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ABSTRACT
We introduce a class of topological lasers based on the photonic Floquet topological insulator concept. The proposed system is realized as a
truncated array of lasing helical waveguides, where the pseudomagnetic field arises due to twisting of the waveguides along the propagation
direction that breaks the time-reversal symmetry and opens up a topological gap. When sufficient gain is provided in the edge channels of the
array, the system lases into topological edge states. Topological lasing is stable only in certain intervals of the Bloch momenta that ensure a
dynamic, but stable balance between the linear amplification and nonlinear absorption leading to the formation of breathing edge states. We
also illustrate topological robustness of the edge currents by simulating lattice defects and triangular arrangements of the waveguides.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5121414., s

An important property of topological insulators is the existence
of topologically protected states at their edges with energies inside a
topological gap and connecting two bands with different topological
invariants. In real space, such edge states may demonstrate unidi-
rectional propagation and topological robustness to the lattice and
edge distortions.1,2 Originated in solid-state physics, the concept of
topological insulators is now interdisciplinary. It has also been intro-
duced in mechanical,3 acoustic,4,5 atomic,6–9 photonic,10–24 opto-
electronic,25–29 and many other systems, where diverse potential
applications of topologically protected transport are envisioned.
Recent progress in the subarea of photonic topological insulators is
described in, e.g., reviews.30,31

Floquet topological insulators are a special case in the family of
photonic realizations of topological systems, where a system is also
periodic in an evolution variable, which can be either time or a lon-
gitudinal coordinate. Following the first proposal of such a system in
semiconductor quantum wells,12 Floquet topological insulators have
been realized with honeycomb arrays of helical waveguides.18 In the
latter case, the waveguide helicity gives rise to the pseudomagnetic
field breaking the time-reversal symmetry and leading to the appear-
ance of the unidirectional edge states. A helical waveguide array is a
photonic analogue of the Haldane system32,33 in a high-frequency
driving limit, and it can be used to verify the anomalous quantum

Hall effect. A variety of new phenomena were theoretically predicted
or experimentally observed with helical waveguide arrays, including
anomalous topological insulators,19,20 topologically protected path
entanglements,34 unpaired Dirac cones,35 topological edge states in
quasicrystals,21 solitons,36–38 topological Anderson insulator,22,39,40

topological phases in synthetic dimensions,24 guiding light by artifi-
cial gauge fields,41 and others. Note that driven topological systems,
such as helical arrays, may be characterized by special topological
invariants.42

Topological phases of matter are nowadays under active inves-
tigation not only in conservative but also in dissipative settings;
see, for example, Refs. 43–46. Among the most exciting opportu-
nities in this direction is the realization of lasing in topological edge
states in active systems that promise remarkable stability of topolog-
ical lasers, inherited from robustness and resistance to the disorder
of conservative topological systems. Theoretically topological lasers
were proposed in photonic crystals.47 Later, they were realized in
one-dimensional polaritonic and photonic structures employing the
Su-Schrieffer-Heeger model,48–52 which, however, did not allow
authors to demonstrate topological currents due to the reduced
dimensionality. Two-dimensional topological lasing was very
recently observed in photonic crystals53 and lattices of coupled-ring
resonators54,55 and proposed theoretically in polaritonic arrays.56
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In these static systems, edge states appear either due to the exter-
nal magnetic field53,56 or due to judicious engineering of coupling
between elements leading to the Haldane model.54,55 At the same
time, our proposal offers advantages of not using external mag-
netic fields, operating at optical frequencies, and relying on conven-
tional nonlinear transparent materials. This offers a clear advantage
in comparison with coupled-resonator arrays, where required com-
plex couplings are particularly sensitive to shifts of resonators, and
may be sensitive to disorder. In addition, helical waveguide arrays
are not planar structures and therefore will allow the observation
of fully three-dimensional wavepacket dynamics in structures of the
practically arbitrary geometry.

The aim of this work is to show that such Floquet topologi-
cal lasers exhibiting stable disorder- and defect-immune lasing in
topologically protected edge states can be implemented using trun-
cated honeycomb arrays of helical waveguides written or fabricated
in the nonlinear optical material with gain saturation. Broken time-
reversal symmetry guarantees the existence of unidirectional edge
states that can lase, when spatially inhomogeneous gain is provided
for them. Nonlinear losses result in the stabilization of the nonlin-
ear edge states at certain Bloch momenta determining their group
velocity.

We describe dynamics of light in Floquet topological lasers
using the nonlinear Schrödinger equation for the field amplitude
that in dimensionless units takes the form

i
∂ψ
∂z
= −

1
2
∇

2ψ−[Rre(x, y, z)−iRim(x, y, z)]ψ−∣ψ∣2ψ−iγψ−iα∣ψ∣2ψ,
(1)

where ψ = (κ2w2n2re/nre)1/2E is the scaled field amplitude; x, y are
the transverse coordinates normalized to the characteristic trans-
verse scale w; z is the propagation distance scaled to the diffrac-
tion length κw2; κ = 2πnre/λ is the wavenumber; nre and nim (nim
≪ nre) are the real and imaginary parts of the unperturbed refrac-
tive index of the material, respectively; n2re and n2im are the real
and imaginary parts of the nonlinear refractive index, respectively;
γ = κ2w2nim/nre is the coefficient of linear losses that are assumed
uniform; and α = n2im/n2re is the scaled coefficient characterizing
nonlinear losses stemming from all sources (i.e., intrinsic nonlin-
ear losses in the material, and it can also account for gain satura-
tion in the first approximation). Furthermore, we consider focusing
cubic (Kerr) nonlinearity, typical for many solid materials, including
optical fibers, but the Floquet laser can be realized in the defocus-
ing case too. We assume that the Floquet laser is composed from
a honeycomb array of helical waveguides that modulates the linear
refractive index Rre(x, y, z) = pre∑n ,mQ(x′ − xn, y′ − ym), where pre
= κ2w2δnre/nre is the scaled modulation depth, xn, ym are the
nodes of the honeycomb grid, x′ = x − r0 sin(ωz), and y′= y + r0
− r0 cos(ωz), where r0 is the helix radius, Z = 2π/ω is the helix period,
and Q = exp[−(x2 + y2)2/d4] is the function describing the profile of
individual waveguides of width d [see Fig. 1(a) with schematic array
representation and Fig. 4(c)]. The separation between the waveg-
uides in the array is a. We assume that the array is truncated along
the x-axis to form two zigzag edges and that gain is provided only
on its left edge Rim(x, y, z) = pim∑q , lQ(x′ − xq, y′ − yl), where xq,
yl are the coordinates of edge waveguides [see green waveguides in
Fig. 1(a)], while pim = κ2w2δnim/nre ≪ pre is the gain amplitude.
The array is periodic in y with period Y = 31/2a. Results do not

FIG. 1. (a) Schematic illustration of the truncated helical waveguide array. Amplify-
ing edge waveguides are shown as green and waveguides with losses in the bulk
are shown as brown. (b) Quasienergies β of linear modes supported by conser-
vative truncated helical array vs Bloch momentum k. (c) Velocity β′ (solid circles)
and dispersion β′′ (open circles) of the edge states vs Bloch momentum k. Red
(green) circles correspond to the edge states from the left (right) edges of the array
and black circles correspond to bulk modes. Here and below, helix radius r0 = 0.5,
period Z = 6, waveguide width d = 0.4, separation a = 1.6, array depth pre = 8.9,
and linear loss γ = 0.05.

change qualitatively for z-independent gain acting only inside the
edge waveguides. It should be noted that by moving into the coordi-
nate frame corotating with the waveguides x→ x′ and y→ y′, Eq. (1)
can be rewritten in the form

i
∂ψ
∂z′
= −

1
2
[∇ + iA(z′)]2ψ − [Rre(x′, y′) − iRim(x′, y′)]ψ

−
1
2
r2

0ω
2ψ − ∣ψ∣2ψ − iγψ − iα∣ψ∣2ψ, (2)

where A = r0ω[−cos(ωz′), sin(ωz′)] is the gauge potential and Rre,im
do not depend on z′ = z. Furthermore, we select parameters of the
helical waveguide array in accordance with recent experiments;18 see
caption to Fig. 1.

Dissipative helical arrays exhibiting gain in certain waveguides
can be fabricated in different ways. The most tried approach relies on
the direct laser writing with femtosecond pulses available in a broad
range of transparent materials,57 including those containing ampli-
fying dopants. Thus, various waveguides were already realized in Er-
doped active phosphates,58 silicates,59 tellurites,60 Baccarat61 glasses,
and also in lithium niobate62 allowing the realization of inhomoge-
neous parametric gain used for observation of parity-time symme-
try.63 Another viable alternative is the infiltration of hollow photonic
crystal fibers with helical channels with active index-matching liq-
uids.64,65 In the particular case of doped chalcogenide glasses, such

APL Photon. 4, 126101 (2019); doi: 10.1063/1.5121414 4, 126101-2

© Author(s) 2019

https://scitation.org/journal/app


APL Photonics ARTICLE scitation.org/journal/app

as GaLaS or AsSe with a nonlinear index n2re ∼ 1 × 10−17 m2/W
and a nonlinear absorption coefficient ranging from n2im ∼ 2
× 10−19 m2/W to n2im ∼ 1 × 10−17 m2/W depending on the compo-
sition, where the possibility of lasing has been already demonstrated
experimentally,66–68 for the characteristic transverse scale and an
unperturbed refractive index of nre ∼ 2.81 at the wavelength of
λ = 1.08 μm, one finds that the dimensionless helix period of Z = 6
used in simulations below corresponds to a distance of ∼9 mm (i.e.,
20 cm-long sample, corresponding to a dimensionless propagation
distance of z ∼ 120, would contain ∼22 periods of the structure suffi-
cient for observation of at least the initial stage of transition to stable
lasing; see Fig. 5); the dimensionless parameter pre = 8.9 corresponds
to a real refractive index modulation depth δnre ∼ 9 × 10−4, while the
parameter pim = 0.1 corresponds to δnim ∼ 1 × 10−5 (amplification
coefficient ∼1.1 cm−1). The helix radius used below corresponds to
5 mm.

First, we consider topological properties of a conservative linear
helical waveguide array by setting γ, α, pim = 0 and neglecting non-
linearity in Eq. (1). The eigenstates ψ(x, y, z) = u(x, y, z)exp(iβz + iky)
of Eq. (1) are Bloch waves, where u is localized in x: ux→±∞ → 0 and
periodic both in y and z directions: uz+Z = uz and uy+Y = uy, k is the
Bloch momentum along the y-axis, β is the quasienergy. The latter is
the periodic function of k with period K = 2π/Y and is defined mod-
ulo ω = 2π/Z due to longitudinal periodicity of the array. A typical
quasienergy spectrum for the helical array is presented in Fig. 1(b).
Since we consider the real-world continuous system, the quasienergy
spectrum was calculated using the following approach. First, Bloch
modes ψst

i = u
st
i (x, y) exp(iβz + iky) from two top bands of the static

truncated array with straight channels were obtained using a plane-
wave expansion method. The number of such modes is 2n, where n
is the number of waveguides in one y-period of the array (unit cell).
Each such mode ψst

i , normalized as (ψst
i ,ψst

j ) = δij, where the Her-
mitian product involves the integral over one unit cell of the array,
was propagated in a helical array for one period Z. Rotation couples
modes from the first two bands (coupling to the lower bands can
be neglected, since they remain well-separated). The output distri-
butions ψout

j corresponding to input ψst
j were then projected on the

initial basis of modes ψst
i that yield the 2n × 2n projection matrix

Hij = (ψst
i ,ψout

j ), whose eigenvalues are Floquet exponents exp(iλj).
Quasienergies are found as βj = λj/Z; their imaginary part is neg-
ligible as long as radiative losses are small, which is the case for
parameters used below.

Waveguide rotation opens the topological gap with the edge
states existing for K/3 < k < 2K/3 and the zigzag-zigzag interface
[Fig. 1(b)]. The width of the gap increases with an increase in the
helix radius r0 or decrease in the rotation period Z, but so do also
radiative losses, so for each Z, there is a certain optimal r0. There
are two topological edge states in the gap—red curve corresponds
to the states on the left edge that move in the positive y-direction
and green curve corresponds to the right edge states moving in the
negative y-direction. Black circles correspond to bulk modes. First
β′ = ∂β/∂k and second β′′ = ∂2β/∂k2 derivatives of the quasienergy
that quantify the group velocity and dispersion of the edge states
are shown in Fig. 1(c). Inversion of the waveguide rotation direction
also inverts the direction of edge currents. The sign and magnitude
of β′′ determines domains of the Bloch momentum, where modu-
lational instability of the edge state can develop in the presence of
nonlinearity in a conservative case (thus, for focusing nonlinearity,

this is possible when β′′ < 038), but in a dissipative system, such insta-
bilities may be suppressed by linear and nonlinear losses, as shown
below). An array with the bearded edges can be analyzed similarly
and the edge states were found for k < K/3 and k > 2K/3.

Our system retains its topological properties in the presence
of the spatially uniform linear losses γ and gain pim concentrated
in the edge channels. The edge states are well localized, and hence,
they have the largest overlap with the gain area relative to the
other modes, and therefore, they experience preferential amplifi-
cation. We have found that there exists a sharp threshold in pim
above which lasing in edge states occurs. Most efficient amplifi-
cation occurs for the edge states with Bloch momenta k ≈ K/2,
which are most localized around the edge. It should be stressed
that above the lasing threshold, multiple Bloch waves from a cer-
tain interval of k values around K/2 start to lase. This interval of
k values, where the edge states get amplified, increases with pim
until lasing becomes possible in the entire topological gap. Because
gain was provided on the left edge only, the right edge states were
attenuated.

To achieve stable lasing, we now add focusing nonlinearity
and nonlinear absorption into the system. This leads to the appear-
ance of attractors—nonlinear edge states performing periodic stable
breathing in the course of propagation. It should be stressed that
because several Bloch modes experience amplification above the las-
ing threshold, the appearance of such a stable breathing state is a
result of nonlinear competition between multiple amplified states
with different spatial structures in the presence of nonlinearity and
nonlinear absorption—the dynamics typical for a laser. A typical
breathing dynamics of the edge state is illustrated in Figs. 2(a)–2(c).
Being a stable attractor, this state was excited using a linear conser-
vative state with k = K/2 as an initial condition. After some transient

FIG. 2. (a) Typical evolution of the peak amplitude in a stable nonlinear edge state
in the Floquet laser at pim = 0.13 and k = 0.5K and (b) and (c) representative field
modulus distributions at z = nZ and z = (n + 1/2)Z. Examples of the nonlinear edge
states at k = 0.5K, pim = 0.15 (d) and pim = 0.21 (e); k = 0.4K, pim = 0.15 (f); and
k = 0.55K, pim = 0.15 (g). The edge states in (b)–(d) are stable, while edge states
in (e)–(g) are unstable. In all cases, α = 0.5.
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stages, the state has evolved into completely stable nonlinear dissi-
pative mode existing due to the balance between nonlinearity and
diffraction, gain and losses, that exactly replicates its transverse pro-
file after each period Z. The amplitude of this nonlinear edge state
shows complex, but regular periodic oscillations without damping
or growth, and the period of these oscillations coincides with the
helix period Z = 6. Figure 2(a) shows 30 of these periods to stress
that the state is practically stable. Amplitude oscillations notably
increase with the increasing gain pim. Comparison of wave profiles
at z = nZ [Fig. 2(b)] and z = (n + 1/2)Z [Fig. 2(c)] shows slightly
larger penetration of the latter state into the depth of array. Increas-
ing the gain amplitude leads to a gradual expansion of the dissi-
pative state into the depth of the array [Figs. 2(d) and 2(e)] and
may finally cause its destabilization [Fig. 2(d) shows a state from the
boundary of the stability domain, while the state in Fig. 2(e) is unsta-
ble]. The extent of the edge states away from the edge and into the
crystal strongly depends on the Bloch momentum k and increases
for the quasienergies approaching the gap boundaries [Figs. 2(f)
and 2(g)].

To prove that nonlinear dissipative edge states reported here
are topological, we traced families of such states by gradually increas-
ing gain amplitude pim. Since the amplitude of the lasing state
exhibits complex behavior over one helix period [see Fig. 2(a)],
we introduce a new quantity—averaged amplitude aav = Z−1

∫
(n+1)Z
nZ ∣ψ∣maxdz. This amplitude is depicted in Fig. 3(a) as a function

FIG. 3. Average amplitude (a) and quasienergy (b) of the nonlinear edge state
vs gain amplitude pim at k = 0.5K for the different values of nonlinear absorption,
α = 0.1, 0.2, and 0.3 (the direction of increase of α is shown by arrows). Lower
and upper dashed lines in (b) indicate quasienergy of the linear edge state and the
border of the topological gap for k = 0.5K. (c) Quasienergy of the nonlinear edge
state vs gain amplitude pim for k1 = 0.45K and k2 = 0.55K, at α = 0.5. The upper
dashed line indicates the border of the gap, identical for k1 and k2, while two lower
dashed lines indicate energies of linear edge states, which are different for k1 and
k2. Stable branches are shown in black and unstable branches are shown in red.

of pim for k = K/2 and different values of the nonlinear absorption
coefficient α. Moreover, we introduced quasienergy β of the non-
linear dissipative edge states by analogy with quasienergy of linear
conservative states. It can be determined from phase ϕ accumulated
by the edge state over one helix period β = ϕ/Z, where the phase
ϕ is calculated numerically from the product (ψz=nZ , ψz=(n+1)Z)
= U exp(iϕ), where U is the norm of the state per one unit cell
(y-period). The dependencies β(pim), calculated for the same val-
ues of nonlinear absorption α as in aav(pim) curves, are shown in
Fig. 3(b). The presence of the lasing threshold in pim is obvious in
Fig. 3(a)—it corresponds to the point where the averaged amplitude
of the edge state becomes nonzero. The lasing threshold is minimal
for the Bloch momentum k = K/2 (in this case, pim ≈ 0.1) and it
increases for other momentum values reaching maximal values at
k → K/3 or k → 2K/3, the property connected with the decreasing
overlap of the edge states for latter momentum values with gain
landscape leading to less efficient amplification. The quasienergy
β of the nonlinear edge state at its generation threshold coincides
with that of the conservative linear state, as indicated by the bottom
dashed line in Fig. 3(b), and it increases almost linearly with increas-
ing gain until it reaches the upper edge of the topological gap, as indi-
cated by the top dashed line in Fig. 3(b). Thus, nonlinear edge states
bifurcate from linear ones, once gain pim exceeds the correspond-
ing k-dependent threshold. This is illustrated in Fig. 3(c), where
dependencies β(pim) for different momentum values k1 = 0.45K and
k2 = 0.55K clearly start at different levels coinciding with quasiener-
gies of corresponding linear edge states from the red branch of
Fig. 1(b). If quasienergy of the nonlinear edge state moves out of
the topological gap for a given k, this state acquires a nonzero back-
ground inside the array due to coupling to bulk modes; thus, we
truncate the aav(pim) and β(pim) dependencies in Fig. 3 accordingly.
Note that in Fig. 3(c), the upper edge of the gap is the same for two
presented k values.

We also tested the stability of all obtained dissipative edge
states by perturbing them with 5% amplitude noise and model-
ing their long-distance propagation on huge transverse windows
(100 y-periods) to accommodate for all possible perturbations that
could lead to instability of these states. The outcome is that for
k = K/2, considerable portions of branches of nonlinear states close
to the lasing threshold are stable. In Fig. 3, stable families are marked
with black dots, while the unstable ones are marked with red dots.
Two observations can be made: increasing gain eventually leads
to the destabilization of the nonlinear states, but higher nonlin-
ear absorption extends stability intervals [Fig. 3(a)]. The interval
of stability in gain amplitudes pim quickly decreases away from the
momentum k = K/2 so that all states with momenta k = 0.45K and
k = 0.55K were found formally unstable. However, corresponding
instabilities are very weak, so in practical experimental conditions
with finite samples and close to the lasing threshold, such states will
appear as stable ones too.

Stable propagation of the perturbed dissipative edge state in
the Floquet laser is illustrated in Figs. 4(a), 4(e), and 4(f) for
k = K/2. In Fig. 4(a), the peak amplitude |ψ|max of the launched state
is shown during propagation that clearly performs regular periodic
oscillations reflecting the helical structure of the waveguide array.
Note that the curve in Fig. 2(a) is a portion (in the range 4500 ≤ z
≤ 4680) of dependence in Fig. 4(a). Comparison of initial and
output field modulus distributions in Figs. 4(e) and 4(f), showing
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FIG. 4. Peak amplitude vs distance illustrating (a) stable propagation of the edge state at pim = 0.13 in a regular Floquet laser (c) and (d) [corresponding |ψ| distributions
are shown in (e) and (f)] and (b) stable propagation in the presence of the edge defect in the form of a missing channel (h) at pim = 0.12 [corresponding |ψ| distributions at
different times are shown in (i) and (j)]. Instability development is shown in (g) for the edge state with pim = 0.2. In all cases, k = 0.5K, α = 0.5, and input states were perturbed
by 5% amplitude noise.

only a small fraction of the actual integration window in y, reveals
the complete stability of the wave. In contrast, development of insta-
bility is shown in Fig. 4(g) for a large gain amplitude pim = 0.2. Even
in this case, despite the appearance of weak irregular modulations
travelling along the array interface and weak radiation into the bulk,
the state remains confined near the interface at any propagation
distance.

The striking advantage of dissipative topological edge states in
the Floquet laser is that they inherit topological protection of con-
servative edge states. To illustrate this, we remove one waveguide
from the left edge of the helical waveguide array. The real part of
the corresponding array is depicted in Fig. 4(h); there is a simi-
lar defect in the gain profile too (not shown). The dissipative edge
state launched into such a helical waveguide array at pim = 0.12
experiences some reshaping and amplitude oscillations due to the
presence of the defect [see Fig. 4(b)], but finally reaches a new sta-
tionary state shown in Figs. 4(i) and 4(j) for different distances. The
representative feature of these distributions is that the state is per-
turbed only locally around the defect and no radiation into bulk is
visible.

Finally, we note that practical Floquet lasers should be spatially
compact; hence, we also considered the triangular geometry of the
array, in which gain is again provided only in edge channels; see
Figs. 5(c) and 5(d). Such a geometry may be beneficial for the for-
mation of stable edge currents, because it allows us to effectively
eliminate instabilities to low-frequency perturbations. To simultane-
ously illustrate edge currents and formation of a stable attractor in
this system, we start with localized excitation on the left edge of the
triangle with a broad Gaussian envelope [Fig. 5(e)] and let it evolve
at pim = 0.13 and α = 0.5. Figures 5(f)–5(h) reveal clockwise circu-
lation of the state accompanied by its gradual expansion only along
the edge of the array. As mentioned above, inversion of the rotation
direction of waveguides inverts also the direction of the edge current
in this system. Already at distances z ∼ 500, the entire edge of the
array becomes excited. This is the most clear illustration of the fact
that our system behaves as a laser, where the final state forms due
to nonlinear competition of multiple amplified spatial states. Note
that in contrast to the infinite structure with a straight interface, we
now cannot control the output steady-state distribution by imposing
any momentum on the initial wave field—the system itself chooses

FIG. 5. Peak amplitude vs distance illustrating stable circulation in a triangular Floquet laser without edge defects (a) and with edge defects (b) at pim = 0.13 and α = 0.5.
Refractive index (c) and gain (d) distributions in the Floquet laser without defects and |ψ| snapshots (e)–(h) illustrating circulation in this structure. Refractive index (i) and |ψ|
distribution at a large distance (j) in the Floquet laser with two edge defects.
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which state wins the competition thereby determining the output,
which appears to be the same for a broad range of excitation con-
ditions. After some transient stages, the wave reaches a steady-state
profile depicted in Fig. 5(h), while the peak amplitude of the wave
stops changing [Fig. 5(a)]. Note the excellent localization near the
edge of the structure. To verify the topological protection of states in
this finite system, we introduced two defects to the triangular insu-
lator by removing two channels from the top and bottom edges;
the corresponding real part of the array is shown in Fig. 5(i). As
for the gain landscape, we removed only one channel on the bot-
tom edge, but kept the corresponding channel on the top one (not
shown here). Using the same initial excitation as in Fig. 5(e), we
arrived to the final steady-state profile shown in Fig. 5(j) that exhibits
local deformations only around defect channels. In the presence of
defects, the steady-state regime is reached at somewhat larger prop-
agation distances [see Fig. 5(b) with corresponding dependence of
peak amplitude on z]. Interestingly, deformed patterns on the top
and bottom edges look practically the same, which indicates that
the particular type of the defect (purely conservative or dissipa-
tive) is not important due to topological protection in the Floquet
laser.

Summarizing, we have investigated the topological lasing in
photonic Floquet topological insulators. We demonstrated that the
edge states in this system are topologically protected against large
structural perturbations and can be either dynamically stable or
unstable depending on the system parameters and, in particular, on
the gain amplitude. We demonstrated lasing not only for an ide-
alized infinite edge but also for a more practical triangular geom-
etry. This work provides a practically feasible scheme to obtain
topological lasing without the external magnetic fields.

This work was supported by the Fundamental Research
Funds for the Central Universities (Grant Nos. xzy012019038 and
xzy022019076), and the RFBR and DFG according to research
Project No. 18-502-12080.
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