Lowen LM-fuzzy topological spaces

Hai-Yang Lia,b,*, Ji-Gen Penga

a Department of Mathematics, Xi’an Jiaotong University, Xi’an 710049, PR China
b School of Science, Xi’an Polytechnic University, Xi’an 710048, PR China

Received in revised form 9 July 2011; accepted 9 July 2011
Available online 21 July 2011

Abstract

The aim of this paper is to define and study Lowen LM-fuzzy topological spaces. We discuss the basic properties of Lowen LM-fuzzy topological spaces, and introduce the notions of interior Lowen topology and exterior Lowen topology of an LM-fuzzy topology and prove that LLM-$FTop$ (the category of Lowen LM-fuzzy topological spaces) is isomorphism-closed and simultaneously bireflective and bicoreflective in SLM-$FTop$ (the category of stratified LM-fuzzy topological spaces). Moreover, we also prove that an LM-fuzzy topological space is an induced LM-fuzzy topological space iff it is a Lowen LM-fuzzy topological space and an (IC)LM-fuzzy topological space.

© 2011 Elsevier B.V. All rights reserved.

Keywords: Topology; Category; Lowen LM-fuzzy topological spaces

1. Introduction

In 2007, Yue [22] studied stratified, induced and weakly induced LM-fuzzy topological spaces, and proved that $WILM$-$FTop$ (the category of weakly induced LM-fuzzy topological spaces and fuzzy continuous mappings) is a simultaneously reflective and coreflective full subcategory of LM-$FTop$. Recently, Li and Peng [12] have studied the properties of (IC)LM-topological spaces, which is the generalization of (weakly) induced LM-topological spaces, and introduced the notions of interior (IC)-ification and exterior (IC)-ification of LM-fuzzy topologies and showed that $ICLM$-$FTop$ (the category of (IC)LM-fuzzy topological spaces and fuzzy continuous mappings) is an
isomorphism-closed full proper subcategory of \(\text{LM-FTop} \) and \(\text{ICLM-FTop} \) is a simultaneously bireflective and bicoreflective full subcategory of \(\text{LM-FTop} \).

In 1982, Lowen [14] introduced a very important class of fuzzy topological spaces, called fuzzy neighborhood spaces. Lowen’s notion has been extended to the \(L \)-fuzzy setting (called Lowen space) by Liu and Zhang [16] for \(L \), an arbitrary completely distributive lattice. This kind of \(L \)-topological space has received wide attention for categorical properties [13,15,16,21,24]. The aim of the present paper is to define and study Lowen \(LM \)-fuzzy topological spaces. We discuss the basic properties of Lowen \(LM \)-fuzzy topological spaces, and introduce the notions of interior Lowen topology and exterior Lowen topology of \(LM \)-fuzzy topology and prove that \(\text{LLM-FTop} \) (the category of Lowen \(LM \)-fuzzy topological spaces and fuzzy continuous mappings) is an isomorphism-closed full proper subcategory of \(\text{SLM-FTop} \) (the category of stratified \(LM \)-fuzzy topological spaces and fuzzy continuous mappings) and \(\text{LLM-FTop} \) is a simultaneously bireflective and bicoreflective full subcategory of \(\text{SLM-FTop} \). Moreover, we prove that \((X, τ)\) is an induced \(LM \)-fuzzy topological space iff \((X, τ)\) is a Lowen \(LM \)-fuzzy topological space and an \((\text{IC})LM \)-fuzzy topological space.

For needed categorical notions, please refer to [1,7,17,19].

2. Preliminaries

We now give some definitions and results to be used in this paper. Let \(L \) be a complete lattice. An element \(r \in L - \{0\} \) is called a coprime element if, for any finite subset \(K \subset L \) satisfying \(r \leq \bigvee K \) (the supremum of \(K \)), there exists a \(k \in K \) such that \(r \leq k \). An element \(s \in L - \{1\} \) is called a prime element if it is a coprime element of \(L^{op} \) (the opposite lattice [4] of \(L \)). The set of all coprime elements (resp., prime elements) of \(L \) will be written as \(\text{Copr}(L) \) (resp., \(\text{Pr}(L) \)). We say that \(a \) is a way-below (wedge below) \(b \), in symbols, \(a \ll b \) (\(a \prec b \)), if for every directed (arbitrary) subset \(D \subset L \), \(\bigvee D \geq b \) implies \(a \leq d \) for some \(d \in D \). From [5], we know that \(\text{Copr}(L) \) is a join-generating set of \(L \) if \(L \) is a completely distributive lattice. Hence every element in \(L \) is also the supremum of all the coprimes wedge below it. By the definition of completely distributive lattice it is easy to see that a complete lattice \(L \) is completely distributive iff the operator \(\bigvee: \text{Low}(L) \rightarrow L \) taking every lower set to its supremum has a left adjoint \(β \), and in the case, \(β(a) = \{b | b \ll a\} \) for all \(a \in L \). Hence, the wedge below relation has the interpolation property in a completely distributive lattice, that is, \(a \ll b \) implies that there is some \(c \in L \) such that \(a \ll c \ll b \).

The way-below relation on a completely distributive lattice \(L \) is called locally multiplicative [23] if for every coprime \(a \in \text{Copr}(L) \), \(a \ll b \) and \(a \ll c \) imply \(a \ll b \wedge c \) for all \(b, c \in L \). If \(a \) is a coprime, then \(a \ll b \) if and only if \(a \prec b \) (see [5,23]). Hence \(L \) is locally multiplicative if for every coprime \(a \), \(a \ll b \) and \(a \ll c \) imply \(a \ll b \wedge c \) for all \(b, c \in L \). Clearly, \([0,1]\) and power set lattice \(2^X \) are locally multiplicative.

Throughout this paper, \(L \) always stands for a completely distributive lattice with locally multiplicative property and \(M \) is a completely distributive lattice. Apparently, the power set \(L^X \) (i.e. the set of all \(L \)-subset) with the point-wise order is also a completely distributive lattice with locally multiplicative property, in which the least element and the greatest element of \(L^X \) will be written as \(0_X \) and \(1_X \). Let \(1_Y \) denote the characteristic function of \(U \in 2^X \), and \([a]\) denote the \(L \)-subset taking constant value \(a \), where \(2^X \) is the power set of \(X \) and \(a \in L \). An \(L \)-subset with form \([a] \wedge U\) is called one-step \(L \)-subset. Let \(S \) denote the set of all the one-step \(L \)-subsets of \(L^X \). Each mapping \(f: X \rightarrow Y \) induces a mapping \(f_{L^Y}^{-}: L^X \rightarrow L^Y \) (called \(L \)-forward powerset operator, cf. [18]), defined by

\[
f_{L^Y}^{-}(A)(y) = \bigvee \{A(x) | f(x) = y\} \quad (\forall A \in L^X, \forall y \in Y).
\]

The right adjoint to \(f_{L^Y}^{-} \) (called \(L \)-backward powerset operator, cf. [18]) is denoted as \(f_{L^Y}^{-} \) and given by

\[
f_{L^Y}^{-}(B) = \bigvee \{A \in L^X | f_{L^Y}^{-}(A) \leq B\} = B \circ f \quad (\forall B \in L^Y).
\]

It is known that \(f_{L^Y}^{-} \) preserves arbitrary unions and that \(f_{L^Y}^{-} \) preserves arbitrary unions, arbitrary intersections, and complements when they exist (canonical examples of such morphisms are given in [18]).

For \(A \in L^X \) and \(p \in L \), the mapping \(\hat{i}_p: L^X \rightarrow 2^X \) is defined by \(\hat{i}_p(A) = \{x | A(x) \ll p\} \), called the strong \(p \)-cut of \(A \). If \(L \) is a locally multiplicative completely distributive lattice, then it is easy to verify the following

Lemma 2.1 ([Li 10, Yue 22]).

(1) For each \(p \in L \), \(\hat{i}_p: L^X \rightarrow 2^X \) preserves arbitrary suprema and finite meets.
(2) For each \(p \in L \), \(A \in L^X \), \(B \in L^Y \) and any mapping \(f : X \to Y \), we have \(i_{p}(f^{-1}_{L}(A)) = f(i_{p}(A)), \) \(\hat{i}_{p}(f^{-1}_{L}(B)) = f(\hat{i}_{p}(B)). \)

(3) \(A = \bigvee_{p \in L} \{ p \} \wedge 1_{i_{p}(A)} = \bigvee_{p \in \text{Copr}(L)} \{ p \} \wedge 1_{i_{p}(A)}. \)

An \(LM \)-fuzzy topology [9] on a set \(X \) is defined to be a mapping \(\tau : L^X \to M \) satisfying:

\[
(\text{FT1}) \quad \tau(1_X) = \tau(0_X) = 1;
\]

\[
(\text{FT2}) \quad \forall A, B \in L^X, \quad \tau(A \wedge B) \geq \tau(A) \wedge \tau(B);
\]

\[
(\text{FT3}) \quad \tau(\bigvee_{i \in T} A_i) = \bigwedge_{i \in T} \tau(A_i), \quad \text{for every family} \ \{ A_t \mid t \in T \} \subset L^X.
\]

The value \(\tau(A) \) can be interpreted as the degree of openness of \(A \). A fuzzy continuous mapping between \(LM \)-fuzzy topological spaces is a mapping \(f : (X, \tau) \to (Y, \delta) \) such that \(\delta(B) \leq \tau(f^{-1}_{L}(B)) \) for all \(B \in L^Y \). When \(L = \{0, 1\} \), this definition reduced to that of \(M \)-fuzzy topology.

In the following of this section, we give some definitions and results about \(LM \)-fuzzy topology.

Definition 2.2 (Fang and Yue [3]). Let \(\tau \) be an \(LM \)-fuzzy topology on \(X \).

(1) \(\mathcal{B} : L^X \to M \) is called a base of \(\tau \) if \(\mathcal{B} \) satisfies the following condition:

\[
\forall A \in L^X, \quad \tau(A) = \bigvee_{\mathcal{B} \mid \mathcal{B}_A = A} \bigwedge_{\lambda \in A} \mathcal{B}(B_{\lambda}),
\]

where the expression \(\bigvee_{\mathcal{B} \mid \mathcal{B}_A = A} \bigwedge_{\lambda \in A} \mathcal{B}(B_{\lambda}) \) will be denoted by \(\mathcal{B}^{(\tau)}(A) \).

(2) \(\phi : L^X \to M \) is called a subbase of \(\tau \) if \(\phi^{(\tau)} : L^X \to M \) is a base of \(\tau \), where

\[
\phi^{(\tau)}(A) = \bigvee_{\phi \mid \phi_{B_{\lambda}} = A} \bigwedge_{\lambda \in J} \phi(B_{\lambda})
\]

for all \(A \in L^X \) with \(\tau \) standing for “finite intersection”.

Lemma 2.3 (Fang and Yue [3]). Let \(\tau \) be an \(LM \)-fuzzy topology on \(X \). Then \(\phi : L^X \to M \) is the subbase of \(\tau \) if and only if \(\phi^{(\tau)}(1_X) = 1 \).

Definition 2.4 (Yue [22]). Let \((X, \tau) \) be an \(LM \)-fuzzy topological space. If \(\tau([a]) = 1 \) for all \(a \in L \), then \((X, \tau) \) is called a stratified \(LM \)-fuzzy topological space.

It is easy to verify that \((X, \tau) \) is a stratified \(LM \)-fuzzy topological space iff \(\tau([a]) = 1 \) for all \(a \in \text{Copr}(L) \). Let \(\text{SLM-FTop} \) denote the category of stratified \(LM \)-fuzzy topological spaces and fuzzy continuous mappings.

Lemma 2.5. Let \((X, \tau) \) be a stratified \(LM \)-fuzzy topological space. Then \(\tau([a] \wedge 1_U) \leq \tau([b] \wedge 1_U) \) \((a, b \in L, \ b < a \) and \(U \subset X \)).

Proof. Since \((X, \tau) \) is stratified, we have

\[
\tau([b] \wedge 1_U) = \tau([b] \wedge ([a] \wedge 1_U)) \geq \tau([b] \wedge [a] \wedge 1_U) = \tau([a] \wedge 1_U).
\]

Definition 2.6 (Yue [22]). Let \((X, \tau) \) be an \(LM \)-fuzzy topological space. If \(\tau(A) = \bigwedge_{\tau \in \text{Copr}(L)} \tau(1_{i_{\tau}(A)}) \) holds for all \(A \in L^X \), then \((X, \tau) \) is called an induced \(LM \)-fuzzy topological space.

Definition 2.7 (Yue [22]). Let \((X, \tau) \) be an \(LM \)-fuzzy topological space. If \(\tau(A) \leq \bigwedge_{\tau \in \text{Copr}(L)} \tau(1_{i_{\tau}(A)}) \) holds for all \(A \in L^X \), then \((X, \tau) \) is called a weakly induced \(LM \)-fuzzy topological space. Let \(\text{WILM-FTop} \) denote the category of weakly induced \(LM \)-fuzzy topological spaces and fuzzy continuous mappings.
Definition 2.8 (Li and Peng [12]). Let \((X, \tau)\) be an LM-fuzzy topological space. If \(\tau(A) \leq \tau(1_{\mathcal{L}(A)})\) holds for all \(A \in \mathcal{L}^X\), then \((X, \tau)\) is called an (IC)LM-fuzzy topological space. Let \(\text{ICLM-FTop}\) denote the category of (IC)LM-fuzzy topological spaces and fuzzy continuous mappings.

It is easy to verify that induced and weakly induced LM-fuzzy topological spaces are (IC)LM-fuzzy topological space.

Definition 2.9 (Fang and Yue [3]). Let \(\{(X_t, \tau_t)\}_{t \in T}\) be a family of LM-fuzzy topological spaces and \(p_t : \prod_{t \in T} X_t \rightarrow X_t\) be the projection. Then the LM-fuzzy topology on \(\prod_{t \in T} X_t\) whose subbase is defined by

\[
\forall A \in L^{\prod_{t \in T} X_t}, \quad \phi(A) = \bigvee_{t \in T} \tau_t(B)
\]

is called the product LM-fuzzy topology of \(\{\tau_t\}_{t \in T}\), denoted by \(\prod_{t \in T} \tau_t\), and \((\prod_{t \in T} X_t, \prod_{t \in T} \tau_t)\) is called the product space of \(\{(X_t, \tau_t)\}_{t \in T}\).

Definition 2.10 (Yue [22]). Let \(\{(X_t, \tau_t)\}_{t \in T}\) be a family of LM-fuzzy topological spaces, different \(X_t\)s be disjoint and \(X = \bigcup_{t \in T} X_t\), and let \(\tau : L^X \rightarrow M\) be defined as follows:

\[
\forall A \in L^X, \quad \tau(A) = \bigwedge_{t \in T} \tau_t(A|X_t).
\]

Then it is easy to verify that \(\tau\) is an LM-fuzzy topology on \(X\), and \(\tau\) is called the sum LM-fuzzy topology of \(\{\tau_t\}_{t \in T}\), denoted by \(\bigoplus_{t \in T} \tau_t\). \((\bigoplus_{t \in T} X_t, \bigoplus_{t \in T} \tau_t)\) is called the sum space of \(\{(X_t, \tau_t)\}_{t \in T}\).

Definition 2.11 (Yue [22]). Let \((X, \tau)\) be an LM-fuzzy topological space and \(f : X \rightarrow Y\) be a surjective mapping. It is easy to verify that \(\tau/f^+ : L^Y \rightarrow M\) is an LM-fuzzy topology on \(Y\), where \(\tau/f^+\) is defined by

\[
\forall A \in L^Y, \quad \tau/f^+(A) = \tau(f^+(A)).
\]

\(\tau/f^+\) is called the LM-fuzzy quotient topology of \(\tau\) with respect to \(f\), and \((Y, \tau/f^+\) is called the LM-fuzzy quotient space of \((X, \tau)\) with respect to \(f\).

Definition 2.12 (Rodabaugh [18]). Let \((X, \tau)\) be an LM-fuzzy topological space and \(Y \subseteq X\). We call \((Y, \tau|_Y)\) a subspace of \((X, \tau)\), where \(\tau|_Y : L^Y \rightarrow M\) is defined by

\[
\forall B \in L^Y, \quad \tau|_Y(B) = \bigvee\{\tau(A)|A \in L^X, A|Y = B\}.
\]

Lemma 2.13 (Yue [22]). Let \(f : (X, \tau) \rightarrow (Y, \delta)\) be a mapping and \(\phi\) be a subbase of \(\delta\). If \(\tau(f^{-1}(B)) \geq \phi(B)\) for all \(B \in L^Y\), then \(f\) is fuzzy continuous.

3. Lowen LM-fuzzy topological spaces

In the section, we mainly introduce the definition of a Lowen LM-fuzzy topological space and discuss its basic properties such as the properties that the product space and the sum space of Lowen LM-fuzzy topological spaces are also Lowen LM-fuzzy topological spaces. Moreover, we show that \((X, \tau)\) is an induced LM-fuzzy topological space iff \((X, \tau)\) is a Lowen LM-fuzzy topological space and an (IC)LM-fuzzy topological space.

Definition 3.1. An LM-fuzzy topological space \((X, \tau)\) is said to be a Lowen LM-fuzzy topological space iff for all \(A \in L^X\), \(\tau(A) = \bigwedge_{a \in \text{Cop}(L)} \tau(f(a)) \land 1_{\mathcal{L}(A)}\). Let \(\text{LLM-FTop}\) denote the category of Lowen LM-fuzzy topological spaces and fuzzy continuous mappings.
Example 3.2. Let $L = M = 2^X$. Then L is not only a complete Boolean algebra but a locally multiplicative completely distributive lattice. We consider the map $\tau : L^X \to M$ defined by

$$\tau(A) = \left(\bigwedge_{x \in X} A(x) \right) \lor \left(\bigvee_{x \in X} A(x) \to 0 \right).$$

Then τ is a stratified LM-fuzzy topology on X (See [7, Example 4.2.1(b)]). We will show that τ is a Lowen LM-fuzzy topology on X in the following.

For any $A \in L^X$ and any $t \in Copr(L)$, if $\hat{\tau}(A) = X$ or ϕ, then

$$\tau([t] \land 1_{\hat{\tau}(A)}) = 1 \geq \tau(A).$$

If $\hat{\tau}(A) \neq X$ and $\hat{\tau}(A) \neq \phi$, then there exist $x_1, x_2 \in X$ such that $t \ll A(x_1)$ and $t \not\ll A(x_2)$, which imply that $A'(x_1) \leq t'$ and $A(x_2) \leq t'$, and hence

$$\tau(A) = \left(\bigwedge_{x \in X} A(x) \right) \lor \left(\bigvee_{x \in X} A(x) \to 0 \right) \leq t'.$$

Therefore for any $A \in L^X$ and any $t \in Copr(L)$, we have $\tau(A) \leq \tau([t] \land 1_{\hat{\tau}(A)})$, which implies that τ is the Lowen LM-fuzzy topology on X by Theorem 3.4(2).

Lemma 3.3.
1. A Lowen LM-fuzzy topological space (X, τ) is a stratified LM-fuzzy topological space.
2. An induced LM-fuzzy topological space (X, τ) is a Lowen LM-fuzzy topological space.

Proof.

1. Since (X, τ) is a Lowen LM-fuzzy topological space, we have

$$\tau(1_X) \leq \bigwedge_{a \in Copr(L)} \tau([a] \land 1_{\hat{\tau}(A)}) = \bigwedge_{a \in Copr(L)} \tau([a]),$$

and hence $\tau([a]) = 1$ $(\forall a \in Copr(L))$, which implies that (X, τ) is a stratified LM-fuzzy topological space.

2. Since (X, τ) is an induced LM-fuzzy topological space, for all $A \in L^X$, and $a \in Copr(L)$, we have

$$\tau(1_{\hat{\tau}(A)}) = \tau([a]) \land \tau(1_{\hat{\tau}(A)}) \leq \tau([a] \land 1_{\hat{\tau}(A)}),$$

which implies that

$$\tau(A) = \bigwedge_{a \in Copr(L)} \tau(1_{\hat{\tau}(A)}) \leq \bigwedge_{a \in Copr(L)} \tau([a] \land 1_{\hat{\tau}(A)}).$$

Hence (X, τ) is a Lowen LM-fuzzy topological space by Theorem 3.4(2).

Theorem 3.4. Let (X, τ) be an LM-fuzzy topological space and S be the set of all the one-step L-subset of L^X. Then the following are equivalent.

1. (X, τ) is a Lowen LM-fuzzy topological space.
2. For all $A \in L^X$ and $a \in Copr(L)$, $\tau(A) \leq \tau([a] \land 1_{\hat{\tau}(A)})$.
(3) There exists a base B of τ satisfying $\mathcal{B}([a]) = 1$ ($\forall a \in L$) and

$$\forall A \in L^X, \quad \tau(A) = \bigvee \left\{ \bigwedge_{\xi \in A} \mathcal{B}(B_{\xi}) \bigg| \bigvee_{\xi \in A} B_{\xi} = A \text{ and } B_{\xi} \in S \right\}.$$

(4) There exists a subbase ϕ of $\mathcal{\tau}$ satisfying $\phi([a]) = 1$ ($\forall a \in L$) and

$$\forall A \in L^X, \quad \phi^{(\tau)}(A) = \bigvee \left\{ \bigwedge_{\xi \in J} \phi(B_{\xi})(\tau)_{\xi \in J} B_{\xi} = A \text{ and } B_{\xi} \in S \right\}$$

is a base of τ.

Proof. (1) \iff (2) follows from the definition of LM-fuzzy topology.

(2) \implies (3): Let $\mathcal{B} : S \to M$ defined by $\mathcal{B}(A) = \tau(A)$ ($\forall A \in S$). Then $\mathcal{B}([a]) = 1$ ($\forall a \in L$) by Lemma 3.3 (1). We will show \mathcal{B} is a base of τ in the following. By (2) and the definition of LM-fuzzy topology, we have

$$\tau(A) \leq \bigwedge_{a \in \text{Copr}(L)} \tau([a] \wedge 1_{\text{int}(A)}) = \bigwedge_{a \in \text{Copr}(L)} \mathcal{B}([a] \wedge 1_{\text{int}(A)}) \leq \bigvee_{\bigvee_{\xi \in A} B_{\xi} = A} \bigwedge_{\xi \in A} \mathcal{B}(B_{\xi})(B_{\xi} \in S)$$

$$\leq \bigvee_{\bigvee_{\xi \in A} B_{\xi} = A} \tau(A) = \tau(A),$$

which implies that \mathcal{B} is a base of τ.

(3) \implies (4): It is easily concluded by taking $\phi = \mathcal{B}$.

(4) \implies (2): For all $a \in \text{Copr}(L)$, $A \in L^X$, we have

$$\tau([a] \wedge 1_{\text{int}(A)}) = \bigvee_{\bigvee_{\xi \in A} B_{\xi} = [a] \wedge 1_{\text{int}(A)}} \bigwedge_{\xi \in A} \bigwedge_{\beta \in \text{int}(A)} \bigwedge_{C_{\xi} = B_{\xi} \wedge A_\xi} \phi(C_{\xi, \beta}) (C_{\xi, \beta} \in S)$$

$$\geq \bigvee_{\bigvee_{\xi \in A} D_{\xi} = A} \bigwedge_{\xi \in A} \bigwedge_{\beta \in \text{int}(A)} \bigwedge_{E_{\xi, \beta} = \xi \wedge 1_{\text{int}(A)}} \phi(E_{\xi, \beta}) (E_{\xi, \beta} \in S)$$

$$\geq \bigvee_{\bigvee_{\xi \in A} D_{\xi} = A} \bigwedge_{\xi \in A} \bigwedge_{\beta \in \text{int}(A)} \bigwedge_{F_{\xi, \beta} = D_{\xi} \wedge \beta \in A_\xi} \phi([a] \wedge 1_{\text{int}(A)}) (F_{\xi, \beta} \in S)$$

$$\geq \bigvee_{\bigvee_{\xi \in A} D_{\xi} = A} \bigwedge_{\xi \in A} \bigwedge_{\beta \in \text{int}(A)} \bigwedge_{F_{\xi, \beta} = D_{\xi} \wedge \beta \in A_\xi} \phi(F_{\xi, \beta}) \geq \tau(A). \quad \square$$

Theorem 3.5. An LM-fuzzy topological space (X, τ) is an induced LM-fuzzy topological space iff (X, τ) is a Lowen LM-fuzzy topological space and an (IC)LM-fuzzy topological space.

Proof. It suffices to show the sufficiency. Since (X, τ) is a Lowen LM-fuzzy topological space, we have, for all $A \in L^X$,

$$\tau(A) \leq \bigwedge_{a \in \text{Copr}(L)} \tau([a] \wedge 1_{\text{int}(A)}).$$

By the definition of (IC)LM-fuzzy topology,

$$\tau([a] \wedge 1_{\text{int}(A)}) \leq \tau(1_{\text{int}(A)})$$

and hence

$$\tau(A) \leq \bigwedge_{a \in \text{Copr}(L)} \tau(1_{\text{int}(A)}).$$
By Lemma 3.3(1) and the definition of Lowen LM-fuzzy topology, we have

\[\tau(A) \geq \bigwedge_{a \in \text{Copr}(L)} \tau([a] \land 1_{i_d(A)}) \geq \bigwedge_{a \in \text{Copr}(L)} \tau(1_{i_d(A)}). \]

Hence

\[\tau(A) = \bigwedge_{a \in \text{Copr}(L)} (\tau(1_{i_d(A)})), \]

which implies that \((X, \tau)\) is an induced LM-fuzzy topological space. □

Theorem 3.6. Let \((X, \tau)\) be a Lowen LM-fuzzy topological space and \(Y \subset X\). Then the subspace \((Y, \tau|Y)\) of \((X, \tau)\) is also a Lowen LM-fuzzy topological space.

Proof. Since \((X, \tau)\) is a Lowen LM-fuzzy topological space, for all \(A \in L^Y\) and \(a \in \text{Copr}(L)\), we have

\[\tau|Y(A) = \bigvee \{\tau(B)|B \in L^X, B|Y = A\} \leq \bigvee \{\tau(B)|B \in L^X, [a] \land 1_{i_d(B)}|Y = [a] \land 1_{i_d(A)}\} \]

which implies that \((Y, \tau|Y)\) is a Lowen LM-fuzzy topological space. □

Theorem 3.7. Let \((X, \tau)\) be a Lowen LM-fuzzy topological space and \(f: X \rightarrow Y\) be a surjective mapping. Then the LM-fuzzy quotient space \((Y, \tau/f_{L^y}^-)\) of \((X, \tau)\) with respect to \(f\) is also a Lowen LM-fuzzy topological space.

Proof. Since \((X, \tau)\) is a Lowen LM-fuzzy topological space, for all \(A \in L^Y\) and \(a \in \text{Copr}(L)\), we have

\[\tau/f_{L^y}^-(A) = \tau(f_{L^y}^-(A)) \leq \tau([a] \land 1_{i_d(f_{L^y}^-(A))}) = \tau(f_{L^y}^-([a] \land 1_{i_d(A)})) = \tau/f_{L^y}^-(([a] \land 1_{i_d(A)})), \]

which implies that \((Y, \tau/f_{L^y}^-)\) is a Lowen LM-fuzzy topological space. □

Theorem 3.8. Let \(\{(X_t, \tau_t)\}_{t \in T}\) be a family of Lowen LM-fuzzy topological spaces. Then the product space \((\prod_{t \in T} X_t, \prod_{t \in T} \tau_t)\) of \(\{(X_t, \tau_t)\}_{t \in T}\) is also a Lowen LM-fuzzy topological space.

Proof. Let \(\phi\) be the subbase of \(\tau\). Then, for all \(A \in L^X\) and \(a \in \text{Copr}(L)\), we have

\[\phi(A) = \bigvee_{t \in T} (\tau_t(B) \leq \bigvee_{t \in T} (\tau_t([a] \land 1_{i_d(B)})) \leq \bigvee_{t \in T} \tau_t([a] \land 1_{i_d(A)})) \]

Hence, for all \(A \in L^X\) and \(a \in \text{Copr}(L)\), \(\tau(A) \leq \tau([a] \land 1_{i_d(A)})\), which implies that \((\prod_{t \in T} X_t, \prod_{t \in T} \tau_t)\) is a Lowen LM-fuzzy topological space. □

Theorem 3.9. Let \(\{(X_t, \tau_t)\}_{t \in T}\) be a family of Lowen LM-fuzzy topological spaces, different \(X_t\)’s be disjoint. Then the sum space \((\bigoplus_{t \in T} X_t, \bigoplus_{t \in T} \tau_t)\) of \(\{(X_t, \tau_t)\}_{t \in T}\) is a Lowen LM-fuzzy topological space iff for all \(t \in T\), \((X_t, \tau_t)\) is a Lowen LM-fuzzy topological space.

Proof. Necessity: For all \(t \in T\), \(A_t \in L^{X_t}\) and \(a \in \text{Copr}(L)\), we have

\[\tau_t(A_t) = \bigwedge_{t \in T} \tau_t(A_t) = \tau(A_t) \leq \tau([a] \land 1_{i_d(A_t)}) = \bigwedge_{t \in T} \tau_t([a] \land 1_{i_d(A_t)}), \]

where

\[A\#(x) = \begin{cases} A(x), & x \in X_t \\ 0, & x \notin X_t \end{cases} \]

Thus for every \(t \in T\), \((X_t, \tau_t)\) is a Lowen LM-fuzzy topological space.
Sufficiency: For every $A \in L^X$ and $a \in \text{Copr}(L)$, we have
\[
\tau(A) = \bigwedge_{t \in T} \tau_t(A|X_t) \leq \bigwedge_{t \in T} \tau_t([a] \land 1_{l_a(A)|X_t}) = \bigwedge_{t \in T} \tau_t([a] \land 1_{l_a(A)}|X_t) = \tau([a] \land 1_{l_a(A)}),
\]
which implies that $(\bigoplus_{t \in T} X_t, \bigoplus_{t \in T} \tau_t)$ is a Lowen LM-fuzzy topological space. □

4. Interior and exterior Lowen topology of an LM-fuzzy topology

In the section, we mainly study some categorical properties of LM-fuzzy topological spaces. Especially, based on the interior and exterior Lowen topology of an LM-fuzzy topology, we prove that LLM-FTop (the category of Lowen LM-fuzzy topological spaces) is isomorphism-closed and simultaneously bireflective and bicoreflective in SLM-FTop (the category of stratified LM-fuzzy topological spaces). For this we first prove Lemmas 4.1 and 4.2.

Lemma 4.1. Let (X, τ) be a stratified LM-fuzzy topological space and $I_L(\tau) : L^X \rightarrow M$ be defined by
\[
I_L(\tau)(A) = \bigwedge_{a \in \text{Copr}(L)} \tau([a] \land 1_{l_a(A)}) \quad (\forall A \in L^X).
\]
Then $I_L(\tau)$ is the largest Lowen LM-fuzzy topology on X which is contained in τ. We call $I_L(\tau)$ the interior Lowen topology of τ.

Proof. Clearly, $I_L(\tau)(A) \leq \tau(A)$ for every $A \in L^X$. By Lemma 2.5 and the definition of I_L, for every $a \in \text{Copr}(L)$ and $A \in L^X$, we have
\[
I_L(\tau)([a] \land 1_{l_a(A)}) = \bigwedge_{b \leq a, b \in \text{Copr}(L)} \tau([b] \land 1_{l_b(A)}) = \tau([a] \land 1_{l_a(A)}).
\]
Hence
\[
I_L(\tau)(A) = \bigwedge_{a \in \text{Copr}(L)} \tau([a] \land 1_{l_a(A)}) = \bigwedge_{a \in \text{Copr}(L)} I_L(\tau)([a] \land 1_{l_a(A)}),
\]
which implies that $I_L(\tau)$ is the Lowen LM-fuzzy topology on X which is contained in τ. Set $\delta \leq \tau$ and δ be a Lowen LM-fuzzy topology on X. Then, for all $A \in L^X$,
\[
\delta(A) = \bigwedge_{a \in \text{Copr}(L)} \delta([a] \land 1_{l_a(A)}) \leq \bigwedge_{a \in \text{Copr}(L)} \tau([a] \land 1_{l_a(A)}) = I_L(\tau)(A).
\]
Therefore, $I_L(\tau)$ is the largest Lowen LM-fuzzy topology on X which is contained in τ. □

Let (X, τ) be an LM-fuzzy topological space and $\phi^\tau : L^X \rightarrow M$ be defined by
\[
\phi^\tau(A) = \begin{cases} \bigvee_{a \in \text{Copr}} (\bigwedge \{ \tau_r(B) \mid \tau_r(B) = U \}) & A = [a] \land 1_U \quad (\forall a \in L, r \in \text{Copr}(L) \text{ and } U \subset X) \\ \tau(A) & \text{others} \end{cases}
\]
It is easy to verify that ϕ^τ is a subbase of one LM-fuzzy topology on X. We denote this LM-fuzzy topology by $E_L(\tau)$ and call it the exterior Lowen topology of τ (see Lemma 4.2).

Lemma 4.2. Let (X, τ) be an LM-fuzzy topological space. Then $E_L(\tau)$ is the smallest Lowen LM-fuzzy topology on X which contains τ.

Proof. Firstly, we show that $E_L(\tau)$ is the Lowen LM-fuzzy topology on X. In fact, for every $A \in L^X$ and $a \in \text{Copr}(L)$, we have
\[
E_L(\tau)(A) = \bigvee_{\beta \in A} \bigwedge_{\beta \in A} \bigvee_{\beta \in A} \phi^\tau(C_{\beta}),
\]
and
\[E_L(\tau)([a] \land 1_{i_a(A)}) = \bigvee_{i \in A} \bigwedge_{B_i \subseteq \tau} \bigwedge_{i \in A} \bigwedge_{b \in \tau_i(A)} \phi^*(\tau_i B) \]
\[\geq \bigvee_{i \in A} \bigwedge_{B_i \subseteq \tau} \bigwedge_{i \in A} \bigwedge_{b \in \tau_i(A)} \phi^*(\tau_i B) \land 1_{i_a(C_{i_B})}. \]

If \(C_{i_B} \) is not a one-step \(L \)-subset, then
\[\phi^*(\tau_i B) \land 1_{i_a(C_{i_B})} = \bigvee_{a \leq r} \left(\bigvee_{\tau_i(B)} \lceil r \rceil(B) = \lceil a(C_{i_B}) \rceil \right) \geq \tau(C_{i_B}) = \phi^*(\tau_i B). \]

If \(C_{i_B} \) is a one-step \(L \)-subset and let \(C_{i_B} = [b] \land 1_V \), then
\[\phi^*(C_{i_B}) = \bigvee_{b \leq r} \left(\bigvee_{\tau_i(B)} \lceil r \rceil(B) = V^1 \right) \]
and, for all \(a < b \),
\[\phi^*(\tau_i B) \land 1_{i_a(C_{i_B})} = \phi^*(\tau_i B) \land 1_V = \bigvee_{a \leq r} \left(\bigvee_{\tau_i(B)} \lceil r \rceil(B) = V^1 \right) \geq \phi^*(C_{i_B}). \]

Hence \(E_L(\tau)(A) \leq E_L(\tau)([a] \land 1_{i_a(A)}) \), which implies that \(E_L(\tau) \) is the Lowen \(LM \)-fuzzy topology on \(X \) which contains \(\tau \).

Secondly, we show that \(E_L(\tau) \) is the smallest Lowen \(LM \)-fuzzy topology on \(X \) which contains \(\tau \). Let \(\tau \leq \eta \) and \(\eta \) be a Lowen \(LM \)-fuzzy topology on \(X \). We need to prove that \(E_L(\tau) \leq \eta \). It suffices to show that \(\phi^*(A) \leq \eta(A) \) for all \(A \in L^X \). It is clear that \(E(\tau) \leq \eta \) when \(A \) is not a one-step \(L \)-subset. If \(A \) is a one-step \(L \)-subset and let \(A = [b] \land 1_U \), then
\[\phi^*(A) = \bigvee_{b \leq r} \left(\bigvee_{\tau_i(B)} \lceil r \rceil(B) = U^1 \right) \leq \bigvee_{b \leq r} \left(\bigvee_{\eta(B)} \lceil r \rceil(B) = U^1 \right) \leq \bigvee_{b \leq r} \left(\bigvee_{\eta([r] \land 1_U)} \lceil r \rceil(B) = U^1 \right) \]
\[\leq \bigvee_{b \leq r} \eta([r] \land 1_U) \leq \eta([b] \land 1_U) = \eta(A), \]
and thus \(E(\tau) \leq \eta \). \(\square \)

Corollary 4.3. \((X, \delta) \) is a Lowen \(LM \)-fuzzy topological space iff any two of \(E_L(\delta), I_L(\delta), \delta \) are equal (equivalently, all the three are equal).

Lemma 4.4.

1. Let \((X, \delta) \) be a stratified \(LM \)-fuzzy topological space and \((Y, \tau) \) be a Lowen \(LM \)-fuzzy topological space. Then \(f : (X, \delta) \rightarrow (Y, \tau) \) is a fuzzy continuous mapping iff \(f : (X, I_L(\delta)) \rightarrow (Y, I_L(\tau)) = (Y, \tau) \) is a fuzzy continuous mapping.

2. Let \((X, \delta) \) be an \(LM \)-fuzzy topological space and \((Y, \tau) \) be a Lowen \(LM \)-fuzzy topological space. Then \(f : (Y, \tau) \rightarrow (X, \delta) \) is a fuzzy continuous mapping iff \(f : (Y, E_L(\tau)) = (Y, \tau) \rightarrow (X, E_L(\delta)) \) is a fuzzy continuous mapping.

Proof.

1. The sufficiency is obvious and we need to show the necessity. Suppose that \(f : (X, \delta) \rightarrow (Y, \tau) \) is fuzzy continuous, i.e., \(\tau(B) \leq \delta(f_L^{-1}(B)) \) for every \(B \in L^Y \). Since \((Y, \tau) \) is a Lowen \(LM \)-fuzzy topological space, we have
\[\tau(B) = \bigwedge_{a \in Copr(L)} \tau([a] \land 1_{i_a(B)}) \leq \bigwedge_{a \in Copr(L)} \delta(f_L^{-1}([a] \land 1_{i_a(B)})) \]
\[= \bigwedge_{a \in Copr(L)} \delta([a] \land 1_{i_a(f_L^{-1}(B))}) = I_L(\delta)(f_L^{-1}(B)), \]
which implies that \(f : (X, I_L(\delta)) \rightarrow (Y, I(\tau)) = (Y, \tau) \) is a fuzzy continuous mapping.
(2) The sufficiency is obvious and we need to show the necessity. It suffices to show for all \(A = [a] \land 1_U \) (\(\forall a \in L \) and \(U \subset X \)), \(\phi^*(A) \leq \tau(f^-_L(A)) \) by the definition of \(E_L(\delta) \) and Lemma 2.13. Suppose that \(f : (Y, \tau) \rightarrow (X, \delta) \) is a fuzzy continuous mapping, i.e., \(\delta(A) \leq \tau(f^-_L(A)) \) for all \(A \in L^X \). Since \((Y, \tau) \) is a Lowen LM-fuzzy topological space, we have

\[
\tau(A) = \bigwedge_{a \in \text{Copr}(L)} \tau([a] \land 1_{i_d(A)}),
\]

and hence

\[
\phi^*(A) = \bigvee_{a < r} \left(\bigvee \{ \tau([B]) \mid r(B) = U \} \right) \leq \bigvee_{a < r} \left(\bigvee \{ f^-_L([B]) \mid r(B) = U \} \right) = \bigvee_{a < r} \tau([a] \land 1_{f^{-1}(U)}) = \tau(f^-_L(A)),
\]

which implies that \(f : (Y, E_L(\tau)) = (Y, \tau) \rightarrow (X, E_L(\delta)) \) is a fuzzy continuous mapping. \(\square \)

Let \(i : \text{LLM-FTop} \rightarrow \text{SLM-FTop} \) be the inclusion functor. By proof of Lemma 4.4, we may show the following

Theorem 4.5.

(1) \(I_L : \text{SLM-FTop} \rightarrow \text{LLM-FTop} \) is functor and \(I_L^{-1} \) is.

(2) \(E_L : \text{LM-FTop} \rightarrow \text{LLM-FTop} \) is functor and \(i \circ E_L \).

Corollary 4.6. \(\text{LLM-FTop} \) is an isomorphism-closed full proper subcategory of \(\text{SLM-FTop} \) which is simultaneously bireflective and bicoreflective in \(\text{SLM-FTop} \), and given a stratified LM-fuzzy topological space \((X, \delta) \), its reflection and coreflection are given by \(\text{id}_X : (X, \delta) \rightarrow (X, I_L(\delta)) \) and \(\text{id}_X : (X, E_L(\delta)) \rightarrow (X, \delta) \), respectively, where \(\text{id}_X : X \rightarrow X \) is the identity mapping.

As every right adjoint preserves limits and every left adjoint preserves colimits, we have the following Corollaries.

Corollary 4.7.

(1) Let \(\{(X_i, \tau_i)\}_{i \in I} \) be a family of LM-fuzzy topological spaces. Then

\[
E_L \left(\bigotimes_{i \in I} X_i, \bigotimes_{i \in I} \delta_i \right) = \left(\bigotimes_{i \in I} X_i, \bigotimes_{i \in I} E_L(\delta_i) \right).
\]

(2) Let \(\{(X_i, \tau_i)\}_{i \in I} \) be a family of stratified LM-fuzzy topological spaces, different \(X_i \)'s be disjoint. Then

\[
i_L \left(\bigoplus_{i \in I} X_i, \bigoplus_{i \in I} \delta_i \right) = \left(\bigoplus_{i \in I} X_i, \bigoplus_{i \in I} i_L(\delta_i) \right).
\]

Corollary 4.8.

(1) Let \((X, \delta) \) be an LM-fuzzy topological space and \(Y \subset X \). Then \(E_L(\delta|Y) = E_L(\delta)|Y \).

(2) Let \((X, \delta) \) be a stratified LM-fuzzy topological space and \(f : X \rightarrow Y \) be a surjective mapping. \((Y, \delta|f_L^-) \) is the LM-fuzzy quotient space of \((X, \delta) \) with respect to \(f \). Then \(i_L(\delta|f_L^-) = i_L(\delta)/f_L^- \).

Theorem 4.9.

(1) Let \((X, \tau) \) be a stratified LM-fuzzy topological space and \(U \subset X \). Then \(i_L(\tau)\mid U \leq i_L(\tau|U) \).

(2) Let \((X, \delta) \) be an LM-fuzzy topological space and \((Y, \delta|f_L^-) \) be the LM-fuzzy quotient space of \((X, \delta) \) with respect to \(f \). Then \(E_L(\delta|f_L^-) \leq E_L(\delta)/f_L^- \).

Proof.

(1) We have \(i_L(\tau|U) \leq i_L(\tau|U) \) by Theorem 3.6 and the definition of \(i_L(\delta) \).

(2) We have \(E_L(\delta|f_L^-) \leq E_L(\delta)/f_L^- \) by Theorem 3.7 and the definition of \(E_L(\delta) \). \(\square \)
Remark 4.10. The following two counterexamples show that the above inequalities in Theorem 4.9 cannot be replaced by equalities.

(1) Let \(X = L = M = [0, 1], U = [0, 0.5] \) and \((X, \tau)\) be a stratified LM-fuzzy topological space, where \(\tau([a] \land 1_{[0,25,0.5]]) = \tau([1_{0,25,0.5}] \lor (0.5] \land 1_{[0,25,0.5]}) = 1 \) (\(\forall a \in L \)) and for others \(A \in L^X, \tau(A) = 0 \).

It is easy to verify that \(I_L(\tau) : L^X \rightarrow M \) is defined by \(I_L(\tau)([a] \land 1_{[0,25,0.5]}) = I_L(\tau)([a]) = 1 \) (\(\forall a \in L \)) and for others \(A \in L^X, I_L(\tau)(A) = 0 \).

On the other hand, \(I_L(\tau)(U(1_{[0,25,0.5]}) \lor (0.5] \land 1_{[0,25,0.5]}) = 0 \). On the other hand, \(I_L(\tau)(U) = 1 \).

Therefore, \(I_L(\tau)(U) < I_L(\tau)(U) \).

(2) Let \(X = [-1, 1], Y = L = M = [0, 1], \delta : L^X \rightarrow M \) is defined by \(\delta(0_X) = \delta(1_X) = \delta([0.5] \land 1_{[0,5,11]}) = \delta(1_{[-1,-0.5]}) \).

It is easy to verify that \(\delta/f_L^- : L^Y \rightarrow M \) is defined by \(\delta/f_L^-(0_Y) = \delta/f_L^-(1_Y) = 1 \) and for others \(B \in L^Y, \delta/f_L^-(B) = 0 \).

Hence \(E_L(\delta/f_L^-)([0.5] \land 1_{[0,5,11]}) = 0 \). On the other hand, \(E_L(\delta/f_L^-)([0.5] \land 1_{[0,5,11]}) = E_L(\delta)([0.5] \land 1_{[0,5,11]}) = 1 \). Therefore, \(E(\delta/f_L^-) < E(\delta)/f_L^- \).

Moreover, we have

Theorem 4.11. Let \(\{(X_t, \delta_t)\}_{t \in T} \) be a family of LM-fuzzy topological spaces, different \(X_t \)'s be disjoint. Then \(\bigoplus_{t \in T} E_L(\delta_t) = E_L(\bigoplus_{t \in T} \delta_t) \).

Proof. Clearly, \(E_L(\bigoplus_{t \in T} \delta_t) \leq \bigoplus_{t \in T} E_L(\delta_t) \) by Theorem 3.9 and the definition of \(E_L(\delta) \). Conversely, let \(\lambda \in Copr(L) \) and \(\lambda \leq \bigoplus_{t \in T} E_L(\delta_t)(A) (\forall A \in L^X) \), i.e.,

\[
\lambda \leq \bigoplus_{t \in T} E_L(\delta_t)(A) = \bigvee_{t \in T} E_L(\delta_t)(A) = \bigwedge_{t \in T} \bigvee_{\lambda \in A} D_{\lambda}^t = A_{X_t} \bigwedge_{\lambda \in A} E_{\lambda}^t,
\]

Then for all \(t \in T \), there exists \(\{D_{\lambda}^t\}_{\lambda \in A_t} \subset L^X_t \) such that

(i) \(\bigvee_{\lambda \in A_t} D_{\lambda}^t = A_{X_t} \),

(ii) For each \(\lambda \in A_t \), there exists \(\{E_{\lambda}^t\}_{\lambda \in A_t^t} \subset L^X_t \) such that \(\bigcap_{\lambda \in A_t^t} E_{\lambda}^t = D_{\lambda}^t \),

(iii) For each \(\lambda \in A_t^t \), we have \(\lambda \leq \bigoplus_{t \in T} E_L(\delta_t)(A) \).

Let \(\{D_{\lambda}^t\}_{t \in T, \lambda \in A_t} \subset L^X_t \) be defined as follows:

\[
(D_{\lambda}^t)(x) = \begin{cases} D_{\lambda}^t(x), & x \in X_t \\ 0, & x \notin X_t \end{cases}
\]

\[
(E_{\lambda}^t)(x) = \begin{cases} E_{\lambda}^t(x), & x \in X_t \\ 0, & x \notin X_t \end{cases}
\]

Then we have

\[
\bigvee_{t \in T} \bigwedge_{\lambda \in A_t^t} (D_{\lambda}^t) = A_t, \quad \bigcap_{\lambda \in A_t^t} (E_{\lambda}^t) = (D_{\lambda}^t) \quad \text{and} \quad \phi(\delta_t)(E_{\lambda}^t) = \phi(\bigoplus_{t \in T} \delta_t)((E_{\lambda}^t)).
\]

Hence \(\lambda \leq \phi(\bigoplus_{t \in T} \delta_t)((E_{\lambda}^t)) \).

Remark 4.12. Let \(\{(X_t, \delta_t)\}_{t \in T} \) be a family of LM-fuzzy topological spaces. Then \(I_L(\prod_{t \in T} X_t, \prod_{t \in T} \delta_t) \geq (\prod_{t \in T} X_t, \prod_{t \in T} I_L(\delta_t)) \), and the inequality cannot be replaced by equality.
Proof. It is easy to verify that $I_L (\prod_{i \in T} X_i, 1 \prod_{i \in T} I_L (\delta_i)) \geq (\prod_{i \in T} X_i, 1 \prod_{i \in T} I_L (\delta_i))$ by Theorem 3.8 and the definition of $I_L (\delta)$. The following example shows that the inequality cannot be replaced by equality.

Let $X = L = M = [0, 1]$ and (X, τ) be a stratified LM-fuzzy topological space, where $\tau([a] \land I_{[0.25, 0.5}}) = \tau(I_{[0.5]} \land I_{[0.25, 0.5]}) = 1$ ($\forall a \in L$) and for others $A \in L^X, \tau(A) = 0$. It is easy to verify that $I_L (\tau) : L^X \rightarrow M$ is defined by $I_L (\tau)([a] \land I_{[0.25, 0.5}}) = I_L (\tau)(a) = 1$ ($\forall a \in L$) and for others $A \in L^X, I_L (\tau)(A) = 0$. On the one hand $I_L (\tau) \times I_L (\tau)([0.5] \land [0.25, 0.5]) = 0$. On the other hand, $\tau \times \tau([0.5] \land [0.25, 0.5]) = 1$ and $I_L (\tau \times \tau)([0.5] \land [0.25, 0.5]) = 1$. Therefore $I_L (\tau) \times I_L (\tau) < I_L (\tau \times \tau)$. □

5. Conclusion

In the paper, we firstly introduce the definition of a Lowen LM-fuzzy topological space and discuss its basic properties such as the properties that the product space and the sum space of Lowen LM-fuzzy topological spaces are also Lowen LM-fuzzy topological spaces. Secondly, we study some categorical properties of Lowen LM-fuzzy topological spaces. For example, based on the interior and exterior Lowen topology of an LM-fuzzy topology, we show that $LLM-FTop$ (the category of Lowen LM-fuzzy topological spaces) is isomorphism-closed and simultaneously bireflective and bicoreflective in $SLM-FTop$ (the category of stratified LM-fuzzy topological spaces). Moreover, we also show that (X, τ) is an induced LM-fuzzy topological space iff (X, τ) is a Lowen LM-fuzzy topological space and an (IC)LM-fuzzy topological space. In the future, there are still some categorical properties of Lowen LM-fuzzy topological spaces which are worth studying. For example, is $LLM-FTop$ Cartesian closed?

Acknowledgments

The authors wish to thank Prof. S.E. Rodabaugh and the anonymous referees for their valuable comments and helpful suggestions.

References