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The effect of competing nonlinearity on beam dynamics in parity-time (PT ) symmetric potentials is investi-
gated. By using numerical methods, the existence of gap solitons is demonstrated in the first Bragg band gap
of optical (PT ) symmetric lattices with competing nonlinearity. Meanwhile, the stability of such solitons is
analyzed through introducing a small perturbation to the solitary solutions. The abrupt annihilation of the
solitons during propagation demonstrates that the Bragg gap solitons inPT symmetric potentials are not sta-
ble. In comparison with the on-site gap solitons, the off-site gap solitons exhibit more robust properties dur-
ing propagation.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

In quantum mechanics, all physical observables correspond to the
eigenvalues of operators' demand that the eigenvalues should be real
and thus must be Hermitian. Yet in recent years a new concept has
been proposed in an attempt to extend the framework of quantum
mechanics into the complex domain. It is found that it is in fact pos-
sible even for non-Hermitian Hamiltonians to exhibit entirely real ei-
genvalue spectra as long as they respect parity-time (PT ) symmetry
[1–3]. PT symmetry means that the eigenfunctions of a Hamiltonian
are at the same time the eigenfunctions of the P̂ T̂ operator, that is
HP̂T̂ ¼ P̂ T̂H. Generally, the action of the parity operator P̂ is defined
by the relations p̂→−p̂; x̂→−x̂, whereas that of the time operator T̂
by p̂→−p̂; x̂→x̂; i→−i, where p̂ and x̂ represent the momentum
and position operators, respectively. From this point of view, it is
easy to find that a PT -symmetric Hamiltonian requires
p̂2=2þ V� −x̂ð Þ ¼ p̂2=2þ V x̂ð Þ, which indicates that the real part of
the complex potential should be an even function of position and
the imaginary part should be an odd one. It is noteworthy to stress
that this condition is just necessary but not sufficient.

To date, spatial solitons (localized bound states that can maintain
their shapes during propagation in a bulk media [4,5] or waveguide
[6]) in periodic optical lattices with PT symmetry are quite involved
[7,8,9,10,11]. In this article, we investigate the gap solitons in PT
symmetric lattices with competing nonlinearity for the first time.
The competing nonlinearity adopted in our model is the so-called
cubic–quintic (CQ) nonlinearity. CQ nonlinearity contains two parts
rights reserved.
(proportionally to the beam intensity and the intensity square, re-
spectively) with different signs, that the nonlinearity induced by the
beam is greatly affected by the intensity, i.e., with different function-
alities with respect to the intensity, the nonlinearity may change from
self-focusing to self-defocusing, or from self-defocusing to self-
focusing along the transverse profile. Even though it is reported that
stable (gap) solitons are demonstrated in PT symmetric lattices
with Kerr nonlinearity [7], in the models combined periodic potentials
[12] or the Bragg coupled-mode structure [13] and the CQ nonlinearity,
and in a complexGinzburg–Landau system [14], the resultswe obtained
here are quite different. The article is organized as follows: in Section 2,
we briefly introduce the general model equation for beam propagation
in PT symmetric lattices with competing nonlinearity. In Section 3,
firstly, we discuss the Bloch band structures of the complex potential
and give the diagrams of the structures. And secondly, we investigate
the on-site solitary solutions as well as the off-site solitary solutions in
the band gap. Last but not least, in order to do stability analysis of the
solitary solutions, we use beam propagation method to investigate the
propagation properties of the solitary solutions with small perturba-
tions. In Section 4 we conclude the article.

2. Theoretical model

We begin our analysis by considering optical wave propagation in
a competing nonlinearPT symmetric potential, which is governed by
the traditional normalized nonlinear Schrödinger equation as used in
previous literature [7]

i
∂ψ
∂z þ ∂2ψ

∂x2
þ A0 V xð Þ þ iW xð Þ½ �ψþ I−I2

� �
ψ ¼ 0; ð1Þ
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where I=|ψ|2 is the beam intensity, I− I2 correspond to a competing
CQ optical nonlinearity [15], A0[V(x)+ iW(x)] is the so called complex
potential, and in our simulation we take A0=5. In spatial domain, the
transverse coordinate x and the longitudinal coordinate z are scaled
to the input beam width x0 and the diffraction length Ldiff=n0k0x0

2,
respectively, where n0 is the background refractive index and
k0=2π/λ0. According to the necessary condition for a PT symmetric
potential mentioned above, the real and the imaginary parts of
the complex potential should satisfy the relations V(−x)=V(x),
W(−x)=−W(x), respectively. Similar to the previous literatures
[7,8,10,11], we consider a relatively simple case:

V xð Þ ¼ cos2 xð Þ; W xð Þ ¼ W0 sin 2xð Þ; ð2Þ

where W0 determines the amplitude of the imaginary part and π is
the period of the potential. Generally, the solution to Eq. (1) has the
form ψ(x)=ϕ(x)eiβz where ϕ(x) is the nonlinear eigenmode and β
is the corresponding real propagation constant. Plug the solution
into Eq. (1), we obtain

d2ϕ
dx2

þ A0 V xð Þ þ iW xð Þ½ �ϕþ
���ϕ 2ϕ−
��� ���ϕ 4ϕ ¼ βϕ:

��� ð3Þ
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Fig. 1. (a)–(c) Band structures corresponding to W0=0.2,0.6 and 0.8, respectively. The curv
eigenvalues as a function ofW0. In part I, all the eigenvalues are purely real; in part II, the eig
III, the eigenvalues are completely complex. The colored regions are the Bloch bands and th
In light of the fact that ϕ is a complex localized wavefunction, ϕ can
be written as ϕ=ϕR+ iϕI, where ϕR and ϕI represent the real part
and imaginary part, respectively. Substituting ϕR+ iϕI for ϕ in
Eq. (3), we end up with

d2ϕR

dx2
þ A0 VϕR−WϕIð Þ þ ϕ2

R þ ϕ2
I

� �
− ϕ2

R þ ϕ2
I

� �2
� �

ϕR ¼ βϕR;

d2ϕI

dx2
þ A0 WϕR þ VϕIð Þ þ ϕ2

R þ ϕ2
I

� �
− ϕ2

R þ ϕ2
I

� �2
� �

ϕI ¼ βϕI:

ð4Þ

3. Bragg gap solitons

Before solving for the localized solutions, we first analyze the lin-
ear properties of such a periodic complex potential by omitting the
nonlinear term in Eq. (3). As the Floquet–Bloch theorem demonstrated,
the eigenfunctions can be written in the following way

ϕ xð Þ ¼ wk xð Þexp ikxð Þ; wk xð Þ ¼ wk xþ πð Þ; ð5Þ

where k is the Bloch wave number. In this article we just consider the
case that k lies in the region −1≤k≤1, i.e., the first Brillouin zone.
Thus, we can calculate the Bloch band structures corresponding to the
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es are the Bloch bands and the yellow regions are the band gaps. (d) Real parts of the
envalues in the cone-like regions are real and those in other places are complex; in part
e blank regions are the band gaps.
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Fig. 2. (a) Power curves of solitons (solid curve for the on-site solitons and dashed curve for the off-site ones) in the Bloch band gap. (b)–(c) PT on-site soliton field profiles for
β=1 and β=2, respectively. (d)–(e) PT off-site soliton field profiles for β=1 and β=2, respectively. The real parts are plotted in blue curves and imaginary parts in red curves.
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complex potential by using the plane wave expansion method (PWE)
[16]. As pointed in the previous literatures [7,8,10], there is a critical
value W0

th=0.5, below which the eigenvalues are purely real. Above
the threshold the eigenvalues are partially complex. Further increasing
W0 to a certain value (the value is changing with A0, and for A0=5 the
value is about 0.78), bands will overlap each other, that indicates all the
eigenvalues are complex. In Fig. 1(a)–(c), we exhibit the three typical
band structures for W0=0.2, 0.6, and 0.8. The yellow regions are the
band gaps. In Fig. 1(d), the real parts of the eigenvalues changing with
W0 is depicted by the colored regions. The blue, red and green areas
are the first, second and third Bloch band regions, respectively. The
pink area represents the region where the first and second bands over-
lap each other. According to the critical points of W0, the bifurcation in
Fig. 1(d) is divided into three parts labeled I (0≤W0≤0.5), II
(0.5≤W0≤0.78) and III (0.78≤W0≤1) by two dashed lines.

Similar to the localized solutions in real potentials, in complex po-
tentials the localized solutions can be also divided into two catego-
ries: the on-site lattice solitons and the off-site lattice solitons [17].
And for W0b0.5, we solve the coupled Eq. (4) for the family of on-
site as well as off-site localized solutions with real eigenvalues locat-
ed in the Bragg band gap by using the relaxation method. In Fig. 2(a),
we exhibit the power of the on-site (solid curve) and off-site (dashed
curve) solitary solutions in Bragg band gap (0.54bβb2.78) for
W0=0.2. From Fig. 2(a), firstly we can see that the power of the
off-site solitons is bigger than that of the on-site ones, and secondly
we can see that the power for both two type solitons has a minimum
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Fig. 3. (a) The intensity of the on-site gap soliton (blue curve) and the index change induce
small perturbation; (c) the intensity of the off-site gap soliton (blue curve) and the index cha
(c) with a small perturbation. The parameters are W0=0.2andβ=1 for both solitons.
value at β very close to the right boundary of the band gap. Corre-
sponding to the red dots in Fig. 2(a), we display the localized solitary
solutions in Fig. 2(b)–(e). Comparing Fig. 2(b) with Fig. 2(c) and
Fig. 2(d) with Fig. 2(e), and considering the power curves shown in
Fig. 2(a), we can conclude that (i) the more localized the solitary so-
lution is, the lower the corresponding power is; (ii) very close to the
boundaries of the band gap, it is really hard to observe a solitary solu-
tion, for the localization becomes worse and worse.

As did in the previous work [18,19], stability analysis of the soli-
tons in PT symmetric potentials discussed in this article is also very
important. In Fig. 3, we show the propagation dynamics for the two
soliton solutions displayed in Fig. 2(b) and (d) with small perturba-
tions both on the amplitude and phase. It is clear to see that the
beams annihilate abruptly if the propagation distance exceeds a cer-
tain value, which is similar to the properties of a “soleakon” reported
in 2009 [20], but they do not share the same physical mechanism.
One main difference is that the input used by a soleakon is leaky
mode which is unbound state, while the input used in this article is
really bound state. The reason why the solitons are not stable lies in
the fact that defocusing nonlinearity does not support stable bright
solitons. As shown in Fig. 3(a) and (d), the index changes (red dashed
curves) induced by the humps of the gap solitons (blue curves) are
negative, that means the nonlinearity is defocusing. Anyway, in a
long range (e.g., 0bzb150 for the case shown in Fig. 3(b) the solitons
are relatively stable. In a physical point of view, if we take a soliton
beam with λ0=1.0 μm, n0=1.5, and x0=10 μm as the incidence, it
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can stably propagate about 2k0n0x02z≈28 cmwith a diffraction length
Ldiff≈1 mm. In comparison with the on-site gap solitons as shown in
Fig. 3(b), the off-site gap solitons as shown in Fig. 3(d) are much
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Fig. 4. (a) Bragg gap diagram changingwith A0 (the parameterW0=0.2), inwhich the semi-in
propagation (right panel) corresponds to the blue dot. (d-e) The solitary solution (left panel)
robust. Naturally, people may ask can the Bragg gap solitons in the
complex potentials with higher amplitude A0 be stable during propa-
gation? To answer this question, we first display the Bragg gap
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diagram changing with A0 as shown in Fig. 4(a), in which the two
red dots correspond to the unstable solitons we discussed in
Fig. 3 (A0=5). And then, wediscuss another two cases at A0=10
(blue dot) and A0=20 (green dot),as shown by Figs. 4(b–c) and
Figs. 4(d–e), respectively. According to the propagations, we can
conclude that the answer to the question is negative, for after a
relatively stable and breath-like propagation, the Bragg gap solitons
annihilate eventually.

4. Conclusion

In conclusion, the existence of Bragg gap solitons in periodic PT
symmetric potentials with CQ nonlinearity is demonstrated numeri-
cally. Even though the gap solitons we found are not stable, for they
will annihilate during propagation because of defocusing nonlinearity
they induced, they can still stably propagate over a long distance.
Contrast of the two propagations of on-site solitons and off-site soli-
tons, we find that the latter ones are more robust.
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