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Conical Diffraction from Approximate Dirac Cone States
in a Superhoneycomb Lattice

Yongfeng Kang, Hua Zhong, Milivoj R. Belíc, Yiqing Tian, Kaichao Jin, Yanpeng Zhang,
Fuli Li, and Yiqi Zhang*

Superhoneycomb lattice is an edge-centered honeycomb lattice that
represents a hybrid fermionic and bosonic system. It contains pseudospin-1/2
and pseudospin-1 Dirac cones, as well as a flat band in its band structure. In
this paper, we cut the superhoneycomb lattice along short-bearded
boundaries and obtain the corresponding band structure. The states very
close to the Dirac points represent approximate Dirac cone states that can be
used to observe conical diffraction during light propagation in the lattice. In
comparison with the previous literature, this research is carried out using the
continuous model, which brings new results and is simple, direct, accurate,
and computationally efficient.

1. Introduction

Recently, a family of two-dimensional (2D) photonic lattices
has been introduced, which display interesting energy band
structures.[1–4] Lattices with more than one type of Dirac cone
states may exhibit curious novel physical phenomena, like coni-
cal diffraction, pseudospin-mediated vortices, beam localization,
and Klein tunneling.[5–10] Among different lattices, the honey-
comb and Lieb lattices have stirred a lot of interest, since they play
an important role in motivating and clarifying intriguing proper-
ties of novel photonic structures.[11–16] In the previous research
it has been displayed that the superhoneycomb lattice combines
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the honeycomb and the Lieb lattice
and displays the properties of both. It
contains two different kinds of Dirac
cones, with an intriguing consequence
that the superhoneycomb lattice repre-
sents a hybrid fermionic and bosonic
system.[17,18] The first two bands as well
as the last two bands in the superhon-
eycomb lattice intersect at a set of dia-
bolic points at six corners of the first Bril-
louin zone, forming Dirac cones. Such
Dirac cones are of the pseudospin-1/2
type. At the same time, other Dirac
points, located at the intersection of the
flat and other bands correspond to the

pseudospin-1 type. Thus, the system represents a rare but fasci-
nating hybrid fermionic and bosonic physical system.
A key feature related to conical diffraction is the existence of

Dirac cones in the band structure. Not all photonic lattices sup-
port conical diffraction but only those with Dirac cones that de-
pend on the symmetry of the structure. In the vicinity of a Dirac
cone, the dispersion is nearly linear, which indicates that the first-
order derivative of the energy band is constant and the second-
order derivative is zero. This means that the radius of the beam
which excites the Dirac cone state will linearly grow with the
propagation distance and give rise to the conical diffraction. Thus
far, the related topic has been widely investigated in the hon-
eycomb lattice,[19] Lieb lattice,[20] and the edge-centered square
lattice,[10,21–23] to name a few. It is also worth mentioning that
the Dirac cones associated with different pseudospins can be ob-
served throughmediated vortex generation, which is indicated in
the formation mechanism of conical diffraction.[8,9,18]

We notice that in the previous literature, conical diffraction
in superhoneycomb and honeycomb lattices was obtained based
on the tight-binding method. Based on the continuous model, in
principle one can excite the Dirac cone state by using Gaussian
beams that are shifted relative to the Dirac points in the inverted
space. However, these Gaussian beams will inevitably excite the
bulk states as well. In a direct method, one can calculate the Dirac
cone state first and then use such a state as incident, to observe
conical diffraction. But, for the superhoneycomb lattice as well as
the honeycomb lattice, the first Brillouin zone is not square, and
one has to manage very tricky mathematical procedures that in-
volve coordinate transformations several times. So, how to obtain
a clean conical diffraction based on the continuous model is still
an open problem, ready to be investigated more thoroughly. We
have already introduced one effectivemethod to excite Dirac cone
states and observe conical diffraction.[23] Such a method does not
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Figure 1. a) The geometry of superhoneycomb lattice. b) 2D band structure. c) First Brillouin zone with high symmetry points. d) Side view of the band
structure in (ky, 𝛽) plane. We shift the band structure along ky direction to set it in the region ky ∈ [0, Ky].

rely on the mathematical transformations and is also quite di-
rect. In this paper, we will use this method to investigate conical
diffraction in the superhoneycomb lattice, based on the continu-
ous model.

2. Superhoneycomb Lattice Band Structure
and States

The propagation of a laser beam in photorefractive crystals can
be described by the Schrödinger-like paraxial wave equation that
can be written as[24]:

i
𝜕𝜓(x, y, z)

𝜕z
= − 1

2k0

(
𝜕2

𝜕x2
+ 𝜕2

𝜕y2

)
𝜓(x, y, z)

−
k0Δn(x, y)

n0
𝜓(x, y, z)

(1)

where 𝜓(x, y, z) is the envelope of the light beam during
propagation and x, y, and z are the transverse and longitudinal
coordinates, respectively. Further, k0 = 2n0𝜋∕𝜆0 is the wave num-
ber, with the wavelength chosen as 𝜆0 = 532 nm.We take an SBN

crystal as an example, with n0 = 2.35 as the ambient refractive
index and with Δn as the refractive index change, defined as

Δn(x, y) = −1
2
n0

3𝛾33E0
1

1 + I(x, y)
(2)

where the bias field is E0 = 1 kV cm−1, the electro-optic coeffi-
cient 𝛾33 = 280 pmV−1, and I(x, y) is the intensity pattern which
will induce a superhoneycomb lattice in the SBN crystal, through

I(x, y) =
||||||
∑
m,n

a exp

(
−
(x − xm,n)

2 + (y − ym,n)
2

w2

)||||||
2

(3)

In principle, I(x, y) should stand for the total intensity, which
should include the diffracted intensity and the incident beam in-
tensity |𝜓|2, but in practice, for computational convenience and
for avoiding to deal with a strongly nonlinear system, simplifying
assumptions are often made.[10,24] Here, a represents the beam
amplitude, (xm,n, ym,n) is the beam center with (m, n) being inte-
gers, and w determines the beam width. The distance between
two next-nearest-neighbor lattice sites is taken as d = 60𝜇m,
and w = 0.72𝜇m. The geometry is presented in Figure 1.
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In Figure 1a, the superhoneycomb lattice induced in the SBN
crystal is shown. We would like to note that we take the SBN
crystal[25–33] as our target system; however, our research can
be simply extended to other systems, e.g., femto-second laser
direct-writing waveguide arrays,[2,13,34–36] cold atoms,[37,38] atomic
vapors,[39,40] and exciton-poaritons,[41–48] to name a few.
For convenience, we transform Equation (1) into a dimension-

less equation by replacing x, y, and zwith xr0, yr0, and zLz, where
Lz = k0r

2
0 is the Rayleigh range. Here, r0 represents the typical

width of the real incident beam. So, we obtain

i
𝜕𝜓(x, y, z)

𝜕z
= − 1

2

(
𝜕2

𝜕x2
+ 𝜕2

𝜕y2

)
𝜓(x, y, z)

−
k0

2r0
2Δn(x, y)
n0

𝜓(x, y, z)

(4)

Similar to the honeycomb lattice, there is no single site in one
unit cell, and the two unit vectors are not orthogonal to each
other.[7] The two vectors can be written as v1 = (3d,

√
3d) and

v2 = (3d,−
√
3d), with the angle between them being 𝜋∕3. To cal-

culate the band structure, we first rotate the frame from (x, y) to
(X, Y) through the relation
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0 0 1
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x
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⎤⎥⎥⎦
with 𝜃 = 𝜋∕6. The two vectors become V1 = (2

√
3d, 0) and V2 =

(
√
3d, 3d), and the angle between them is still 𝜋∕3. Then, we

transform the lattice into the frame (x′, y′) through the relation
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with 𝜑 = 𝜋∕3. Now, the two unit vectors become v′1 = (2

√
3d, 0)

and v′2 = (0, 2
√
3d), which are orthogonal in the frame (x′, y′). Ac-

cording to the transforming relations, Equation (4) can be rewrit-
ten as:
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In Equation (5), we have replaced (x′, y′, z′) by (x, y, z), which is
the usual representation.
We aim to solve Equation (5) presuming the solution in the

form 𝜓(x, y, z) = u(x, y) exp(i𝛽z), with 𝛽 being the propagation
constant that will define different bands. Substituting this so-
lution into the equation, one obtains the following eigenvalue

problem,

𝛽u(x, y) =2
3
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(6)

Equation (6) is solved using the plane-wave expansion method,
to obtain the corresponding band structure shown in Figure 1b.
We label the five bands in Figure 1b as 𝛽1–𝛽5 from top to bottom,
which includes a flat band 𝛽3 in the middle of the band structure.
In the first two bands 𝛽1 and 𝛽2 and the last two bands 𝛽4 and
𝛽5, there are six Dirac cones that reside at the corners of the first
Brillouin zone. Since these Dirac cones are associated with the
fermionic system, we define them as Type-F Dirac cones.
At the intersection of the 𝛽2 and 𝛽4 bands, another kind of

Dirac cone is obtained, which is related to the bosonic system and
therefore, we define it as a Type-B Dirac cone. Clearly, Type-F and
Type-B Dirac cones are corresponding to the pseudospin-1/2 and
pseudospin-1[17,18] systems, respectively. In Figure 1c, we show
the first Brillouin zone marked with a dashed hexagonal with
high symmetric points K, K′, and 𝚪. To show the band structure
more clearly, we also project the band structure onto the (ky, 𝛽)
plane, as shown in Figure 1d, but in the region ky ∈ [0, Ky].
It is well known that the first-order derivatives d𝛽∕dkx and

d𝛽∕dky of the band structure correspond to the velocity com-
ponents of the states during propagation, and the second-order
derivatives d2𝛽∕dk2x and d2𝛽∕dk2y are the corresponding disper-
sions. The incident beam that excites the flat bandwill remain un-
changed during propagation, and the excited states of the Dirac
cone will display conical diffraction.[18] However, it is not easy to
obtain theDirac cone state directly due to the complexmathemat-
ical transformations above, because one has to do inverse trans-
formations. Therefore, we do not adopt such a method to obtain
the Dirac cone state, but take a relatively simple method to ap-
proach the Dirac cone state.
We assume that the lattice is periodic in the y direction and

truncated along the x direction, with the short-bearded bound-
aries; the geometry of the truncated superhoneycomb lattice is
shown in Figure 2. The upper right panel of Figure 2 shows the
truncated lattice and the related band structure is shown in the
left panel. Here, Ky = 2𝜋∕Dy, with Dy =

√
3d. The band struc-

ture is quite similar to that shown in Figure 1d, except that there
are edge states between the upper two and the bottom two bands.
Considering the position of theDirac cones, we show the states in
the right panels of Figure 2, which correspond to different mark-
ers placed in the band structure to the left. Since the states are at
the interface of the bulk and edge states, the light energy occu-
pies almost all the lattice sites. Taking the upper two states as an
example, one finds that the light intensity profiles at the bound-
aries are almost the same but quite different in the bulk. The sim-
ilarity and the difference come from the degenerated edge states
and different bulk states (different in the 𝛽1 and 𝛽2 bands), re-
spectively. We believe that the states shown in Figure 2 are quite
close to the Dirac cone states, and conical diffraction can be easily
observed if they are taken as incident.
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Figure 2. Band structure (left panel) of the truncated superhoneycomb lattice with short-bearded boundaries (right-top panel), and state intensity profiles
(right-bottom panels) corresponding to the markers in the band structure.

3. Conical Diffraction

Now, we check the propagation of such approximate Dirac cone
states, obtained in Section 2, and try to form a comprehensive un-
derstanding of conical diffraction in the superhoneycomb lattice.
As the first step, we choose the Type-F Dirac cone state (the red
hollow circle marked in Figure 2), superposed with a wide Gaus-
sian beam as the incident, and the beam intensity distributions at
selected normalized distances are drawn in Figure 3a1–a3. One
finds that conical diffraction indeed appears during propagation,
which demonstrates that the Dirac cone state is well excited. The
input beam is a solid circle at the initial place [Figure 3a1], and
it spreads linearly along radial direction during propagation, to
form a ring-like structure with a constant thickness,[49] as shown
in Figure 3a2, a3.
One also notes that there appears a notch without beam in-

tensity at the bottom of the ring structure, symmetric about the
x = 0 line. The appearance of the notch is due to the fact that
only one Dirac cone state is excited, which is different from the
notch appearance in a honeycomb lattice reported previously in
ref. [7,10]. If Gaussian beams are used to excite the Dirac state,
a pair of states (marked with red hollow and green solid circles
in Figure 2) could be excited simultaneously, without notches in
the conical diffraction. As a result, one could predict that if the
approximate Dirac cone state marked with the green solid circle
in Figure 2 is launched, a conical diffraction will still form, but
with a notch appearing on the top of the ring. The correspond-
ing numerical simulation is exhibited in Figures 3b1–b3, which
verifies the prediction.
Now, it is natural to suggest exciting the Dirac cone states by

using the statesmarked with red hollow and green solid circles in
Figure 2 simultaneously, and obtain a conical diffraction without

Figure 3. Beam intensity at different distances during propagation, dis-
playing the formation of conical diffraction. The propagation distance is
shown in the right-bottom corner of each panel. a) Diffraction of the Dirac
state marked by the red hollow circle in Figure 2, multiplied by a Gaus-
sian envelope. The input beam transforms into a ring with two bright
rings of constant thickness. b) Setup is as in (a), but for the state marked
by a green solid circle in Figure 2. c) Combination of the intensity pro-
files in (a) and (b). The panels are shown in the window −139 ≤ x ≤ 139,
−139 ≤ y ≤ 139.
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Figure 4. Figure setup is as Figure 3, but for the states marked with trian-
gles in Figure 2

a notch. However, a simple superposition of the two approximate
Dirac cone states will not help reach such a goal definitely. The
reason is due to the limitation of the eigenvectors obtained based
on the eigenvalue problem, which are gauge-independent, and
the phase difference among the states is not fixed, which could
be 𝜋, 𝜋∕2, or something else. Therefore, we only consider the
amplitude of the states and add them simply; the results are dis-
played in Figure 3c1–c3. One finds that the conical diffraction
ring is complete and intensity is uniform along the ring.
Taking the same procedure, we proceed to study the conical

diffraction of the approximate Dirac cone states that are marked
by the magenta hollow and azure solid triangles in Figure 2. The
numerical results are presented in Figure 4, which is in the same
setup as Figure 3. Clearly, one finds that the results in Figure 4
are quite similar to those in Figure 3. For the beam which excites
the Dirac cone state marked with the magenta hollow triangle in
Figure 2, conical diffraction is with a notch at the bottom of the
ring, as shown in Figure 4a1–a3. While if the beam excites the
state marked with the cyan solid triangle, conical diffraction is
with a notch at the top of the ring, as Figure 4b1–b3 display. In
Figure 4c1–c3, a complete conical diffraction ring is observed if
the amplitudes of the conical diffractions with notches are com-
bined.
It is worth mentioning that in the superhoneycomb lattice,

Type-F Dirac points contain two inequivalent Dirac cones at theK
and K′ points. The results obtained in the above investigation are
at theK points [please see Figure 1c]. For the conical diffraction at
K′ points, we can also get the analogous results, but the notches
in the conical diffraction during propagation will be opposite to
those of the K points, which can be viewed as the mirror process
of the one at the K points, which is proven in ref. [23]. For the
sake of brevity, we do not show the results associated with the K′

points in the paper.

Figure 5. a1–a3) Conical diffraction of the state marked with a blue solid
square in Figure 2. b1–b3) Setup is as (a1)–(a3), but for the state marked
with a green solid square. c1–c3) Setup is as (a1)–(a3), but for the state
marked with a red solid star.

As a comparisonwith the conical diffraction fromType-FDirac
cones, utilizing the same approach, we investigate the conical
diffraction from the Type-B Dirac cones. Since the Dirac cone at
the 𝚪 point is pseudospin-1 type that is bosonic-like, it is funda-
mentally different from the fermionic-like Dirac cones at K and
K′ points. They necessarily involve a dispersionless flat band with
an infinite effectivemass, hosting compact localized states useful
for realizing strongly interacting phases of light and matter.[16,50]

However, the phenomena connected with conical diffraction are
still quite similar between the Type-B and Type-F Dirac cones, ex-
cept for the expansion speed. According to Figure 1b, one finds
that the first-order derivative of the Type-B Dirac cone is bigger
than that of the Type-F Dirac cone.
We present the relating results in Figure 5a1–a3 and 5b1–b3.

Without any doubt, the beam which excites the state of the Type-
B Dirac cone (the blue and green solid squares marked in Fig-
ure 2) also expands in the conical diffraction. Comparing with
the conical diffraction from Type-F Dirac cone, one can see that
the shape of the conical diffraction ring here is a perfect circle
without any notches, so that the intensity distribution is not only
symmetric about the x = 0 but also about the y = 0 axis. In ad-
dition, the radius of the conical diffraction at a shorter distance
z = 1668 in Figure 5 is comparable with that at z = 2780 in Fig-
ure 4. The disappearance of the notch in the conical diffraction
is due to the fact that the approximate Dirac cone state includes
a pair of Dirac cone states. This is possible, because if 𝜓1 and 𝜓2,
which can only excite one Dirac cone state, are solutions of this
linear system, any linear combination of the two solutions is also
a solution.
Another convenient property of our method is its robustness.

If a bulk state that is marked with a star, which is close to the
Type-B Dirac cone in Figure 2, is launched, it also can excite the
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Dirac cone state, and obtained conical diffraction is displayed in
Figures 5c1–c3. The reason is that this state is very close to the
Dirac state at𝚪 point, in which theDirac cone state still occupies a
large region. Hence, the conical diffraction can still be observed.
In comparison with the ring in Figure 5a1–a3 and 5b1–b3, the
ring in Figure 5c1–c3 is not so perfect. If one chooses the bulk
state far from the Dirac cone, it will not excite the Dirac cone
state during propagation.
In reality, from the intensity profile of the approximate Dirac

cone state one can often directly predict whether the conical
diffraction rings will possess a notch or not. In Figures 3a1 and
4b1, the incident beams exhibit strip-like profiles along the y di-
rection, while in Figures 3b1 and 4a1, more energy of the inci-
dent beams is distributed along the x direction. From such non-
circularly symmetric incident beams, the conical diffraction rings
will possess notches. In Figure 5a1, b1, one finds that the inci-
dent beam is circularly symmetric, so there is no notch in the
conical diffraction ring. In Figure 5c1, the incident beam is also
non-circularly symmetric, so the conical diffraction ring is not as
perfect as that in Figure 5a3, b3.

4. Conclusion

In summary, we have successfully observed conical diffraction
in the superhoneycomb lattice, based on the continuous model,
through adopting approximate Dirac cone states calculated from
the truncated superhoneycomb lattice with short-bearded bound-
aries. The method we have utilized is direct, accurate, efficient,
and easy to follow. We have found conical diffraction from Dirac
cones not only at points K and K′ but also at the 𝚪 point of the
superhoneycomb lattice. Whether the conical diffraction rings
possess a notch or not depends on the intensity profiles of the
approximate Dirac cone state. If it is circularly symmetric, then
there are no notches and the conical diffraction rings are perfect.
We believe our research provides a more feasible way to prepare
the incident beam and conditions for observing conical diffrac-
tion and other interesting topics related to the conical diffraction
in real experiments.
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