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Fresnel diffraction patterns as accelerating beams
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Abstract – We demonstrate that beams originating from Fresnel diffraction patterns are
self-accelerating in free space. In addition to accelerating and self-healing, they also exhibit
parabolic deceleration property, which is in stark contrast to other accelerating beams. We find
that the trajectory of Fresnel paraxial accelerating beams is similar to that of nonparaxial Weber
beams. Decelerating and accelerating regions are separated by a critical propagation distance,
at which no acceleration is present. During deceleration, the Fresnel diffraction beams undergo
self-smoothing, in which oscillations of the diffracted waves gradually focus and smooth out at the
critical distance.

Copyright c© EPLA, 2013

Accelerating beams in free space or in linear dielectric
media have attracted a lot of attention in the past decade,
owing to their interesting properties which include self-
acceleration, self-healing, and nondiffraction over many
Rayleigh lengths [1–5]. Because Airy function is the solu-
tion of the linear Schrödinger equation [6,7], the reported
paraxial accelerating beams are all related to the Airy or
Bessel functions [8,9]. Nonparaxial accelerating beams,
for example Mathieu and Weber waves, are found by solv-
ing Helmholtz wave equation [10]. To display acceleration
such beams must possess energy distributions which lack
parity symmetry in the transverse direction.

Airy accelerating beams have also been discovered in
nonlinear media [11–13], Bose-Einstein condensates [14],
on the surface of a gold metal film [15] or on the surface of
silver [16,17], in atomic vapors with electromagnetically
induced transparency [18], chiral media [19], photonic
crystals [20], and elsewhere. A wide range of applications
of accelerating beams has already been demonstrated,
for example, for tweezing [21], the generation of plasma
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channels [22], material modifications [23], microlithogra-
phy [24], light bullet production [5], particle clearing [25],
and manipulation of dielectric microparticles [26].

In this letter we search for a new kind of accelerating
beams —those generated in the paraxial propagation of
Fresnel diffraction patterns. We display self-accelerating
and self-healing properties of such beams, first in one di-
mension (diffraction from a straight edge), and then in two
dimensions (diffraction from a corner). We demonstrate
that there exists a critical propagation distance, at which
acceleration stops; before the critical distance the diffrac-
tion patterns decelerate and after the critical distance they
accelerate. During the deceleration phase the interference
oscillations are suppressed, owing to the self-smoothing
effect. Both the deceleration and the acceleration phases
exhibit parabolic trajectories, which appear to be simi-
lar to the trajectories of nonparaxial Weber accelerating
beams.

We begin our analysis by briefly recalling Fresnel diffrac-
tion of plane waves from a straight edge located at x = 0,
which can be viewed as a one-dimensional (1D) case.
We assume x is the transverse coordinate and z the
propagation direction. The normalized amplitude of the
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Fig. 1: (Color online) (a) Cornu spiral of f(x) in eq. (1). (b) In-
tensity |f(x)|2 vs. x. (c) Intensity |g(x)|2 vs. x, with a = 0.01.
The background images in (b) and (c) depict the ideal and
attenuated diffraction stripes.

diffraction pattern is described by [27]
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are the Fresnel Cosine and Sine integrals [28]. The lim-
iting values of the Sine and Cosine integrals are C(∞) =
S(∞) = 1

2 and C(−∞) = S(−∞) = − 1
2 , and the real and

imaginary parts of f(x) in eq. (1) form the Cornu spiral, as
shown in fig. 1(a). The two branches of the spiral approach
the points P1 and P2 with coordinates ( 1√

2
, 1√

2
) and (0, 0),

respectively. Since the ideal f(x) is not square-integrable,

that is
∫ +∞
−∞ |f(x)|2dx → ∞, it possesses infinite energy,

which is not very realistic. However, that is not unusual.
The initial appearance of accelerated beams [6,8] at-

tracted some controversy, because they were nondiffract-
ing but also of infinite energy in free space and as such
not much physically realistic. However, the same features
are shared by plane waves, which are also unrealistic yet
very useful. The necessity of having finite apertures and
finite-size lenses in the production of nondiffracting beams
means that some diffraction must be present. By now, this
initial controversy has settled and nondiffracting Airy and
Bessel optical beams have become vibrant part of linear
optics. However, no such controversy exists in nonlinear
optics, where nondiffracting localized beams —solitons—
commonly appear. Hence, we introduce a Gaussian aper-
ture function exp(−ax2), to make f(x) square-integrable;
the modified f(x) is written as
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exp(−ax2),

(2)
in which a > 0 is the decay factor that connects with the
numerical aperture of the system.

Fig. 2: (Color online) (a) Propagation of g(x). The solid curve
depicts the acceleration of the main lobe. (b) Self-healing of
the beam, visible when the main lobe of g(x) is blocked by a
circular barrier (the white dot). (c) Solid and dashed curves
are intensities at z = 30 corresponding to (a) and (b), respec-
tively. (d) Same as (a), but for a much shorter propagation
distance. The deceleration phase of the propagation is clearly
visible. (e) Intensity profile at the critical propagation dis-
tance, marked by the dashed line in (d). The value of a is
0.002 in all the cases shown.

In figs. 1(b) and (c), we display the intensity profiles as
well as numerically observed interference stripes present
in f(x) and g(x). It is seen that the oscillating tail of
f(x) tends to 1 as x → ∞, whereas the tail of g(x) tends
to 0, which assures finite energy of the wave packet. In
addition, the energy distribution of g(x) is asymmetric,
which assures self-acceleration of the wave packet [1].

The linear Schrödinger equation for the slowly varying
envelope of the paraxial wavepacket in free space or in
linear dielectric media in 1D can be written as

∂g

∂z
+

1

2

∂2g

∂x2
= 0, (3)

in which x and z coordinates are normalized to some
typical transverse size of localized beams x0 and to the
corresponding Rayleigh range kx2

0, respectively. One
of the solutions to this equation is the celebrated Airy
beam [6]
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4

)
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)

,

which opened the whole field of linear nondiffracting
beams. For difference, we input the Fresnel finite diffrac-
tions pattern g(x) into eq. (3) and consider what happens.

The evolution of the finite-energy diffraction pattern
is shown in fig. 2(a). It is seen that the beam acceler-
ates to the right, even though it propagates in the linear
medium. In fact, the intensity maximum of the beam ac-
celerates during propagation along a parabolic trajectory,
as shown by the solid curve. This is characteristic of all
self-accelerating linear beams: high-intensity portions of
the beam accelerate, while the center of mass of the beam
actually moves along a straight line [9]. But, different
from the previous observations [1,2,29], in which the Airy
beam accelerates according to the asymptotics x ∝ z2, the
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diffraction pattern accelerates according to x2 ∝ z. This
is similar to the accelerating trajectory of a nonparaxial
Weber beam [10,30].

The self-healing can be seen clearly if a small barrier of
size 0.5 is placed in the path of the main lobe propagation,
at z = 0; the corresponding evolution is shown in fig. 2(b).
The output intensity profiles with and without the barrier,
shown in fig. 2(c), illustrate that the self-healing of the
main lobe is apparent.

It is worth noting that there appears a new phase at
a short propagation distance. To see the phenomenon
clearly, the short distance propagation from fig. 2(a) is
enlarged in fig. 2(d). We find that the diffraction pattern
undergoes −x2 ∝ z acceleration firstly, before accelerat-
ing according to x2 ∝ z afterwards. Therefore, the initial
acceleration process is actually a deceleration. During the
deceleration process, the oscillations are suppressed grad-
ually, which actually represents a self-smoothing effect. It
can be explained phenomenologically.

During deceleration, the interference fringes accumulate
at x = 0 point. Since diffraction stripes cannot appear in
the x < 0 region, x = 0 will be a focusing point for all
the lobes. At that point along the z-axis —the critical
point— the transverse motion stops, fringes are gone, and
the beam profile becomes smooth. This smooth intensity
profile is shown in fig. 2(e), recorded at the critical dis-
tance, marked by the dashed line in fig. 2(d). The profile
looks like a 1D Gaussian beam truncated by the Heavi-
side step function; there is no penetration into the x < 0
region. After the critical propagation distance, the oscil-
lations reappear and display the usual x2 ∝ z accelera-
tion. If one looks at the motion of the center of mass of
the beam, during deceleration it approaches steadily the
x = 0 wall, bounces off, and continues to move steadily
away, as the beam accelerates.

We now analyze the accelerating properties of a two-
dimensional (2D) diffraction pattern, by propagating
Fresnel diffraction from a right-angle corner located at
(x = 0, y = 0). The corresponding diffraction pattern
is described by
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according to eq. (1). To make the wave packet of finite
energy, we still introduce a Gaussian decaying aperture,
so that eq. (4) is modified as

G(x, y) = F (x, y) exp
[

−a(x2 + y2)
]

. (5)

The diffraction patterns based on eqs. (4) and (5)
are shown in figs. 3(a1) and (a2), respectively. It is
clear that the ideal 2D diffraction pattern is not square-
integrable, whereas the truncated one has finite energy,
similar to the 2D finite-energy Airy beam [1]. Furthermore,

Fig. 3: (Color online) (a1) Fresnel diffraction pattern at a
right-angle corner. (b1) and (c1) Fresnel diffraction pat-
terns with θ = π/3 and 2π/3, respectively. (a2)–(c2): trun-
cated Fresnel diffraction patterns according to (a1)–(c1) with
a = 0.02, respectively. (d1)–(f1): Fresnel diffraction pat-
terns from a wedge with angles π/3, π/2, and 2π/3, respec-
tively. (d2)–(f2): truncated diffraction patterns corresponding
to (d1)–(f1).

the right-angle corner diffraction can be easily gener-
alized to 2D acute or obtuse angle Fresnel diffraction,
as shown in figs. 3(b) and (c). This could be done,
for example, by utilizing the Lorentz transformation of
coordinates [31]:

x′ = x cosh[−(1/2) tanh−1(cos θ)]

+ y sinh[−(1/2) tanh−1(cos θ)],

y′ = x sinh[−(1/2) tanh−1(cos θ)]

+ y cosh[−(1/2) tanh−1(cos θ)],

where 0 < θ < π is the angle at the corner, and x′ and y′

the oblique axes coordinates. Substituting (x, y) by (x′, y′)
in eqs. (4) and (5), one transforms the Fresnel integrals
into the oblique diffraction patterns. Figures 3(b1) and
(c1) represent ideal diffraction patterns, while figs. 3(b2)
and (c2) show the corresponding truncated ones.

If the angle of the corner is bigger than π, it can be
viewed as a diffraction from a corner of a wedge. For
this case, the analytical expression for an ideal diffraction
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Fig. 4: (Color online) (a) Decelerating and accelerating trajec-
tories of the two-dimensional truncated diffraction pattern for
a = 0.002. The dot (•) marks the critical distance. Solid
and dashed curves correspond to the numerical and fitted
results. (b1)–(b3): two-dimensional finite-energy diffraction
beams shown at the input, at the critical point, and at the
output, respectively.

pattern can be written as
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Based on this formula and the Lorentz transformation,
one can obtain the 2D Fresnel diffraction pattern from a
wedge with an angle 0 < θ < π. In figs. 3(d)–(f), we
display diffraction patterns with θ being π/3, π/2, and
2π/3, respectively.

For the 2D propagation case, eq. (3) should be modified
into

∂G

∂z
+

1

2

(

∂2

∂x2
+

∂2

∂y2

)

G = 0. (7)

By inputting the diffraction pattern from fig. 3(a2) into
eq. (7), the evolution of the truncated 2D Fresnel diffrac-
tion pattern can be investigated. In fig. 4(a), we exhibit
the evolution trajectory of the main lobe that is projected
onto the x0z or y0z plane by the solid curve. It is seen that
the pattern displays acceleration along a parabolic pro-
file and that there is still a critical propagation distance,
marked by the dot (•) in fig. 4(a). To the left and right
of the dot, two pieces of parabola are seen. To roughly
fit the numerically obtained decelerating and accelerating

trajectories, we introduce two Ansätze as

x1 = 2
√
• − z1,

x2 = 2
√

z2 − •,

which are depicted in the figure by the dashed curves. As
is evident, the ansatzes fit the numerical results quite well.
We note that the fluctuations seen in the solid curve result
not from the oscillations in the profiles but from not having
high enough numerical accuracy. These fluctuations do
not affect the decelerating or accelerating trends visible
overall.

In figs. 4(b1)–(b3), we show the intensity images of the
2D diffraction pattern at the input (z = 0), the critical
propagation distance, and the output (z = 10), respec-
tively. Since there are no oscillations in the beam at the
critical distance, the self-smoothing effect is still in effect.
The maximum intensity profile, located at (x = 0, y = 0),
which is the decelerating destination of all the lobes, is still
described by the 1D case shown in fig. 2(e). In addition,
similar results hold for the cases shown in figs. 3(d2)–(f2);
they also display a critical propagation distance and the
self-smoothing effect. Therefore, we do not discuss here
the corresponding numerical results.

In conclusion, we have demonstrated that Fresnel
diffraction patterns can be viewed as accelerating beams,
which also exhibit self-accelerating and self-healing prop-
erties. Different from Airy accelerating beams, the new
accelerating beams introduced in this letter exhibit de-
celeration and strong self-smoothing effect at the criti-
cal propagation distance. Right at the critical distance
the oscillations in the Fresnel diffraction beam disappear,
and beyond this point the oscillations reappear again. It
is worth noticing that the accelerating process follows a
parabolic trajectory, similar to Weber beams; however,
the propagation can be divided into two regions. Be-
fore the critical propagation distance, the beam decel-
erates according to −x2 ∝ z; after the critical point,
the beam accelerates according to x2 ∝ z. Our re-
search not only demonstrates a new kind of accelerating
beam, but also broadens people’s understanding of Fresnel
diffraction.
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