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We address linear and nonlinear topological interface states in polariton condensates excited at the interface of
the honeycomb and Lieb arrays of microcavity pillars in the presence of spin-orbit coupling and Zeeman splitting
in the external magnetic field. Such interface states appear only in total energy gaps of the composite structure
when parameters of the honeycomb and Lieb arrays are selected such that some topological gaps in the spectrum
of one of the arrays overlap with topological or nontopological gaps in the spectrum of the other array. This is in
contrast to conventional edge states at the interface of periodic topological and uniform trivial insulators, whose
behavior is determined exclusively by the spectrum of the topological medium. The number of emerging interface
states is determined by the difference of the Chern numbers of the overlapping gaps. Illustrative examples with
one or two coexisting unidirectional interface states are provided. The representative feature of the system is the
possibility of wide tuning of the concentration of power of the interface states between two limiting cases when
practically all power is concentrated either in the Lieb or the honeycomb array. Localization of the interface
states and their penetration depth into arrays drastically vary with Bloch momentum or upon modification of
the amplitude of the interface state in the nonlinear regime. We illustrate topological protection of the interface
states manifested in the absence of backscattering on interface defects, and study their modulation instability
in the nonlinear regime. The latter leads to formation of quasisolitons whose penetration into different arrays
also depends on Bloch momentum. In addition, we discuss the impact of losses and coherent pump leading to
bistability of the interface states.
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I. INTRODUCTION

Localization and propagation of waves of various physical
natures at the interface of materials with different physical
properties is a topic of continuously renewed interest. The
problem of formation of such waves appears in diverse areas
of science, including acoustics, hydrodynamics, radiophysics,
physics of matter waves, and optics. Waves arising and prop-
agating along the interface of two materials are called surface
waves. Their properties at the interfaces of uniform materials
are well known, but when such waves form at the interfaces
of spatially inhomogeneous, in particular, periodic materials
with bulk spectra exhibiting allowed and forbidden energy
bands, they acquire completely new features that are under
active investigation nowadays. The problem of formation of
interface states naturally appears in photonic crystals; see
reviews on resonant linear interface states in such crystals
[1,2] and in shallow optical lattices or waveguide arrays [3,4],
where nonlinearity can be used to localize light at the interface
of uniform medium and one- [5] or two-dimensional [6,7]
arrays or at the interface between two dissimilar arrays [8–12].
Even though surface waves in topologically trivial materials
reflect rich structure of the band-gap spectra of periodic media
placed in contact, they are not protected by the system topol-
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ogy and, therefore, are sensitive to perturbations in periodic
structure.

A completely different physical scenario is realized when
waves at the interface of two media appear because they fea-
ture different topology. Such waves are said to be protected by
the topology and due to this they show remarkable resistance
to local deformations of the underlying materials. Usually
topological edge states appear when one of the materials
forming the interface is periodic and possesses specific degen-
eracies in its spectrum. Edge states at the interfaces of such
materials (including those with honeycomb and hexagonal
structure) may be created by introducing deformations into
underlying lattices [13], by varying spacing between lattice
sites across the interface, introducing detuning between sub-
lattices, changing orientation of anisotropic elements placed
in the lattice nodes, and realization of anisotropic coupling
between different lattice sites. They have been suggested
and observed in electromagnetic systems, including photonic
crystals [14–16], periodic metamaterial structures [17,18],
shallow waveguide arrays [19], for acoustic [20] and elastic
[21] waves, and polaritons [22], as well as for electronic states
in two-dimensional materials [23]. All states mentioned above
belong to a special class that does not require breakup of
time-reversal symmetry in governing evolution equations for
its existence.

Breakup of time-reversal symmetry in the system with
specific degeneracies in the spectrum leads to opening of a
topological gap with unique unidirectional topological states
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in it [24,25]. The direction of propagation of such states can
be reversed by swapping materials forming the interface or,
in systems where time-reversal symmetry is broken by the
external magnetic field, by changing the direction of this field.
Such states represent very robust topologically protected and,
most importantly, traveling excitations that generally cannot
be destroyed by perturbations with energies smaller than the
width of the topological gap, where they form. They, or
their analogs, have been proposed and observed in different
physical systems, including acoustic [26], photonic [27–37],
and optoelectronic [38–42] ones. Including nonlinear effects
substantially enriches the behavior of the unidirectional topo-
logical states, leading to, e.g., nonlinearity-mediated inver-
sion of the propagation direction of the edge states [43,44],
development of modulation instability [45,46], formation of
topological edge solitons [47–50], and bistability effects [51].

The commonly considered configuration in systems with
broken time-reversal symmetry assumes the interface between
periodic and uniform material. Much reacher physics emerge
when the interface is instead created by two periodic media
with different symmetry; more work needs to be done on
band-gap spectra and unidirectional states at such interface.
Here we employ a polaritonic system, where edge states were
recently observed experimentally [41], to demonstrate possi-
bilities for control of topological edge states at the interface of
honeycomb and Lieb arrays of microcavity pillars located in
the external magnetic field. Such arrays are available for ex-
perimental exploration [52–56]. We consider the interface of
two arrays with different symmetries and number of elements
per unit cell that cannot be transformed into each other us-
ing continuous deformations. Broken time-reversal symmetry
by virtue of simultaneously present spin-orbit coupling and
Zeeman splitting in the external magnetic field leads to the
appearance of the in-gap topological interface states, when
two topological, or topological and nontopological, energy
gaps in honeycomb and Lieb arrays overlap. The number
of such states is determined by the difference of the Chern
numbers of the overlapping gaps. We illustrate topological
protection for such interface states, their unusual localization
properties, and introduce interface quasisolitons.

II. MODEL

The evolution of the spinor wave function � = (ψ+, ψ−)T

describing the polariton condensate in the potential landscape,
created by two arrays of the microcavity pillars with honey-
comb and Lieb symmetry placed in contact, is governed by
the system of dimensionless coupled Schrödinger equations
[38,48]:
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(
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+R(x, y)ψ± + (|ψ±|2 + σ |ψ∓|2)ψ±. (1)

Here ψ± are the complex wave functions of the spin-
positive and spin-negative polaritons in the circular polar-
ization basis; the parameter β accounts for the spin-orbit
coupling effect stemming from TE-TM energy splitting in the
microcavity [38,57]; the terms ∼� account for the Zeeman
energy splitting in the external magnetic field. Nonlinear

terms account for the repulsion between polaritons with the
same spin, while σ = −0.05 corresponds to the weak cross-
spin attraction [58]. Our composite array of microcavity pil-
lars is the union of honeycomb and Lieb arrays with a straight
interface between them that is parallel to the y axis. The
corresponding potential landscape created by the microcav-
ity pillars R(x, y) = Rh(x, y) + Rl (x, y) is described by the
functions

Rh(x, y) = −
∑

n,m,x�xin

phQ(x − xn, y − ym),

Rl (x, y) = −
∑

p,q,x>xin

pa,bQ(x − xp, y − yq),

where individual Gaussian potential wells Q = exp[−(x2 +
y2)/d2] are placed in the nodes of the honeycomb grid xn, ym

at x < xin, and in the nodes of the Lieb grid xp, yq at x >

xin, with xin being the interface position [see Fig. 1(d) for
−R shape and Fig. 1(e) for schematic representation]. The
separation between neighboring potential wells is given by
a in the honeycomb array and by 31/2a/2 in the Lieb array.
To allow control of relative positions of energy gaps in two
arrays we set ph as a potential depth in the honeycomb array
[Fig. 1(b)], and assume that the Lieb array contains wells
with different depths pa and pb; pb > pa [Fig. 1(c)]. This
composite structure is periodic in the y direction: R(x, y) =
R(x, y + Y ) with period Y = 31/2a.

Spatial coordinates in Eq. (1) are normalized to the char-
acteristic distance L. All energy parameters (such as potential
depth and Zeeman splitting) are normalized to the character-
istic energy ε0 = h̄2/mL2, where m is the effective polariton
mass, while evolution time is normalized to h̄ε−1

0 ; see [48]
for details. We omit losses in our model that are typical
for polariton condensates [59,60], because the existence of
interface states is not connected with them and because proper
pumping can be used to dramatically increase the lifetime of
the interface states.

It should be stressed here that the main reason why we con-
sider here the interface of two different lattices—honeycomb
and Lieb—is the possibility to obtain in this structure more
than one edge state per interface. If the symmetries of the two
lattices were the same, the interface between the two lattices
could only be created (without changing the direction of the
magnetic field) by changing their depths or by deforming one
of them, but in those structures the arrangement of Chern
numbers for gaps may be identical, so it may be not easy
to find a configuration with more than one edge state per
interface. On the other hand, at the usual interface between the
uniform medium and the lattice, the edge state always expands
more into the lattice region, but not into the uniform medium,
thus limiting the possibilities for control of localization of the
edge states.

III. LINEAR TOPOLOGICAL INTERFACE STATES

As it was shown in Refs. [38,48] the necessary ingredients
for the appearance of the unidirectional topological edge
states in truncated arrays of microcavity pillars include simul-
taneous action of spin-orbit coupling and Zeeman splitting
in the magnetic field, together with the presence of specific
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FIG. 1. (a) Band structure of the truncated in x honeycomb array with ph = 10 (red curves) and that of the truncated Lieb array with
pa = 8 and pb = 9.7 (black curves). Band structures are calculated for zigzag-zigzag boundaries for the honeycomb array and bearded-bearded
boundaries for the Lieb array. For these parameters the first finite gaps in the eigenvalue spectrum of the two arrays overlap with each other.
(b) −Rh and (c) −Rl profiles with indication of depths of the potential wells. (d) −R profile for composite array with dashed line indicating
interface and (e) corresponding schematic representation, indicating deeper (blue) and shallower (green) potential wells in the Lieb array.
(f) Band structure of the composite honeycomb-Lieb array for the same ph, pa,b values as in (a). To make the band structure symmetric, the
honeycomb array slab was placed between two Lieb arrays. Blue and red curves correspond to the interface states on the right and left edges of
the slab, respectively. (g), (h) The same as in (a), (f), but for ph = 11.25, pa = 10, and pb = 12.1, when the first gap of the honeycomb array
overlaps with the second gap of the Lieb array. All quantities are plotted in dimensionless units.

degeneracies in the spectrum of the array, for example, in
the form of Dirac points. Our arrays are selected in such a
way that such degeneracies can present in different gaps in
spectra of both arrays depending on their depths ph and pa,b

(further, we set pb > pa to be able to match the spectral gaps
in the two arrays, since this is required for localization of
interface states at both sides of the interface, as explained
below). Simultaneous action of spin-orbit coupling effect
and Zeeman splitting that breaks time-reversal symmetry in
Eq. (1) can open topological gaps that can coexist with
nontopological gaps, appearing, for example, in the Lieb
array due to an introduced difference in potential depths pa,b.
To illustrate this we first consider linear spectra of separate
honeycomb and Lieb arrays that will be used afterwards
for construction of the composite structure. We assume that
such arrays are truncated along the x axis, so that their lin-
ear modes are Bloch waves, ψ±(x, y, t ) = u±(x, y) exp(iky +
iεt ), periodic in y and localized in x: u±(x, y) = u±(x, y + Y)
and u±(x → ±∞, y) = 0, where k is the Bloch momentum
and ε is the energy. The latter is a periodic function of k
with a period K = 2π/Y . The resulting linear eigenvalue
problem,

εu± = (1/2)[∂2/∂x2 + (∂/∂y + ik)2]u± − Rh,l (x, y)u±
−β[∂/∂x ∓ i(∂/∂y + ik)]2u∓ ∓ �u±, (2)

obtained after substitution of the wave function (ψ+, ψ−)T

into Eq. (1), with truncated honeycomb Rh or Lieb Rl po-
tential, was solved numerically using the plane-wave expan-
sion method. In simulations we use representative parameter

values β = 0.3, � = 0.5, a = 1.4, and d = 0.5 allowing us to
obtain sufficiently wide topological gaps in the spectrum.

Black and red lines in Fig. 1(a) show, respectively, linear
spectra in the form of energy-momentum dependencies ε(k)
for purely Lieb or purely honeycomb arrays, when they are
truncated along x (here we consider the honeycomb array with
zigzag-zigzag edges and the Lieb array with bearded-bearded
edges). This type of truncation is selected in the view of the
similar truncation that will be used at the interface of the
composite array; see Figs. 2(a) and 1(e). The depths of the
potential wells in Fig. 1(a) are adjusted such as to achieve
overlap of the first and second finite gaps in the spectrum
of the honeycomb and Lieb arrays. One can clearly see the
presence of the topological edge states (one per interface)
in the spectrum of the honeycomb array in both the first
and second gaps (such states bifurcate from the top band
around k = K/3 and k = 2K/3 momentum values). In con-
trast, no edge states are observed in the first nontopological
gap of the truncated Lieb array, but they are visible around
k = K/2 in the second topological gap of this array. This
means that the first gap in this array is actually opened due
to the introduced difference pb − pa between the depths of
the potential wells and it persists even at β, � = 0, while
the second gap opens due to the breakup of time-reversal
symmetry.

Remarkably, when the honeycomb and Lieb arrays with the
above parameters are used to form the composite array shown
in Fig. 1(d), its spectrum [calculated using Eq. (2), but now
with composite potential R] clearly shows the presence of the
interface states localized in both arrays in the total gaps of
this structure [Fig. 1(f)]. Notice that to make this spectrum
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FIG. 2. (a) The array configuration and (b)–(g) interface states at
different Bloch momentum values indicated in the panels. Both spin-
positive and spin-negative wave-function components are shown
within the window 0 � x � 55 and −3Y/2 � y � +3Y/2. The white
dashed line indicates interface position. All quantities are plotted in
dimensionless units.

symmetric we placed a wide honeycomb slab between the
two Lieb arrays, rather than considering a single interface, so
the interface states in Fig. 1(f) appear in pairs with opposite
slopes ∂ε/∂k. In this figure blue curves correspond to states
on the right interface, red curves correspond to states on the
left interface, and black curves show bulk modes. Here we
use the term interface states to stress that they form between
two dissimilar periodic media; see Fig. 2 for examples of
such states from the first total gap. The domain of existence
of the interface states in momentum k may notably differ
from those in constituting arrays: By comparing Figs. 1(f)
and 1(a) one can see that interface states in the top gap now
connect band regions with dispersion inherited from the Lieb
[black curves in Fig. 1(a)], rather than from the honeycomb
[red curves in Fig. 1(a)] array. This suggests that close to
gap edges such edge states may penetrate much stronger into
the Lieb array than into the honeycomb one (see discussion
below). Moreover, slight variation of parameters may lead to
a situation when the interface states will connect dispersion
regions inherited from different arrays, in which case they will
strongly extend into different arrays close to the upper or lower
edges of the total topological gap.

Remarkably, Fig. 1(f) reveals the presence of a different
number of interface states in the first and second gaps of
the composite structure: There is one state per interface in
the first gap and two states per interface in the second gap.
The existence of the interface states in the composite array
can be anticipated by considering gap Chern numbers Cα

h,l
for corresponding bulk honeycomb and Lieb arrays, defined
as a sum of Chern numbers for all bands lying above the
selected gap [32,33]. The superscript α in Cα

h,l is an integer

denoting the index of the spectral gap. The standard procedure
of calculation of the topological invariants [50] yields for
the parameters of Fig. 1(a) gap Chern numbers Cα=1

h = −1
and Cα=2

h = −1 in the honeycomb array, and Cα=1
l = 0 and

Cα=2
l = +1 in the Lieb array. When the two arrays are placed

in contact, the number of the topological states per interface
existing in the selected gap of the composite structure is
determined by the modulus of the difference of the gap Chern
numbers |Cα

h − Cγ

l | [24], where α, γ are the indices of the
overlapping gaps. This expression predicts one interface state
in the first finite gap and two states in the second gap of the
composite structure visible in Fig. 1(f) (there can be more
edge states in still lower gaps, but we do not consider them
here for simplicity). Thus, in the polariton condensate one can
realize a rare configuration with more than one topological
state per interface by composing two periodic structures with
different symmetries and properly selected depths of the po-
tential wells. Moreover, even if there are no topological states
in the gap of one of the arrays, they appear in approximately
the same energy interval in the composite structure, if the
other array admits them in a suitable gap. Notice that if
the topological gap of the honeycomb array overlaps with the
band in the Lieb array, one gets states that are confined at the
honeycomb side of the interface but are delocalized at the Lieb
side. The depths of potential wells ph and pa,b can be tuned
such as to achieve overlap of the first gap in the honeycomb
array with the second gap of the Lieb array [Fig. 1(g)].
However, for parameters of Fig. 1(g) one has Cα=1

h = −1 and
Cα=2

h = −1, but both gaps in the Lieb array are nontopological
now: Cα=1

l = 0, Cα=2
l = 0. In this case only one state per

interface appears in the second gap of the composite structure
[Fig. 1(h)]. Such interface states have a different structure in
the Lieb array and they exist in different intervals of Bloch
momenta in comparison with interface states from Fig. 1(f).
The part of the interface state branch located close to the top of
the topological gap corresponds to states that are concentrated
more in the Lieb array; the part of the branch close to the
bottom of the gap corresponds to states extending more into
the honeycomb array.

One of the important advantages of our system with an
interface between two periodic structures in comparison with
the usual setting, where topological material is in contact with
a uniform one, is the possibility to tune the penetration depth
of the interface states into different arrays. In our case this
penetration depth and norm (or power) distribution between
arrays strongly depend on the Bloch momentum k. Examples
of the interface states corresponding to the blue circles in
Fig. 1(f) are shown in Figs. 2(b)–2(g). To determine the
fraction of norm of these interface states contained in different
arrays we introduce the quantities

Uh =
∫
Rh

dx
∫ +Y/2

−Y/2
�†�dy,

Ul =
∫
Rl

dx
∫ +Y/2

−Y/2
�†�dy, (3)

where � = (ψ+, ψ−)T and integration in y is performed
over one y period of the wave, while integration in x is
performed over regions occupied by the honeycomb Rh or
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FIG. 3. (a) Norm sharing between honeycomb Sh and Lieb Sl

arrays versus Bloch momentum for linear interface states corre-
sponding to the top blue curve in Fig. 1(f). (b), (c) Norm sharing
versus energy μ for the nonlinear interface states at (b) k = 0.144K
[left crossing point in panel (a)] and (c) k = 0.462K [right crossing
point in panel (a)]. All quantities are plotted in dimensionless units.

Lieb Rl arrays; U = Uh + Ul is the total norm per period. It
is convenient to introduce norm sharing as Sh,l = Uh,l/U . The
interface state from Figs. 2(b) and 2(c) is mostly concentrated
within the Lieb array; hence Sl � Sh. This is consistent with
the fact that this interface state is taken close to the edge of
the topological gap, where the interface state curve connects
with the part of the band inherited from the Lieb array. By
adjusting the Bloch momentum one can achieve the situation
shown in Figs. 2(d) and 2(e), where norms and penetration
depths in both arrays are almost equal; Sl ≈ Sh. Finally, at
k = 0.3K, close to the center of the gap, the interface state
penetrates deeper and has most of its norm concentrated in
the honeycomb array; Sl � Sh [Figs. 2(f) and 2(g)]. Notice
that since this interface state connects on the top of the gap
with the band that inherited dispersion from the Lieb array,
further increase of k again leads to growth of the fraction of
norm Sl contained in the Lieb array. Variation in norm sharing
with Bloch momentum for the linear interface state from the
top gap in Fig. 1(f) is shown in Fig. 3(a). Notice that there are
two points, k = 0.144K and k = 0.462K, where the norm is
distributed equally between two arrays; i.e., Sh ≈ Sl .

To confirm that interface states obtained here are indeed
topologically protected we remove two pillars from the array
that are located in the vicinity of the interface [Fig. 4(a)] and
study the interaction of the topological state from the top blue
branch in Fig. 1(f) with such a defect. A sufficiently wide
Gaussian envelope was superimposed on the input wave, as
shown in Fig. 4(b). This state moves in the negative direction
of the y axis. One can see that it passes the defect [Figs. 4(c)
and 4(d)] without observable backscattering and radiation into
the honeycomb or Lieb regions which is a clear signature of
topological protection. Similar protection was observed for
interface states from Fig. 1(h), residing in the second gap of
the composite array.

FIG. 4. (a) −R profile with a defect on the interface. (b)–(d)
Interaction of the interface state with k = 0.3K and broad Gaussian
envelope with a defect. Only |ψ−| distribution is shown in different
moments of time within 1.5 � x � 43.5 and −25Y � y � +25Y
windows. All quantities are plotted in dimensionless units.

IV. NONLINEAR TOPOLOGICAL INTERFACE STATES

Nonlinearity also strongly affects localization of the inter-
face states and changes their structure. Nonlinear interface
states can be found from Eq. (1) in the form ψ±(x, y, t ) =
u±(x, y) exp(iky + iμt ), where μ is the energy, while y-
periodic functions u±(x, y) = u±(x, y + Y) satisfy the equa-
tion similar to (2), but with nonlinear terms included:

μu± = (1/2)[∂2/∂x2 + (∂/∂y + ik)2]u± − R(x, y)u±
−β[∂/∂x ∓ i(∂/∂y + ik)]2u∓ ∓ �u±
− (|u±|2 + σ |u∓|2)u±. (4)

This equation was solved using Newton’s iterative method.
Such nonlinear modes bifurcate from linear interface states. In
the point of bifurcation the energy μ coincides with the eigen-
value ε of the linear interface state, while the amplitude of the
nonlinear state vanishes. Norm U per y period and amplitude
of the nonlinear interface states increase with decrease of μ.
Usually the x width of the state also increases with decrease of
μ. We calculated U (μ) dependencies for parameters used in
Fig. 1(f) for two representative momentum values k = 0.144K
[Fig. 3(b)] and k = 0.462K [Fig. 3(c)] for which norm sharing
between two arrays is equal in the linear limit. Nonlinearity
substantially affects norm sharing; see blue and red curves
with circles showing the fraction of the norm concentrated
in honeycomb Sh and Lieb Sl arrays, respectively. While for
smaller momentum value the nonlinear interface state extends
more into the Lieb array with increase of its norm, for larger
momentum the tendency is reversed and the interface state
extends more into the honeycomb array. In both cases one
observes delocalization (typically at one side of the inter-
face) when μ reaches the border of the topological gap. For
certain Bloch momentum values k selected in between the
values mentioned above one can observe the transition be-
tween the Sl > Sh and Sl < Sh cases upon variation of energy
μ. Representative profiles of the nonlinear interface states
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FIG. 5. Nonlinear interface states from the same family with
Sl > Sh (a), (b), and Sl < Sh (c), (d). Bloch momentum k = 0.18K,
while corresponding μ values are shown in the panels. The dis-
tributions are shown within 0 � x � 55 and −3Y /2 � y � +3Y /2
windows. All quantities are plotted in dimensionless units.

illustrating such a transition at k = 0.18K are shown in Fig. 5.
While the state in Figs. 5(a) and 5(b) has Sl > Sh (i.e., it is
concentrated more in the Lieb array), its counterpart with a
smaller norm from Figs. 5(c) and 5(d) corresponds to Sl < Sh

(i.e., it is concentrated more in the honeycomb array). Thus,
norm sharing in interface states can be effectively controlled
also by nonlinear effects.

V. MODULATIONAL INSTABILITY AND INTERFACE
QUASISOLITONS

Even though dominating nonlinearity in a polariton in-
sulator is repulsive, modulational instabilities are not ex-
cluded and they may occur for nonlinear interface states,
provided that second-order dispersion for a corresponding
branch of interface states has the proper sign. The second-
order dispersion coefficient ∂2ε/∂k2 for two interface states
from the top gap in Fig. 1(f) is shown in Fig. 6(a) as a
function of momentum k [we use the same color scheme
as in Fig. 1(f) to denote different branches]. One can see
that there exist broad momentum intervals, where dispersion
coefficient ∂2ε/∂k2 > 0 (effective polariton mass is negative)
and the development of modulational instability is possible.
Indeed, propagation of slightly perturbed nonlinear interface
states with corresponding values of momentum k reveals their
fragmentation into sets of bright spots along the interface.
Representative evolution of peak amplitudes a± = max|ψ±|
of spin-positive and spin-negative wave-function components
in the perturbed nonlinear interface state with k = 0.25 and
μ = 4.53 [corresponding dispersion coefficient is indicated
by the blue dot in Fig. 6(a)] is shown in Fig. 6(b). Spatial
distributions of the wave-function modulus in the strongest
ψ− component corresponding to the green dots in Fig. 6(b)
are depicted in Fig. 7(a). One can see that at sufficiently
large times the nonlinear edge state is fragmented into sets
of weakly radiating localized bright spots. These spots can
be considered as precursors for the formation of the interface
quasisolitons. We term such states quasisolitons because they
are metastable topologically protected objects traveling along
the lattice interface, but they experience very slow reshaping

FIG. 6. (a) Second-order dispersion coefficient ∂2ε/∂k2 for in-
terface states from the top gap of Fig. 1(f) versus momentum k.
The color scheme is the same as in Fig. 1(f). (b) Peak amplitudes
of the two components ψ± in the perturbed nonlinear interface state
with k = 0.25K and μ = 4.53 versus time. (c) Peak amplitudes of
components of the quasisoliton, constructed using the bright spot
marked with a green circle in Fig. 7(a), versus time. All quantities
are plotted in dimensionless units.

due to radiation into the bulk and higher-order dispersion, in
contrast to the usual solitons that stay invariable in the course
of propagation.

Indeed, if one isolates one of these spots, for example, the
spot indicated by the green circle in the pattern at t = 1450, by
imposing a localized envelope on the corresponding wave pro-
file and using such a wave packet as an input in the evolution
of Eq. (1), one observes [Fig. 7(b)] the immediate formation
of a stable quasisoliton moving along the interface of the
two arrays with small amplitude oscillations [Fig. 6(c)] and
practically without radiation, into the bulk of the arrays. The
velocity of motion practically coincides with the correspond-
ing derivative ∂ε/∂k, while the direction of motion is defined
by the sign of this derivative (notice that swapping the order
of the arrays across the interface would result in inversion of
the direction of motion). Small-amplitude waves remaining
behind the quasisoliton and visible in distributions at different
moments of time are bound to the interface and appear be-
cause higher-order dispersion effects are unavoidable in this
system and come into play for relatively well-localized states,
like the one excited in Fig. 7(b). However, as one can see from
the amplitude dependencies in Fig. 6(c), such radiation does
not lead to a noticeable decrease of amplitude even at times
t ∼ 103; i.e., interface quasisolitons are exceptionally robust
objects. The quasisoliton illustrated in Fig. 7(b) has most of
its norm concentrated within the honeycomb array. For other
properly selected values of momentum one may also excite
quasisolitons with practically equal norm sharing between two
arrays or solitons concentrated mainly within the Lieb array.
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FIG. 7. (a) Distributions of |ψ−| in different moments of time corresponding to the green circles in Fig. 6(b) in the perturbed nonlinear
interface state. (b) Unidirectional motion of the quasisoliton obtained from the bright spot marked with a green circle in (a). All distributions
are shown within −10 � x � 40 and −50Y � y � +50Y windows. All quantities are plotted in dimensionless units.

VI. IMPACT OF LOSSES AND COHERENT PUMP

Polariton condensates are inherently dissipative; hence the
impact of losses on edge states should be considered. Such
losses can be compensated by the external pump that can be
coherent or incoherent. In this section, we consider a coherent
pump. We show that nonlinear edge states can be excited by
such a pump and now they stem from the balance of not
only dispersion and nonlinearity, but also from the balance
between the pump and losses. Importantly, a coherent pump
offers additional tools for control of the propagation direction
and density distribution in edge states.

FIG. 8. (a) Peak amplitude of the dominating spin-negative edge
state component versus μ for the pump amplitude h± = 0.0025,
0.0035, and 0.0045 at k = 0.3K, γ = 0.008. Arrow indicates the
direction of the increase of the pump amplitude. Stable and unstable
states are shown in black and red, respectively. The vertical red
dashed line marks the energy of the linear pump-free edge state.
(b–d) Amplitude distributions of the spin-positive and spin-negative
components, corresponding to the dots in (a).

The modified version of Eq. (1) accounting for the pump
and losses can be written as [51]

i
∂ψ±
∂t

= −1

2

(
∂2

∂x2
+ ∂2

∂y2

)
ψ± + β

(
∂

∂x
∓ i

∂

∂y

)2

ψ∓ ± �ψ±

+R(x, y)ψ± + (|ψ±|2 + σ |ψ∓|2)ψ±
− iγψ± + H±(y, t ). (5)

Here we assume equal losses γ = 0.008 in two spinor
components and polarized pump H± = h± exp(iky + iμt ),
where h± is the pump amplitude. We assume that the pump
is periodic in the y direction and that its frequency determines
the value of detuning μ. Below we consider a linearly po-
larized pump, h+ = h−, and fix the pump momentum to k =
0.3K [there is only one interface state in the top gap for this
momentum value; please see Fig. 1(f)]. Changing the detuning
μ within the topological gap leads to resonant excitation of the
interface state, when detuning μ matches the energy of the
linear interface state in a corresponding conservative system
[see dashed line in Fig. 8(a)]. However, because our system
is nonlinear, tilted resonance may lead to bistability (coexis-
tence of several states) for sufficiently large pump amplitudes.
Typical resonance dependencies of the amplitude of the spin-
negative component on detuning μ are shown in Fig. 8(a),
clearly revealing bistability. It should be stressed that the
localization degree of the excited interface state dramatically
depends on detuning μ and pump momentum k. In Figs. 8(b)–
8(d), the distributions |ψ±| are displayed for several detuning
values that are marked by dots in Fig. 8(a). In Figs. 8(b) and
8(c), the energies are the same but the localization of the
two interface states is considerably different. The state that is
close to the resonance tip is strongly localized on the interface
[Fig. 8(b)]. Localization rapidly decreases as one moves away
from resonance; see Fig. 8(d). We also checked the stability
of the interface states in the presence of the pump and losses.
For large pump amplitudes the states from the upper branch
of the resonance curves close to the tip may be unstable, but
the largest part of the upper branch is stable.
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VII. CONCLUSIONS

Summarizing, we have predicted that the interface be-
tween honeycomb and Lieb arrays of polariton microcavity
pillars can support linear and nonlinear interface states, whose
number and localization properties in two different arrays
can be controlled by various means, including modification
of array depths, Bloch momentum, and nonlinear effects.
We obtained unidirectional interface quasisolitons as a re-
sult of development of modulation instability for nonlinear
edge states. Bistability of the nonlinear interface states in
the presence of a coherent pump is also demonstrated. Our
findings may be extended to various photonic and matter-wave
settings involving interfaces between two different topological
periodic media.
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