a C∗0 -semigroup of
Lip(C,K)/Q and then {St}t≥0 obtained in Corollary 2 would be a C0-semigroup,
as long as the weak∗-continuity of D̃t(q(f)) at t = 0 is proved for all f ∈ Lip(C,K).

Corollary 3. If lim sup
t→0+

L(Tt) < +∞, then {D̃t}t≥0 is a C∗0 -semigroup on

Lip(C,K)/Q, and {St}t≥0 obtained in Corollary 2 is a C0-semigroup on Gx0 .

Proof. Since lim sup
t→0+

L(Tt) < +∞, there exists a constant δ > 0 such that the net

{L(Tt)}0<t<δ is bounded. Hence, the net {Dt}0<t<δ is bounded because ‖Dt‖ =
L(Tt) for all t ≥ 0.

Let f ∈ Lip(C,K). Then, the net {Dtf}0<t<δ ⊂ Lip(C,K) is bounded and
satisfies that, for all x ∈ C,

(Dtf)(x) = f(Ttx)→ f(x) = (D0f)(x), as t→ 0+.

So, by Corollary 1 we know that D̃t(q(f)) = q(Dtf) w∗→ q(D0f) = D̃0(q(f)) as
t → 0+. That is, the mapping t 7→ D̃t(q(f)) is continuous at t = 0 in the weak∗-
topology of Lip(C,K)/C. Therefore, {D̃t}t≥0 is a C∗0 -semigroup of Lip(C,K)/Q,
and the corresponding {St}t≥0 is a C0-semigroup on Gx0 . �
Remark 4. (i) From (b) of Corollary 2, it follows that, for all x, y ∈ C,∥∥St(jx0(x)) − St(jx0(y))‖ = sup

‖q(f)‖≤1

∣∣〈q(f), St
(
jx0(x) − jx0(y)

)
〉2
∣∣

= sup
L(f)≤1

∣∣f(Ttx)− f(Tty)
∣∣

= ‖Ttx− Tty‖.
This shows that a Lipschitzian semigroup {Tt}t≥0 satisfying the condition given in
Corollary 3 can be isometrically embedded into a C0-semigroup.

(ii) It can be shown that lim inf
t→0+

L(Tt) < +∞ if and only if {Tt}t≥0 is expo-

nentially bounded. Here, the Lipschitzian semigroup {Tt}t≥0 is said to be expo-
nentially bounded if there are two real constants w and M with M ≥ 1 such that
L(Tt) ≤M ewt for all t ≥ 0.

4. Application I: Representation of Lipschitzian semigroup

In this section we apply the Lipschitz dual approach developed in previous sec-
tions to establish two representation formulas of Lipschitzian semigroups.

Let x0 ∈ C and {Tt}t≥0 be a Lipschitzian semigroup on C. If {Tt}t≥0 is ex-
ponentially bounded (see (ii) of Remark 4), then, by Corollary 3 and Remark 4
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we know that the operator semigroup {D̃t}t≥0 defined as in Proposition 3 is the
dual semigroup of the C0-semigroup {St}t≥0 obtained in Corollary 2. In this case,
{D̃t}t≥0 has a w∗-generator D̃ defined by

(4.1) D̃ : D(D̃)→ Lip(C,K)/Q, D̃(q(f)) = w∗- lim
t→0+

D̃t(q(f)) − q(f)
t

,

where the domain D(D̃) consists of all those q(f) ∈ Lip(C,K)/Q such that the
weak∗-limit w∗- lim

t→0+
t−1
(
D̃t(q(f)) − q(f)

)
} exists in Lip(C,K)/Q, and the prefix

w∗- indicates that the limit is subordinate to the weak∗-topology. It is known that
D(D̃) is dense in Lip(C,K)/Q in the weak∗-topology (see, e.g., [5, 11]).

In this section, {Tt}t≥0 is always assumed to be exponentially bounded (see (ii) of
Remark 4). Accordingly, {D̃t}t≥0 and {St}t≥0 are the corresponding C∗0 -semigroup
and C0-semigroup, respectively, and D̃ is defined as in (4.1).

Lemma 2. Let B : D(B) ⊂ Lip(C,K)→ Lip(C,K) be defined by

(4.2) (Bf)(x) = lim
t→0+

f(Ttx)− f(x)
t

, ∀f ∈ D(B), x ∈ X

where the domain D(B) consists of all those f ∈ Lip(C,K) such that there exists
g ∈ Lip(C,K) satisfying

g(x) = lim
t→0+

f(Ttx)− f(x)
t

, ∀x ∈ C.

Then, {q(f) : f ∈ D(B)} ⊂ D(D̃), and D̃(q(f)) = q(Bf) for all f ∈ D(B).
Furthermore, if {Tt}t≥0 possesses a fixed point (i.e., there exists an x∗ ∈ C such

that Ttx∗ = x∗, ∀t ≥ 0), then D(D̃) = {q(f) : f ∈ D(B)}.

Proof. Let f ∈ D(B). Then, it follows from (4.2) that, ∀x ∈ C, s ≥ 0,

(Bf)(Tsx) = lim
t→0+

f(Tt+sx) − f(Tsx)
t

=
df(Tsx)

ds
.

Hence, integrating both sides yields that

(Dtf)(x)− f(x) = f(Ttx)− f(x) =
∫ t

0

(Bf)(Tsx)ds, t > 0.

From this equality we derive that the net {t−1(Dtf − f)}0<t<1 is bounded. It also
follows from (4.2) that t−1

(
Dtf−f

)
(x) = t−1(f(Ttx)−f(x))→ (Bf)(x) as t→ 0+

for all x ∈ C. Therefore, by Corollary 1 we obtain that

D̃t(q(f))− q(f)
t

=
q(Dtf)− q(f)

t

w∗−→ q(Bf), t→ 0+

which implies that q(f) ∈ D(D̃) and D̃(q(f)) = q(Bf).



NONLINEAR SEMIGROUPS OF LIPSCHITZ OPERATORS 419

Assume that {Tt}t≥0 has a fixed point x∗ ∈ C. Let x0 = x∗, and let q(f) ∈ D(D̃).
Then, by Remark 3 we have that, for all x ∈ C,

〈D̃(q(f)), jx0(x)〉2 = lim
t→0+

〈D̃t(q(f))− q(f)
t

, jx0(x)〉2

= lim
t→0+

f(Ttx) − f(x)− [f(Ttx0)− f(x0)]
t

= lim
t→0+

f(Ttx) − f(x)
t

.(4.3)

Clearly, the functional g, defined by g(x) = 〈D̃(q(f)), jx0(x)〉2 for all x ∈ C, belongs
to Lip(C,K). Hence, f ∈ D(B). The proof therefore is completed. �
Remark 5. It is seen that the linear operator B defined as in (4.2) is just the Lie
generator of {Tt}t≥0 in terms of [6].

For each f ∈ Lip(C,K) let Fe : X → K be defined by

(4.4) Fe(x) = sup{f(y)− L(f) · ‖x− y‖ : y ∈ C}, x ∈ X.
Then, similar to [4], it can be shown that Fe(x) = f(x) for all x ∈ C and Fe ∈
Lip(X,K) with L(Fe) = L(f). In the following we call Fe the C-Z extension of f .

Lemma 3. Suppose {Tt}t≥0 possesses a generator A. Let B be defined as in (4.2).
If A is densely defined (i.e., D(A) = C), then, for all f ∈ D(B),

(4.5) (Bf)(x) = lim
t→0+

Fe(x+ tAx) − f(x)
t

, ∀x ∈ D(A),

where Fe is the C-Z extension of f . Furthermore, if C has Radon-Nikodym property,
then f ∈ D(B) if and only if there exists a g ∈ Lip(C,K) such that

(4.6) g(x) = lim
t→0+

Fe(x+ tAx) − f(x)
t

, ∀x ∈ D(A).

Proof. Let f ∈ D(B). Then, it follows from (4.2) that, ∀x ∈ D(A),

(4.7) (Bf)(x) = lim
t→0+

f(Ttx)− f(x)
t

= lim
t→0+

Fe(Ttx)− f(x)
t

.

It is seen that x ∈ D(A) iff

(4.8) lim
t→0+

‖ Trx− x− tAx ‖
t

= 0.

So, combining (4.7) with (4.8) yields that

(Bf)(x) = lim
t→0+

Fe(x+ tAx) − f(x)
t

, ∀x ∈ D(A).

This is just (4.5), as expected.
Using the semigroup property of {Tt}t≥0, we can show that, for all x ∈ D(A), the

mapping t 7→ Ttx is absolutely continuous in any compact set of [0,+∞) and then
is differentiable almost everywhere in [0,+∞) if C has Radon-Nikodym property.
We see that if t 7→ Ttx is differentiable at t = t0, then Tt0x ∈ D(A).

Now, assume C has Radon-Nikodym property, and let f ∈ Lip(C,K). If there
exists g ∈ Lip(C,K) such that

g(x) = lim
t→0+

Fe(x+ tAx) − f(x)
t

, ∀x ∈ D(A),
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then, by combining with (4.8), we get

(4.9) g(x) = lim
t→0+

f(Ttx)− f(x)
t

, ∀x ∈ D(A).

Since, for all x ∈ D(A), Ttx ∈ D(A) for almost all t ∈ [0,+∞), it follows from (4.9)
that, ∀x ∈ D(A),

g(Tsx) = lim
t→0+

f(T (t+ s)x) − f(Tsx)
t

=
df(Tsx)

ds
, a.e.

Integrating both sides yields

f(Ttx)− f(x) =
∫ t

0

g(Tsx)ds, x ∈ D(A), t > 0.

Since D(A) = C, the above equality really holds for all x ∈ C, that is,

f(Ttx)− f(x) =
∫ t

0

g(Tsx)ds, x ∈ C, t > 0.

Thus, differentiating this equality yields

g(x) = lim
t→0+

f(Ttx)− f(x)
t

, ∀x ∈ C.

Which implies that f ∈ D(B) and Bf = g. Therefore, the proof is completed. �
Remark 6. It follows from this lemma that if A ∈ Lip(C,C), then for all f ∈ X∗
the restriction fC of f to C belongs to D(B) and BfC = fC ◦ A, where fC ◦ A is
the compound mapping of fC with A (i.e.,

(
fC ◦A

)
(x) = fC(Ax) = f(Ax), x ∈ C).

Lemma 4. Let B be defined as in (4.2). If x0 is the fixed point of {Tt}t≥0, then
there exists a real constant r such that for all λ > r, λI − B is invertible from
D(B) ∩ Lipx0(C,K) onto Lipx0(C,K), (λI −B)−1 ∈ B(Lipx0(C,K)), and

q((λI −B)−1f) = (λI − D̃)−1(q(f)), ∀f ∈ Lipx0(C,K).

Proof. We see from (4.2) that Bf ∈ Lipx0(C,K) whenever f ∈ D(B)∩Lipx0(C,K).
Since {D̃t}t≥0 is the dual semigroup of C0-semigroup {St}t≥0, the w∗-generator D̃
of {D̃t}t≥0 is the dual operator of the infinitesimal generator S of {St}t≥0, i.e.,
S∗ = D̃. Applying the famous Feller-Miyadera-Phillips theorem [5] to the C0-
semigroup {St}t≥0, we can find a real constant r such that the interval (r,+∞) is
contained in the resolvent set ρ(D̃) of D̃.

Let λ > r. If (λI −B)f = 0 for some f ∈ D(B) ∩ Lipx0(C,K), then, by Lemma
2 and Remark 3 we have that, ∀x ∈ C,

0 =
(
(λI −B)f

)
(x)

=
(
(λI −B)f

)
(x)−

(
(λI −B)f

)
(x0)

= 〈q(λf −Bf), jx0(x)〉2
= 〈

(
λI − D̃

)
(q(f)), jx0(x)〉2(4.10)

Hence, (λI − D̃)(q(f)) = 0. Now that λ ∈ ρ(D̃), we have q(f) = 0 and thus
f(x) = f(x0) = 0 for all x ∈ C. Therefore, f = 0 and hence λI −B is injective.

We now prove that λI − B is surjective. Let g ∈ Lipx0(C,K), and let f0 ∈
Lipx0(C,K) be defined by

f0(x) = 〈(λI − D̃)−1(q(g)), jx0(x)〉2, x ∈ C.
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Then, by Remark 3 we have that, for all x ∈ C,

〈q(f0), jx0(x)〉2 = f0(x) − f0(x0) = f0(x)

= 〈(λI − D̃)−1(q(g)), jx0(x)〉2.

Hence, q(f0) = (λI − D̃)−1(q(g)) ∈ D(D̃). By Lemma 2 we know that f0 ∈ D(B).
Similarly to (4.10) we can show that, ∀x ∈ C,(

(λI −B)f0

)
(x) = 〈(λI − D̃)(q(f0)), jx0(x)〉2 = 〈q(g), jx0(x)〉2 = g(x).(4.11)

That is, (λI − B)f0 = g. Therefore, λI − B is surjective because g ∈ Lipx0(C,K)
is arbitrary. Moreover, it follows from (4.11) that

q((λI −B)−1g) = q(f0) = (λI − D̃)−1(q(g)), ∀g ∈ Lipx0(C,K).

Therefore, we conclude this lemma. �

Proposition 4. If {Tt}t≥0 has a fixed point x0 ∈ C and satisfies L(Tt) ≤ Mewt

for all t ≥ 0, then for all x ∈ C and f ∈ Lipx0(C,K) the following two formulas
hold:

(i) f(Ttx) = lim
n→∞

((
I − t

n
B
)−n

f

)
(x), t ≥ 0;

(ii) f(Ttx) = ewt lim
n→∞

n

∞∑
j=1

(−1)j−1ejnt

(j − 1)!
(
(jn+ w −B)−1f

)
(x), t > 0,

where B is defined as in (4.2), the convergence in (i) is uniform on compact subset
of [0,+∞), and the convergence in (ii) is uniform on any subinterval (0, b].

Proof. Let S be the infinitesimal generator of {St}t≥0. When n is sufficiently large,
by Lemma 4 and Remark 3 we can show that, ∀f ∈ Lipx0(C,K), x ∈ C,(

(I − t

n
B)−nf

)
(x) = 〈q((I − t

n
B)−nf), jx0(x)〉2

= 〈(I − t

n
D̃)−n(q(f)), jx0(x)〉2

= 〈q(f), (I − t

n
S)−n(jx0(x))〉2.(4.12)

Since {St}t≥0 is C0-semigroup, the exponential formula holds [5]:

(4.13) St(jx0(x)) = lim
n→∞

(
I − t

n
S
)−n(jx0(x)), x ∈ C, t ≥ 0,

where the strong convergence is uniform on the compact subset of [0,+∞). Thus,
combining (4.12) with (4.13) yields that

〈q(f), St(jx0(x))〉2 = lim
n→∞

(
(I − t

n
B
)−n

f

)
(x), x ∈ C, t ≥ 0.

Therefore, by (b) of Corollary 2 the formula (i) is derived.
As for formula (ii), we first apply Theorem 3.2 of [13] to the C0-semigroup

{St}t≥0 to establish the formula

St(jx0(x)) = lim
n→∞

n

∞∑
j=1

(−1)j−1

(j − 1)!
e(nj+w)t(w + nj − S)−1(jx0(x)), t > 0,
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where the convergence is uniform on any subinterval of the type (0, b]. Similarly to
(4.12), it can be shown that

((k + w −B)−1f)(x) = 〈q(f), (k + w − S)−1(jx0(x))〉2
when k is sufficiently large. Hence, we derive that

〈q(f), St(jx0(x))〉2 = lim
n→∞

n
∞∑
j=1

(−1)j−1

(j − 1)!
e(nj+w)t((w + nj −B)−1f)(x), t ≥ 0.

Therefore, by (b) of Corollary 2 the formula (ii) is deduced. �
Remark 7. It should be pointed out that formula (i) is similar to that proved by
Dorroh and Neuberger [6] in terms of Lie generator.

Corollary 4. If C has Radon-Nikodyn property and {Tt}t≥0 possesses a densely
defined generator A, then for all x ∈ C and f ∈ Lipx0(C,K) we have that

(i) f(Ttx) = lim
n→∞

((
I − t

n
AP
)−n

f

)
(x), t ≥ 0; and

(ii) f(Ttx) = ewt lim
n→∞

n

∞∑
j=1

(−1)j−1ejnt

(j − 1)!
(
(jn+ w −AP

)−1
f
)
(x), t > 0,

where AP : D(AP )→ Lipx0(C,K) is defined by

(AP f)(x) = lim
t→0+

f(x+ tAx) − f(x)
t

, f ∈ D(AP ), x ∈ D(A),

where the domain D(AP ) consists of all those f ∈ Lipx0(C,K) such that there exists
g ∈ Lipx0(C,K) such that

g(x) = lim
t→0+

f(x+ tAx) − f(x)
t

, x ∈ D(A).

Proof. This corollary is directly derived from Proposition 4 and Lemma 4. �

5. Application II: Asymptotic behaviors of Lipschitzian semigroups

As another application example, in this section we consider the asymptotic be-
haviors of Lipschitzian semigroup. For the exponential boundedness of Lipschitzian
semigroup we refer to (ii) of Remark 4.

Proposition 5. Let {Tt}t≥0 be an exponentially bounded Lipschitzian semigroup
on C. Then, the following assertions (a)-(e) are equivalent:

(a) ω =: inf
t>0

t−1 lnL(Tt) < 0.

(b) There exist positive constants M and w such that L(Tt) ≤Me−wt, t ≥ 0.
(c) L(Tt0) < 1 for some t0 > 0.
(d) The limit lim

t→+∞
L(Tt) exists and equals to 0.

(e) ρ =: lim inf
n→∞

L(T nt0)
1
n < 1 for some t0 > 0.

Proof. Let x0 ∈ C. Since {Tt}t≥0 is exponentially bounded, by Proposition 3
and its corollaries we know that there exists a C0-semigroup {St}t≥0 of Gx0 such
that L(Tt) = ‖D̃t‖ = ‖St‖ for all t ≥ 0. We see that the assertions (a)-(e) are
only concerned with the quantity L(Tt). Hence, applying those existing results
on asymptotic behaviors of C0-semigroup to {St}t≥0 (refer to [5, 11, 14] for those
existing results), we obtain the equivalence among the assertions (a)-(e). �
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Lemma 5. Suppose that {Wt}t≥0 is a C0-semigroup on Banach space E and Ω ⊂ E
is an invariant set of {Wt}t≥0 (i.e., Wt(Ω) ⊂ Ω for all t ≥ 0). If, for some
p ∈ [1,+∞), ∫ +∞

0

‖Wtx‖p dt <∞, ∀x ∈ Ω,

then, for all x ∈ Ω, Wtx→ 0 as t→ +∞.

Proof. One can easily derive this lemma by performing the proof of Theorem 4.1
of [11] on the invariant subset Ω. �

Proposition 6. Let {Tt}t≥0 be an exponentially bounded Lipschitzian semigroup
on C, and x0 ∈ C its fixed point (i.e., Ttx0 = x0, t ≥ 0). If, for some p ∈ [1,∞),∫ +∞

0

‖Ttx− x0‖p dt <∞, x ∈ C,(5.1)

then, for all x ∈ C, Ttx→ x0 as t→ +∞.

Proof. Since {Tt}t≥0 is exponentially bounded, by Corollaries 2 and 3 and Remark
4 there exists a C0-semigroup {St}t≥0 of Gx0 such that ‖St(jx0(x))‖ = ‖Ttx−Ttx0‖
for all x ∈ C. Hence, it follows from (5.1) that∫ +∞

0

‖St(jx0(x))‖p dt <∞, x ∈ C.(5.2)

Let Ω = {jx0(x) : x ∈ C}, and let jx0(x) ∈ Ω. Then, by Corollary 2 and Remark 3
we have that, for all t ≥ 0, f ∈ Lip(C,K),

〈q(f), St(jx0(x))〉2 = f(Ttx)− f(Ttx0)
= f(Ttx)− f(x0) = 〈q(f), jx0(Ttx)〉2.

Hence, St(jx0(x)) = jx0(Ttx) for all t ≥ 0. That is, St(jx0(x)) ∈ Ω for all t ≥ 0.
Therefore, Ω is an invariant set of {St}t≥0. Applying Lemma 5 to {St}t≥0 we thus
obtain that St(jx0(x)) → 0 as t → +∞. Since ‖Ttx − x0‖ = ‖Ttx − Ttx0‖ =
‖St(jx0(x))‖ for all t ≥ 0, we have that Ttx − x0 → 0 as t → +∞. Therefore, the
proof is completed. �
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