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Parametric Type-II Dirac Photonic Lattices

Kaichao Jin, Hua Zhong, Yongdong Li, Fangwei Ye, Yanpeng Zhang, Fuli Li, Chunliang Liu,
and Yiqi Zhang*

Different from the Fermi surface of the type-I Dirac semimetal being a point,
that of the type-II Dirac semimetal is a pair of crossing lines because the Dirac
cone is tilted with open and hyperbolic isofrequency contours. As an optical
analogy, type-II Dirac photonic lattices have been also designed. Here, type-II
Dirac cones are reported in Lieb-like photonic lattices composed of identical
waveguide channels, and the anisotropy of the band structure is due to
neither the refractive index change nor the environment, but only the spatial
symmetry of the lattice; therefore, the proposal is advantageous and benefits
experimental observation. Conical diffractions and Klein tunneling in the
parametric type-II photonic lattice are investigated in detail. The results
provide a simple and experimentally feasible platform to study
two-dimensional topological photonic and other nonrelativistic phenomena
around type-II Dirac cones.

If a photonic lattice possesses Dirac cones[1] in its band struc-
ture, it can be called a Dirac photonic lattice . One of the most
famous Dirac photonic lattices is the photonic graphene,[2–9]

which is also known as the honeycomb lattice. In addition, the
Lieb lattice,[10–15] the kagome lattice,[16,17] the superhoneycomb
lattices,[18,19] and some others[20] can be also classified into Dirac
photonic lattices. It is worth mentioning that the Dirac cones of
these photonic lattices aforementioned are mostly type-I, even
though some of them are tilted. Actually, there are also type-II and
type-III Dirac cones.[21] Themain difference between them is that
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the Fermi surface of the type-I Dirac cone
is a point, that of the type-II Dirac cone
is a pair of crossing lines, and that of
the type-III Dirac cone is a line. In other
words, the isofrequency contours of the
type-I Dirac cones are closed, while those
of the type-II counterparts are open and
have hyperbolic profiles (e.g., on both +ky-
and −ky-directions). The isofrequency con-
tours of the type-III ones are also open,
but only have hyperbolic profiles on one
side (e.g., on either +ky- or −ky-direction).
Note that there is also a different definition
on the type-III degeneracy.[22] As a plethora
of efforts are being implemented to ex-
plore the type-II Weyl-like features[23–29]

both in condensed matter physics and
photonics, type-II Dirac objects attract on-
going attentions too,[30–36] especially in

photonics.[21,37–41] Different from ubiquitous type-I Dirac
cones, appearance of type-II Dirac cones demands either high
anisotropic lattice arrangement or accurate manipulation of
the lattice environment. Despite the difference, quasiparticles
corresponding to both the two types of Dirac cones are massless,
and can be described by the massless Dirac Hamiltonian,[42]

thereby Dirac materials become unique paradigms to explore
relativistic Dirac-related phenomena, such as Klein tunneling.[43]

Being a relativistic phenomenon, Klein tunneling means that
a massless particle can overpass a barrier higher than its en-
ergy freely. Surprisingly, this nonintuitive prediction was also
explained successfully in the frame of classical electromagnetic
theory and simulated and observed in classical systems, such as
deformed honeycomb lattice,[44,45] waveguide superlattices,[46,47]

matamaterials,[48] and pseudospin-1 photonic crystals.[49] As far
as we know, Klein tunneling in type-II Dirac photonic lattices is
still open to be explored.
In this work, we unveil type-II Dirac cones in novel but simple

lattice waveguide arrays constructed by identical waveguide chan-
nels that are transversely arranged in morphable lattice profiles
with three sites in one unit cell, via a controllable angle parame-
ter 𝜃 in the range [𝜋∕6,𝜋] (Figure 1). When the angle reaches its
supreme value, a dislocated Lieb lattice[50] that has both type-I and
type-III Dirac cones[21] is created.With the angle value decreased,
the lattice deforms with the type-III Dirac cones reducing into
tilted type-I Dirac cones. Further deformation of the lattice by re-
ducing the angle value, the type-I Dirac cones tilt even further and
evolve into the type-II Dirac cones gradually. Light modulation
and manipulation based on these various Dirac cones are eluci-
dated by the corresponding conical diffractions, and for the first
time, the Klein tunneling is demonstrated in the type-II Dirac
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Figure 1. a) Lattice with a controllable parameter 𝜃. Here, 𝜃 = 2𝜋∕3. b)
Lattice with 𝜃 = 𝜋, which is also the dislocated Lieb lattice. c) Lattice with
𝜃 = 𝜋∕3. d) Far-field diffraction pattern of the lattice in (c). The first Bril-
louin zone is shown by the dashed deformed hexagon. Unit cell of the
lattice includes three sites that are indicated by green, red, and blue colors
with letters A, B, and C. Other parameters: a = 1.4, p = 10, and d = 0.5.

photonic lattice. Our results provide a new design for type-II
Dirac photonic lattices, which has advantage of simplicity since
the appearance of the type-II Dirac cones is only dependent on
the spatial symmetry of the lattice.
Propagation of a light beam in a photonic lattice waveguide

array can be faithfully described by the Schrödinger-like paraxial
wave equation:

i
𝜕𝜓

𝜕z
= −1

2

(
𝜕2

𝜕x2
+ 𝜕2

𝜕y2

)
𝜓 −(x, y)𝜓 (1)

where the transverse (x, y) and longitudinal z-coordinates are nor-
malized to the characteristic transverse scale r0 and the diffrac-
tion length Ldif = kr20 , respectively; k = 2𝜋n0∕𝜆 is the wavenum-
ber with n0 being the background refractive index and 𝜆 the wave-
length. The lattice potential (x, y) = p

∑
n,m (x − xn, y − ym)

is composed of Gaussian waveguides  = exp(−x2∕a2x − y2∕a2y )
with p being the depths of two sublattices, ax,y waveguide widths,
and (xn, ym) the transverse location of each waveguide channel.
The lattice constant is labeled as d which is the distance be-
tween two nearest-neighbor sites. The photonic lattice can be
prepared by using, for instance, the femtosecond laser writing
technique in fused silica material[51–53] and the optically induced
technique in photorefractive crystals.[8,15,54] Taking the former
technique as an example, one can use the following parameters:
𝜆 = 633 nm, d = 15 μm, ax = ay = 10 μm. If we choose the trans-
verse scale r0 = 10 μm, the diffraction length Ldif = 1.4mm. The
lattice depth p = 10 corresponds to refractive index change of
7 × 10−4 in a real physical system.
The solution of Equation (1) can be written as 𝜓(x, y, z) =

u(x, y) exp(i𝛽z) with 𝛽 being the propagation constant (or “en-

ergy” of the quasiparticle) and u(x, y) the Bloch mode. Plugging
this solution into Equation (1), one obtains

𝛽u = 1
2

(
𝜕2

𝜕x2
+ 𝜕2

𝜕y2

)
u +(x, y)u (2)

which can be solved numerically by using the plane-wave ex-
pansion method. As a periodic function of Bloch momenta kx,y,
𝛽(kx, ky) is the band structure of the photonic lattice (x, y).
Clearly, photonic lattices with different geometries possess dif-
ferent band structures.[55] One may see the lattice transverse pro-
file shown in Figure 1a, which possesses three sites (labeled as
A, B, and C) in one unit cell. Now, we introduce another control-
ling parameter, the angle 𝜃 between sites B and C along verti-
cal y-direction, as shown by the zigzag line. Here in Figure 1a,
the angle 𝜃 = 2𝜋∕3. If the angle 𝜃 = 𝜋, one obtains the dislo-
cated Lieb lattice,[50] as shown in Figure 1b, which is different
from the traditional Lieb lattice.[11,12] One can change the an-
gle continuously to deform the lattice, and in Figure 1c, the lat-
tice with 𝜃 = 𝜋∕3 is shown. It is convenient to check the far-
field diffraction patterns[56] of the lattices, which can show the
corresponding Brillouin zones directly. According to numerical
simulations, one may find that the first Brillouin zones are de-
formed hexagons, and the smaller the angle, the larger the de-
formation of the hexagons. In Figure 1d, we only show the far-
field diffraction pattern of the lattice shown in Figure 1c. Since
the first Brillouin zone is always a hexagon, there must be al-
ways three sites in one unit cell no matter what the value of the
angle. Even though there are still three sites in one unit cell in
the lattice with 𝜃 = 𝜋∕3, the property may change greatly in com-
parison with those with 𝜃 = 2𝜋∕3 and 𝜃 = 𝜋. An explicit fact is
that under the tight-binding approximation, there are 2, 3, and
3 nearest-neighbor sites for sites A, B, and C, respectively, both
in Figures 1a and 1b. However in Figure 1c, the numbers are 4,
5, and 5. According to the geometry of the lattice in Figure 1c,
the locations of the six corners of the first Brillouin zone can be
obtained theoretically as

(
0,±

(20 + 8
√
3)𝜋

(19 + 8
√
3)a

)
and

(
± 2𝜋

(4 +
√
3)a

,±
(18 + 8

√
3)𝜋

(19 + 8
√
3)a

)

which are in accordance with the numerical results in Figure 1d.
By solving Equation (2) numerically, we obtain the band struc-

tures for the lattices in Figure 1, which are displayed in Figure 2.
In Figure 2a that corresponds to the lattice with 𝜃 = 2𝜋∕3 in Fig-
ure 1a, all the Dirac cones are tilted type-I. While in Figure 2b
that corresponds to Figure 1b, the Dirac cones between the top
and bottom bands are tilted type-I, but those between the middle
and bottom bands are type-III. When the angle decreases suc-
cessively to 𝜃 = 𝜋∕3, as shown in Figure 2c, all the Dirac cones
become type-II, because the group velocity along y (i.e., −d𝛽∕dky)
of the mode around the Dirac points does not change sign.
To understand the emergence of the type-II Dirac cones, we

theoretically analyze the couplings among sites in Figure 1c
by adopting the tight-binding approximation method and only
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Figure 2. a–c) Two-dimensional band structures corresponding to Fig-
ure 1a–c.

considering the nearest-neighbor interaction. The corresponding
Hamiltonian can be written as

 = t

⎡⎢⎢⎢⎣
2 cos(k ⋅ e2) eik⋅e1 e−ik⋅e1

e−ik⋅e1 2 cos(k ⋅ e2) eik⋅e3 + eik⋅e4

eik⋅e1 e−ik⋅e3 + e−ik⋅e4 2 cos(k ⋅ e2)

⎤⎥⎥⎥⎦ (3)

in which k = [kx, ky], e1 = [a, 0], e2 = [0, a], e3 = [
√
3a∕2, a∕2],

e4 = [
√
3a∕2,−a∕2], and t the coupling strength. The eigen-

values of Equation (3) are the band structure, but the analyt-
ical solution is hard to obtain. Even so, one still can obtain
the locations of the Dirac points, which are [0,±4𝜋∕3a] and
[±2𝜋∕(4 +

√
3)a,±2𝜋∕3a] between the top and middle bands,

and [0,±2𝜋∕3a] and [±2𝜋∕(4 +
√
3)a,±4𝜋∕3a] between the mid-

dle and bottom bands. Numerical band structure is displayed in
Figure 3a, which looks visually the same with that in Figure 2c al-
though quantitatively there are differences in the value of 𝛽. Since
all theDirac cones are type-II for this case, we take theDirac point
at [0, 4𝜋∕3a] as an example without loss of generality, and this
Dirac cone is shown in the inset of Figure 3a. Before going into
a subtle theoretical analysis on this type-II Dirac cone, it is nec-
essary to have a look at the corresponding cross sections in the
(kx, ky) plane with 𝛽 = 0 (Figure 3b), the (ky, 𝛽) plane with kx = 0
(Figure 3c), and the (kx, 𝛽) plane with ky = 4𝜋∕3a (Figure 3d). In
the 𝛽 = 0 plane, the intersection of the top and middle bands,
as shown in Figure 3b, exhibits two crossing lines.[21,23] In Fig-
ure 3c, the red and blue lines show the profile of the Dirac cone
in the cross section kx = 0 which clearly elucidates that the sign
of the slope d𝛽∕dky does not change along ky-direction. While
in Figure 3d, the profile of the Dirac cone in the cross section
ky = 0 is symmetric about kx = 0 (i.e., sign of d𝛽∕dkx changes),
which is similar to that for a (tilted) type-I Dirac points. To this
regard, if we expand the Hamiltonian in the infinitesimal region
(px = kx − kDx , py = ky − kDy ) around the Dirac point (kDx , k

D
y ), we

can only consider the component along ky-direction and let px = 0
safely. As a result, the corresponding Hamiltonian can be written
as

 = t

⎡⎢⎢⎢⎢⎣

√
3apy − 1 1 1

1
√
3apy − 1 −

√
3
2
apy − 1

1 −
√
3
2
apy − 1

√
3apy − 1

⎤⎥⎥⎥⎥⎦
(4)

The eigenvalues of this Hamiltonian are

𝛽1 =
3
2

√
3atpy, 𝛽2 =

5
6

√
3atpy, 𝛽3 =

2
3

√
3atpy − 3t (5)

Clearly, one may find the relation 𝛽1|py=0 = 𝛽2|py=0 = 0, which in-
dicates that the two bands are degenerated at the point (px =
0, py = 0)—the location of the Dirac point. One also finds that
d𝛽1∕dpy and d𝛽2∕dpy always have the same sign, therefore the ve-
locity does not change its sign around the Dirac point, and the
Dirac cone is type-II definitely.
If the incident beam can excite the Dirac cone states

properly, the beam will undergo conical diffraction during
propagation.[1,13,18–20,57,58] Since there are type-I, type-II, and type-
III Dirac cones in Figures 2b and 2c, we do not consider the Dirac
cones in Figure 2a and only excite these Dirac cone states in-
dicated by green and red circles, which can be achieved via the
method developed in refs. [19,20]. After propagating a distance of
z = 200, the output intensity profiles of these excited Dirac cone
states are displayed in Figure 4, in which the dotted circles rep-
resent the location and size of the input Dirac cone states, and
the vertical and horizontal dashed yellow lines are the x = 0 and
y = 0 axes, respectively.
Corresponding to the tilted type-I Dirac cone surrounded by

the green circle in Figure 2b, the conical diffraction is displayed
in Figure 4a. Due to the tilt of the Dirac cone, the diffraction
speeds along +y- and −y-directions are different, so the diffrac-
tion ring exhibits an elliptic profile. If the type-III Dirac cone state
is excited, as indicated by the red circle in Figure 2b, the coni-
cal diffraction may only happen along −y-direction, because the
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Figure 3. a) Band structure according to Equation (3). The red circle labels the type-II Dirac point that is investigated, and its correspondingmagnification
is displayed in the inset. In the inset, the top and middle bands are in red and blue colors, respectively. b) Cross section of the Dirac cone in the (kx , ky)
plane with 𝛽 = 0. c) Cross section of the Dirac cone in the (ky, 𝛽) plane with kx = 0. d) Cross section of the Dirac cone in the (kx , 𝛽) plane with ky = 4𝜋∕3a.
In (b–d), colors of the lines are in accordance with those of the bands in the inset in (a).

group velocity along+y-direction−d𝛽∕dky ≈ 0. The numerical re-
sult is shown in Figure 4b, and indeed, the diffraction ring only
appears in the−y regionwith the location of the upper edge of the
ring nearly being invariant. Different from the type-I and type-
III Dirac cones, the sign of speed −d𝛽∕dky of the type-II Dirac
cone does not change along y-coordinate, so the whole conical
diffraction ring will move along either +y- or −y-direction. As
to the type-II Dirac cones marked with green and red circles in
Figure 2c, conical diffraction rings will move along +y-direction
because of −d𝛽∕dky > 0, and the corresponding numerical sim-
ulations are displayed in Figures 4c and 4d. Considering that all
the Dirac cones are tilted along ky-coordinate only, the conical
diffractions in Figure 4 are symmetric about x = 0. Note that the
diameter of the diffraction ring along x-coordinate in Figure 4d
is much bigger than that in Figure 4c, and the reason is that the
absolute value of −d𝛽∕dkx of the Dirac cone surrounded by the
green circle is smaller than that of the Dirac cone surrounded by
the red circle. In short, the spatial conical diffraction patterns can
be predicted from the profiles of the Dirac cones, and vice versa,
the properties of the Dirac cones are manifested into the conical
diffraction patterns.

Different from ordinary quantum mechanical tunneling, the
term Klein tunneling refers to a counterintuitive relativistic pro-
cess in which an electron can penetrate through a potential
barrier higher than the electron’s rest energy.[43] Since coni-
cal diffraction due to the type-II Dirac cones moves along +y-
direction spontaneously even with zero incident angle, it be-
comes an ideal paradigm to investigate the Klein tunneling. This
is indeed more advantage than that in type-I Dirac photonic lat-
tices, where the movement of the incident beam is required
through tuning the angle of incidence. What one is required to
do is setting up a barrier in the type-II Dirac photonic lattice at
a proper place where the conical diffraction will move toward.
Generally, the lattice potential superimposed with a barrier can
be written as

(x, y) =
{(x, y) if y ≤ y1 or y > y2,(x, y) + h if y1 < y ≤ y2

(6)

in which h > 0 is the height and y2 − y1 is the width of the
barrier. The type-II Dirac photonic lattice with a barrier is
shown in Figure 5a, and the incident type-II Dirac cone state
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Figure 4. a) Conical diffraction due to the tilted type-I Dirac cone marked
by the green circle in Figure 2b. b) Conical diffraction due to the type-III
Dirac cone marked by the red circle in Figure 2b. c) Conical diffraction
due to the type-II Dirac cone marked by the green circle in Figure 2c. d)
Conical diffraction due to the type-II Dirac cone marked by the red circle
in Figure 2c. All panels are in the range −300 ≤ x, y ≤ 300. Dashed lines
are along x = 0 and y = 0. Dotted circles in each panel represent the input
beams.

Figure 5. a) Type-II photonic lattice with a barrier. b) Input type-II Dirac
state superimposed with a wide Gaussian, which is same as those used in
Figure 4 but with the beam center locating at (0,−120). c) Output of the
beam which exhibits Klein tunneling with h = 10, y1 = −58, and y2 = 48.
d) Klein tunneling with different height of the barrier. Panels in (b,c) are in
the range −300 ≤ x, y ≤ 300, and dashed lines are along x = 0 and y = 0.

(corresponding to the Dirac cone marked with the green circle
in Figure 2c) superimposed with a wide Gaussian that is placed
below the barrier is displayed in Figure 5b. The incident state will
exhibit conical diffraction during propagation, and meanwhile,
the conical diffraction pattern moves upward along +y-direction,
as in Figure 4c. Inevitably, the conical diffraction pattern will hit
on the barrier, and it will be reflected by the barrier by intuition.
Nevertheless, transmission of the conical diffraction pattern over
the barrier is completely possible if the barrier height is bigger
than 3—a requirement of Klein tunneling, because the “energy”
of the state at the Dirac point marked with the green circle in
Figure 2c is about 𝛽 ≈ 3. To track the Klein tunneling process,
we define a physical quantity named the transmission ratio, as

r =
PKT
P

with

P = ∫
+∞

−∞ ∫
+∞

−∞
|𝜓|2dx dy

and

PKT = ∫
+∞

−∞ ∫
+∞

y1

|𝜓|2dx dy
The transmission ratio t as a function of propagation distance
z for barriers with different height is shown in Figure 5d. Dis-
tinctly, the conical diffraction is almost reflected by the barrier
when the height is smaller than the “energy”; see the curves
corresponding to h = 1, 2 in Figure 5d. Klein tunneling starts
to happen if the barrier height is close to the “energy,” and this
is demonstrated by the curve with h = 3. Increasing the barrier
height further, the transmission ratio also grows, but numerical
simulations indicate that there is seemingly a saturable value
for the transmission ratio, which is ∼ 70%. The reason for not
reaching the perfect Klein tunneling is due to that the incident
beam in Figure 5b is not really “massless.” On one hand, the
Dirac cone state is approximately obtained and its corresponding
Bloch momentum is not exactly in the infinitesimal region
around the critical point. On the other hand, the superimposed
wide Gaussian beam is a “massive” object. The output amplitude
profile with h = 10 is displayed in Figure 5c, which clearly
manifests the Klein tunneling of the conical diffraction. Since
the conical diffraction still holds after penetrating the barrier,
excitation of the type-II Dirac cone mode is conserved.
Note that the steps of the barrier given by Equation (6) are

sharp. If this barrier is replaced by one with smooth steps, for
example, a super-Gaussian, which transforms the potential into

(x, y) = (x, y) + h exp(−y8∕w8)

with w = 50, one will not miss out on the finding that the Klein
tunneling is completely inhibited, which also demonstrates that
the phenomenon reported in Figure 5 is truly Klein tunneling.
The explanation of this inhibition is that the barrier with smooth
steps can be regarded as a combination of sub-barriers with
sharp steps, infinitesimal width, and different height. The coni-
cal diffraction will first encounter the sub-barrier with very small
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height upon its movement along +y-direction, and this height
is always smaller than the “energy” of the conical diffraction
beam which dissatisfies the requirement of appearance of the
Klein tunneling.
Summarizing, we have constructed a type-II Dirac photonic

lattice from the Lieb-like lattice by simply adjusting a angle pa-
rameter which only changes the spatial symmetry of the lattice.
Conical diffraction and Klein tunneling in this novel type-II Dirac
photonic lattice are discussed in detail.We believe that our results
may not only provide a feasible avenue on lightmanipulation, but
also help realize other topological photonic and analogize non-
relativistic phenomena in photonic lattices. In addition to pho-
tonics, we believe that the developed type-II Dirac lattice in this
work may also provide a completely new flatform for cold atoms
and acoustics.
A paper[59] on constructing type-II Dirac points by proposing

a band-folding scheme, and a paper[60] on symmetry-controlled
edge states in the type-II phase of Dirac photonic lattices, were
published after submission of this paper. We would like to em-
phasize that, in our work for the first time, we find the simplest
way to construct type-II Dirac points which only depends on the
spatial symmetry of the photonic lattice.
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