
Optics & Laser Technology 44 (2012) 1729–1732
Contents lists available at SciVerse ScienceDirect
Optics & Laser Technology
0030-39

doi:10.1

n Corr

Xi’an Jia

E-m
journal homepage: www.elsevier.com/locate/optlastec
Interactions of two humps of dipoles in anisotropic nonlinear media
Yiqi Zhang a,b,n, Yanpeng Zhang a, Meizhi Zhang c, Keqing Lu b,d

a Department of Electronic Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
b Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi’an 710119, China
c School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710061, China
d School of Information and Communication Engineering, Tianjin Polytechnic University, Tianjin 300160, China
a r t i c l e i n f o

Article history:

Received 22 November 2011

Received in revised form

23 December 2011

Accepted 1 January 2012
Available online 23 February 2012

Keywords:

Dipole

Anisotropic

Beam propagation
92/$ - see front matter & 2012 Elsevier Ltd. A

016/j.optlastec.2012.01.028

esponding author at: Department of Electro

otong University, Xi’an 710049, China.

ail address: zhang-yiqi@163.com (Y. Zhang).
a b s t r a c t

Propagation of dipoles and superposed dipoles in anisotropic nonlinear medium is investigated. The

two humps of the dipoles will repel each other if attraction between them is smaller than repulsion,

while if the former is larger than the latter, they attract. If there is phase gradient on the input dipoles

or the energy distribution of the dipoles does not along the boundary directions of the medium, the

dipoles will exhibit incomplete rotation during propagation.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Anisotropic nonlinearity that can be observed in photorefractive
crystal [1–5] has been studied almost exclusively in the last two
decades. As a nonlocal nonlinearity, solitons and their dynamics in
such a kind of nonlinear medium have also been greatly investi-
gated [6–10]. The previous researches predict that the waveguides
induced by solitons and their anomalous interactions in anisotropic
media can be used to produce optical logical devices in the future
[5,6]. In recent years, solitons in photonic lattices supported by
anisotropy were reported [11–15], which indicates that anisotropic
nonlinearity is still a research hot that attracts scientists.

Among a quiverful of the previous literatures on solitons in
anisotropic nonlinear media, dipole mode vector solitons [7,10]
and solitons composed by two mutually incoherent beams [5]
were discussed. Owing to the anisotropic nonlinearity, the
reported solitons would exhibit incomplete rotation, repulsion,
attraction and other properties. Seemingly similar to the previous
work, we investigate the propagation properties of coherent
dipoles and superposed of them in anisotropic nonlinear media
in this article. The dipoles used in the article are constructed (not
dipole solutions), which or superposed of which will be the input
when we execute the propagations. And the structure is orga-
nized as: in Section 2, we firstly introduce the theoretical model
that will be used briefly, secondly construct the dipoles, and lastly
display the induced refractive indices by the dipoles and super-
posed dipoles; in Section 3, we investigate the propagation
ll rights reserved.
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properties of the structures mentioned in Section 2 in detail,
and meanwhile compare the results with those in the previous
ones; in Section 4, we conclude the article.
2. Theoretical model

We begin our analysis by considering light wave propagates
in anisotropic nonlocal media, which is described by the set of
coupled equations, i.e., the so-called Zozulya–Anderson model
[2,3,5]

@

@z
�

i

2
r

2
� �

f ð r
!

,zÞ ¼ i
@j
@x

f ð r
!

,zÞ, ð1aÞ

r
2jþrj � r lnð1þ9f 92

Þ ¼
@

@x
lnð1þ9f 92

Þ, ð1bÞ

where r¼ x̂ð@=@xÞþ ŷð@=@yÞ and j is the dimensionless electro-
static potential induced by the light beam with the boundary
conditionsrjð r

!
-1Þ-0. Eq. (1a) without analytical solutions is

highly anisotropic. For a incident beam, it will induce a potential
in the medium according to Eq. (1b), and then the refractive index
change determined by the derivative of x of the potential in
Eq. (1a) will control the propagation properties of the incident beam.
Both two processes that guide beam propagation in the anisotropic
nonlocal self-focusing medium happen simultaneously.

To form a incident beam, we construct two orthogonal dipoles
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where A is the amplitude of the dipoles, B relates with the full
width of half maximum (FWHM) of the intensity of dipoles, and
A¼

ffiffiffiffiffiffiffi
2:3
p

, B¼ 2 throughout this paper. By superposing the dipoles
[16], as exhibited in Eq. (3), we can get a variety of beam
structures, which will be the input for Eq. (1a). Now let us go
back to Eq. (1a), in which the nonlinear refractive index Dn

induced by the beam is proportional to @j=@x, i.e. Dn� @j=@x.
Based on Eq. (1b), the refractive index distributions corresponding
to f 1�8ð r

!
,z¼ 0Þ are exhibited in Fig. 1(a–g), respectively. The

insets are the profiles of the refractive indices at places where
marked by white solid and dashed lines. For the dipoles, each
hump is surrounded by regions of both positive and negative Dn
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Fig. 1. The refractive indices induced by f1 (a), f2 (b), f3 (or f4) (c), f5 (d), f6 (e), f7 (f), and f

the white solid and dashed lines. The parameters are fixed: A¼
ffiffiffiffiffiffiffi
2:3
p

and B¼2.
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Fig. 2. (a) The transverse intensity profile of f1 along the x-axis with the propagati

propagation distance.
f 7;8 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRR
9D19

2
d2 r
!

RR
9D17D29

2
d2 r
!

vuut ðD17D2Þ: ð3Þ

In Fig. 1(a), the refractive index induced between the two
humps (f1) is negative along the x-axis, which means that the two
humps will repel each other during propagation. But in Fig. 1(b),
which is induced by f2, even though the Dn is always positive
along the y-axis, two humps may attract or repel each other, that
is because humps are out of phase which will lead repulsion
between them internally. Fig. 1(c), which depicts Dn induced by a
vortex (f3 or f4), indicates that the vortex will be divided into two
parts because of the focusing effect brought by the two max-
imums [3]. Fig. 1(d)–(g) is the Dn distribution induced by f 5�8,
respectively.
3. Numerical simulations and analysis

To present the trajectories of the dipoles (f1 or f2) it is sufficient
to record the transverse intensity distribution along the x- or
y-axis during propagation as shown in Fig. 2, because the dipole
will stay on the (x,z) or (y,z) plane without rotation. While
x
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8 (g), respectively. The insets in (a)–(e) show the refractive index distribution along
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considering the superposed dipoles which will rotate during
propagation, we present the corresponding 3D iso-surface plots
to record their trajectories (as shown in Figs. 3–5).

Fig. 2(a) is the propagation of f1 in the anisotropic nonlinear
medium, in which the two humps repel each other and the gap
between them increases linearly with the propagation distance.
Fig. 2(b) depicts the propagation of f2; the two humps first repel
each other and then attract, and during propagation the process
repeats to form a breath-like phenomenon. The explanation is
that the incident is a dipole, so that the two humps are out of
phase, and this will bring a repulsion between them. Even though
the refractive shown in Fig. 1(b) is positive, the attraction
between the two humps is smaller than the repulsion at the very
beginning. With the increasing of the gap between them during
propagation, the repulsion becomes weaker and weaker, and the
attraction will play a main role. In a word, it is the existence of
attraction and repulsion simultaneously between the two humps
that leads the breath-like behavior of f2. This is quite different
from the case shown in Fig. 2(c) displayed in Ref. [5], where the
incident is composed by two mutually incoherent beams, which
just attract each other during propagation.

Composed by superposition of two orthogonal dipoles, f3 and f4
are vortices, and their propagation are shown in Fig. 3. They cannot
maintain their radial symmetric shapes during propagation, because
the refractive indices induced by them are asymmetric, and this will
Fig. 3. The 3D iso-surface plots of the intensity of f3 (a) and f4 (b) with the propagati

corresponding to input (up) and output (down) beam, respectively.

Fig. 4. The 3D iso-surface plots of the intensity of f5 (a) and f6 (b) with the propagati

corresponding to input (up) and output (down) beam, respectively.

Fig. 5. The 3D iso-surface plots of the intensity of f7 (a) and f8 (b) with the propagati

corresponding to input (up) and output (down) beam, respectively.
lead to the split of them. The formation way of the vortices introduces
phase gradient to them, so that the splitting induced dipoles exhibit
rotation properties during propagation. And the rotations of the
dipoles (f5 and f6) shown in Fig. 4 are also because of the same
reason. In addition to the rotation, we can also see that the two
humps in Figs. 3 and 4 always repel each other during propagation.

In comparison with Figs. 3–5 which displays the propagation
of f7 and f8 also exhibits the rotation of the two humps. However,
the reason is quite different—the rotation shown in Fig. 5 is
driven by the focusing regions of the refractive indices induced
by the two humps, the energy of which distributes along the
diagonal directions (see the inputs shown in Fig. 5). According to
Fig. 1(f) and (g), the focusing regions of the refractive indices do
not parallel with the diagonal direction that they would pull the
humps to rotate. Thus, the humps will rotate during propagation
if the input has a phase gradient or the distribution of the energy
does not parallel with the x- or y-axis.
4. Conclusion

The propagation of dipoles in anisotropic nonlinear media is
investigated. There are both attraction and repulsion between the
two humps, if the attraction is bigger they will attract each other,
while if the attraction is smaller they repel. Phase gradient and
on distance. The right two panels next to f3 and f4 are the intensity distributions

on distance. The right two panels next to f5 and f6 are the intensity distributions

on distance. The right two panels next to f7 and f8 are the intensity distributions



Y. Zhang et al. / Optics & Laser Technology 44 (2012) 1729–17321732
energy distribution not parallel with the boundaries would drive
the dipoles to rotate during propagation.
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