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We investigate numerically the dynamics of optical vortex beams carrying different topological charges,
launched in a dissipative three-level ladder-type nonlinear atomic vapor. We impose the electromagnetically
induced transparency (EIT) condition on the medium. Linear, cubic, and quintic susceptibilities, considered
simultaneously with the dressing effect, are included in the analysis. Generally, the beams slowly expand during
propagation and new vortices are induced, commonly appearing in oppositely charged pairs. We demonstrate that
not only the form and the topological charge of the incident beam but also its growing size in the medium greatly
affect the formation and evolution of vortices. We formulate common rules for finding the number of induced
vortices and the corresponding rotation directions, stemming from the initial conditions of various incident
beams, as well as from the dynamical aspects of their propagation. The net topological charge of the vortex is
conserved during propagation, as it should be, but the total number of charges is not necessarily the same as the
initial number, because of the complex nature of the system. When the EIT condition is lifted, an enhancement
region of beam dynamics is reached, in which the dynamics and the expansion of the beam greatly accelerate. In
the end, we discuss the liquid-like behavior of light evolution in this dissipative system and propose a potential
experimental scheme for observing such a behavior.
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I. INTRODUCTION

Vortices are physical objects commonly observed in nature.
They still consume a lot of interest and research, both in
physical and engineering sciences. A vortex possesses a phase
singularity and an energy flow around this singularity, rotating
clockwise or counterclockwise. Optical vortices have also
become a hot topic in recent decades, for their potential
applications in many fields [1–6]. To date, research on optical
vortices in different materials, including bulk media [7],
discrete systems [8], atomic vapors [9,10], dissipative optical
systems [11], and Bose-Einstein condensates [12], has been
reported.

In a dissipative system based on the model of laser cavities
[13], the multicharged necklace-shaped beams merge into
stable fundamental or vortex solitons. The two-dimensional
(2D) complex Ginzburg-Landau (CGL) equation is found to
adequately describe this model. In Refs. [14,15], multicharged
multidimensional solitons and light condensates were found
via atomic coherence that appear analogous to the usual
liquids. The liquid-like beam has a flat top with a sharp
decaying edge. In fact, flat top solitons obeying the CGL
equation were reported earlier [16,17]. Dissipative solitons
of the CGL equation with cubic-quintic (CQ) nonlinearity
were also studied before [18–20]. In addition, studies on
the evolution of multicharged vortices in second-harmonic
generation revealed that the topological charge, beam width,
light intensity, and evolution distance may affect the number
of induced vortices [21].
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In this paper we investigate the evolution of multicharged
necklace-shaped and azimuthon-shaped beams in multilevel
atomic vapors with giant third-order and fifth-order nonlinear
susceptibilities of opposite signs. The system is dissipative and
placed in a laser cavity. A generic laser beam is incident on the
medium, which can assume different forms, depending on the
values of different beam parameters. Its evolution is followed
by solving a Ginzburg-Landau-type CQ nonlinear Schrödinger
equation (NLSE) that describes well the behavior of the slowly
varying amplitude of the optical electric field. Various cases of
beam incidence are discussed in some detail. We did not locate
any stable beam propagation, although such incidences should
exist—we were simply not looking for them. Our attention was
confined to studying the dynamics of slowly varying beams
in propagation over considerable, experimentally attainable
distances. Thus, our study was more geared toward direct
comparison with experiment.

The paper is organized as follows: In Sec. II we briefly
introduce the general model equation for beam propagation
in dissipative atomic vapors and in Sec. III we consider the
simple vortex and necklace-shaped beam incidence on the
medium. We then discuss in detail the propagation properties
of azimuthon-shaped beams in Sec. IV. In Sec. V we cover the
dynamics of the system in the enhancement region. In Sec. VI,
liquid-like behavior of light evolution in our system and a
potential experimental method to investigate this behavior are
described. Section VII concludes the paper.

II. MATHEMATICAL MODELING

We consider paraxial propagation of a probe vortex beam in
a ladder-type three-level atomic system, formed by the 3S1/2,
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4D3/2

FIG. 1. (Color online) Schematic of energy levels.

3P1/2, and 4D3/2 levels of sodium, as shown in Fig. 1. The
propagation model is based on the paraxial wave equation of
the form [11,14]

i∂zE1 + 1 − iβ

2k
∇2

⊥E1 + k

2
χE1 = 0, (1)

for the slowly varying amplitude of the electric field E1 of
the beam. Here ∇2

⊥ = ∂xx + ∂yy is the transverse Laplacian,
k is the wave number, χ is the total susceptibility of the
atomic vapor system, and β is the diffusion coefficient, which
originates from the model of the laser cavity. It has been
demonstrated before that vortices (even vortex solitons) can
be supported in the framework of a 2D CQ CGL model with
the β term present [22,23].

The involved linear, third-order, and fifth-order nonlinear
susceptibilities in Eq. (1) are
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with η = iNμ2
10/(h̄ε0), K = d1 + G2

2/d2, d1 = �10 + i�1,
d ′

1 = �11 + G2
2/(�21 + i�2), and d2 = �20 + i(�1 + �2).

G1 = μ10E1/h̄ is the Rabi frequency of the probe field, G2

is the Rabi frequency of the couple field, and �1,2 are the
detunings of the probe and couple fields. Further, N is the
atomic density, �ij denotes the population decay rate between
the corresponding energy levels |i〉 and |j 〉, and μ10 is the
electric dipole moment. Combining Eqs. (2)–(4), we obtain
the total susceptibility

χ = χ (1) + χ (3)|E|2 + χ (5)|E|4. (5)

In Appendices A and B, we present briefly the derivation of
this susceptibility.

Thus, the propagation equation appears to be of the CQ
NLSE type, which seems to be an appropriate general model
for the description of the interaction of an atomic vapor
system with laser radiation. The second and the third terms
in χ represent the cubic and the quintic contributions to the
total susceptibility. Furthermore, it is noted that Eq. (1) is an
equation of the CGL form, with the diffusion coefficient β

coming from the model of the laser cavity. The presence of
β is crucial in the modeling, but the actual value, which we
take to be of the order of 1, when varied does not significantly
change the beam distribution, as will be seen below.

We launch in this atomic system incident beams of generic
form [24]

ψ (z = 0,r,θ ) = Asech [(r − R0) /r0]

× [cos(nθ ) + iB sin(nθ )]eilθ , (6)

where A is the amplitude, R0 is the mean radius, r0 is the
width of the beam, 1 − B is the modulation depth, l is the
input topological charge, and 2n is the number of necklace
beads in the input beam. The choice of B and n parameters
governs the shape of the beam. Thus, for B = 1 or n = 0 one
obtains a simple vortex, for B = 0,n �= 0 a necklace, and for
B �= 0,n �= 0 an azimuthon [25].

From the mathematical point of view, the beam in Eq. (6)
can be viewed as a superposition of two vortices, i.e.,

ψ (z = 0,r,θ ) = sech

(
r − R0

r0

)[
A

2
(1 + B)ei(l+n)θ

+ A

2
(1 − B)ei(l−n)θ

]
. (7)

The net topological charge (NTC) of a vortex beam is
defined as [7,21]

NTC = 1

2π

∮
∇� · dl, (8)

where � is the total beam phase and dl the line element of
a closed path that surrounds all the singularities. Hence, the
NTCs of the component vortices given in Eq. (7) are l + n and
l − n, respectively. However, what NTCs will be observed
upon propagation in this nonlinear system is not so simply
determined.

When B �= 0 and in light of the fact that A(1 + B)/2 >

A(1 − B)/2 > 0, the initial NTC of the beam in Eq. (7) is
l + n [21]. If B = 0, the vortex with a larger magnitude
of NTC in Eq. (7) will dissipate faster during propagation,
due to the diffusion term in Eq. (1) [13]. Thus, the vortex
with a smaller NTC min{|l ± n|} will remain stable longer
during propagation and the overall NTC will correspond to
that charge, instead of the one directly calculated from Eq. (6).
To clarify, concerning the overall NTC, we end up with

NTC =
{

l + n, B �= 0,

σ min{|l ± n|}, B = 0,
(9)

for the beam in Eqs. (6) and (7). Here the sign σ = ±1 is the
same as the sign of the NTC with a smaller absolute value.

In accordance with previous literature [14,26–29], we
set the parameters to N = 1013 cm−3, μ10 = 3 × 10−29 C m,
�1 = 1 MHz, �2 = −1 MHz, G2 = 40 MHz, �10 = 2π ×
4.86 MHz, �20 = 2π × 0.485 MHz, �21 = 2π × 6.36 MHz,
�11 = 2π × 5.88 MHz, λ = 600 nm, r0 = 100 μm, and R0 =
200 μm. As is well known, �1 + �2 = 0 corresponds to a
two-photon resonance condition, which brings in the elec-
tromagnetically induced transparency (EIT) [30,31]. When
�1 + �2 �= 0, the system is moved to the enhancement region
[32].

III. SIMPLE VORTEX AND NECKLACE INCIDENCE

The evolution of a simple fundamental vortex with l =
0,n = 0 is depicted in Fig. 2(a). Upon propagation, the
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FIG. 2. (Color online) (a) and (b) Evolution of vortex incidences
during propagation for l = 0 and 1, respectively. The right panels
are selected intensities when the beam propagates to z = 5, 10, and
15 cm, respectively. (c) Intensities and phases of vortices with l = 5
at z = 15 cm. In (a)–(c) β = 0.5. (d) and (e) Intensities of vortices
with l = 5 at z = 15 cm when β = 1 and β = 2, respectively. (f) and
(g) Intensities and phases of trilobe inputs (n = 1.5) at z = 15 cm
corresponding to l = −4.5 and 4.5, respectively.

input notch of the vortex at the origin disappears and the
vortex changes into a super-Gaussian-like pulse whose width
and amplitude grow fast. A saturable plateau is reached at
∼10 V/m [24], as seen from the cross sections of intensity
profiles at y = 0 upon propagation in Figs. 2(a) and 2(b); these
results are similar to the results presented in Refs. [7,14]. On
the other hand, if we consider evolution of a simply charged
vortex (l = 1), the width and the amplitude grow similarly but
the singularity at the origin remains, as shown in Fig. 2(b).

The saturation phenomenon originates from the competi-
tion within the CQ nonlinearity in the atomic system. The
nonlinearity is defocusing and capable of supporting stable
vortices [7]. However, the beam widens during propagation,
because the nonlinearity is too weak to balance diffraction and
form a stable soliton. If l is increased to 5, the corresponding
number of singularities will form around the origin, as shown
in Fig. 2(c). From the corresponding phase gradients, we infer
that every notch is indeed a vortex.

In Figs. 2(a)–2(c), we did set β = 0.5; however, the
precise value of β is not so important for our results. When
the simulation is redone with β = 1 and 2, qualitatively
the same results are obtained, as shown in Figs. 2(d) and 2(e).
It can be seen from Fig. 2(c) and the results at z = 15 cm in
Figs. 2(d) and 2(e) that the value of β does not affect the shape

of the beam but the speed of the beam spreading. So, we fix
β = 0.5 in the following investigations.

Concerning necklace beams, in which 2n determines the
number of input lobes, we can have a necklace incidence with
an even or odd number of beads by taking n an integer or
half-integer, respectively [33]. Figures 2(f) and 2(g) display
intensity and phase snapshots of the necklace with n = 1.5,
l = −4.5 and 4.5 at z = 15 cm, respectively. A comparison of
them reveals that the number of notches that appear in the beam
is determined by min{|l ± n|}, which is also the absolute value
of the overall NTC given in Eq. (9). Even though Figs. 2(f) and
2(g) show the same number of vortices upon propagation, they
rotate in the opposite directions, because the corresponding
total NTCs are −3 and 3, respectively.

Based on a number of simulations, one can formulate
certain rules for calculation of the number of vortices and for
determining their rotation senses. These rules are presented
in Table I. The symbols � and � in the table represent
rotation senses of the vortices, which are opposite to the phase
gradients. We can see from Fig. 2 and the above analysis that
the NTC for both cases is conserved.

IV. AZIMUTHON INCIDENCE

Apparently, the azimuthon case, with both B �= 0 and n �=
0, is more complex. Our numerical simulations indicate the
existence of two critical values, rcr1 ≈ 42.5 μm and rcr2 ≈
36.1 μm, for a beam width r0. The behavior of wide beams,
when r0 > rcr1, and of the narrow beams, when r0 < rcr2, is
relatively simple. The vicinity of the beam edge in the first case
and of the beam core in the second enforce a simple predictable
whole-beam behavior. The case in between, rcr2 < r0 < rcr1,
is more complicated, as the influences of the core and of the
edge compete. Thus, a varied behavior is observed there.

A. The wide-beam case: r0 > rcr1

The intensities and phases at z = 15 cm of a hexapole
azimuthon in the case r0 > rcr1, with n = 3 and different l,
are displayed in Fig. 3.

Similar to the necklace incidence case, we can formulate the
common rules for the azimuthon case, which are summarized
in Table II. According to these rules, the number of notches
at the origin is determined by NTC; so, from (a) to (f) in
Fig. 3, the number of notches should be 3, 0, 2, 2, 0, and 3,
respectively. However, in (d)–(f), there are an additional six
notches around the origin, equal to the number of beads. The
explanation for this occurrence is that there is an energy flow
around each of the phase singularities, and at the same time
the beads fuse, due to the influence of the diffusion coefficient
β. Hence, when the speed of energy flow is greater than the
fusion speed of the beads, at the twist of the beads new vortices
will form.

TABLE I. Induced vortices for necklace incidence.

l < −n l = −n −n < l < 0 l = 0 0 < l < n l = n l > n

� - � - � - �
No. −n − l 0 n + l 0 n − l 0 −n + l
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FIG. 3. (Color online) Intensities and phases of azimuthons with
n = 3 and B = 0.5 at z = 15 cm for l = −6 (a), −3 (b), −1 (c),
1 (d), 3 (e), and 6 (f), respectively.

From the phases shown in Fig. 3, we can analyze the energy
flow direction of the induced vortices, as well as the overall
NTC of the beam during propagation. Taking Fig. 3(d) as an
example, we see that the phase gradients of the inner two and
the outer six vortices are along opposite directions. Thus, the
NTC is +1 for each outer vortex but −1 for the inner vortex.
Given that the overall NTC of the beam is a sum of all the
NTCs, the NTC for Fig. 3(d) is 4, which equals l + n. We
obtain the same result, that the overall NTC is l + n, if we
choose other evolutions for Fig. 3. The overall NTC in our
numerical simulations agrees well with that given in Eq. (9),
and, furthermore, it is conserved during propagation.

B. The in-between case: rcr2 < r0 < rcr1

The evolution of a hexapole azimuthon, with n = 3 and
different l, is presented in Figs. 4(a)–4(f), depicting the
intensities and phases of different azimuthons at z = 30 cm.
The beam width is set to r0 = 40 μm, which is in between rcr2

and rcr1.
According to the rules from Table II, the total number of

induced vortices can be predicted. However, from Fig. 4 it is
seen that more and more vortices appear during propagation.
The reason is that the energy flow dictates what happens;
the speed of the energy flow is the largest, as compared to the
speed of the fusion and spreading. From the phases at different
propagation distances, one sees that the energy flow brought by
the vortices around the origin of the fused beam is always faster
than that at the edge of the beam; this asynchrony preferably
forms new phase singularities at the edge of the beam, and new
vortices are induced correspondingly. Even though one cannot
give certain rules for this case, because the number of induced

FIG. 4. (Color online) Intensities and phases of azimuthons with
n = 3,B = 0.5, and r0 = 40 μm at z = 30 cm for l = 2 (a), −2 (b),
3 (c), −3 (d), 9 (e), and −9 (f), respectively. The vortices placed in
white and black ellipses are vortex pairs.

vortices is greatly affected by the beam width, one can still
predict the NTC of the beam.

For the case shown in Fig. 4(a), the vortices can be divided
into three kinds, the inner one, the middle six, and the outer
twelve, surrounded by ellipses. From the corresponding phases
we find that the inner and the middle six vortices share different
rotation senses, so that the total NTC of the seven vortices is
5, which can be calculated from l + n given in Eq. (9). The
outer twelve vortices appear as vortex pairs, which can be seen
in Fig. 4(a). The two vortices in the vortex pair rotate in the
opposite ways; i.e., the topological charges of the two vortices
are ±1, respectively. So, the sum NTC of the two vortices
is zero, which does not affect the total topological charge of
the beam during propagation. Thus, the NTC of the beam in
Fig. 4(a) is l + n and it is conserved. Even though the case in
Fig. 4(b) should show six additional vortices besides the vortex
at the origin during propagation, these ultimately annihilate,
because new phase singularities cannot form as a result of the
fast spread and fusion of the beams; in any case, the NTC still
complies with the rule l + n and is conserved.

The same results are obtained when the cases shown in
Figs. 4(c), 4(d), and 4(f) are discussed. Specially in Fig. 4(c),
in addition to the six vortex pairs surrounded by the white
ellipses, another six vortex pairs surrounded by the black
ellipses are induced during propagation. In light of the fact
that vortex pairs will not add extra topological charge to the
beam, the NTC for the cases mentioned above is always l + n.
And, for these cases, regardless of the number of vortex pairs,
Table II can help us determine the total number of vortices and
their rotation senses.

TABLE II. Induced vortices for azimuthon incidence when r0 > rcr1.

l < −n l = −n −n < l < 0 l = 0 0 < l < n l = n l > n

Outer - - - - � � �
Inner � - � � � - �
No. −n − l 0 n + l n 3n − l 2n n + l
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Abnormally, the NTC of the case in Fig. 4(e) is l − n,
and our numerical simulations demonstrate that the NTC for
the cases with l > n is always l − n instead of l + n (and
other numerical results corroborating this fact are not shown
in this paper). Even though this number is different from the
initial total NTC l + n in Eq. (9), it is still conserved during
propagation. All in all, the NTC of the beam is conserved
during propagation, but the final NTC need not be the same as
that of the incident beam, because of the dissipative property
of the system. This property enables the diffusion term to
annihilate the vortex component with high topological charge.

C. The narrow-beam case: r0 < rcr2

In this part, we set r0 = 30 μm, which fulfills the condition
r0 < rcr2. According to our numerical simulations, the case
with l � n is without vortex pairs appearing during propaga-
tion, and it shares rules given in Table II. Hence, here we do
not show the corresponding results and provide no discussion.
For the l > n case, we first redo the propagation of the beam
used in Fig. 4(e); we find that the number of induced vortices
is six, which can be calculated from l − n = 6, as shown by
the intensity and phase in Fig. 5(a).

However, the exact rule for n = 2 is not certain, because the
energy flow is weakened, and whether or not it can produce
more vortices, it is up to the value of l set for the initial beam.
If l is bigger, fusion will be accelerated, so the production
of new vortices will be limited. The value l = 5 appears to
be a boundary for this case: the rule is l − n for l > 5 and
l + n for l � 5. Figures 5(b) and 5(c) display two numerical
simulations corresponding to l = 9 and l = 4, in which the
number of vortices are l − n = 7 and l + n = 6, respectively.
They comply with the rule.

The outer four vortices that appear in Fig. 5(c) are induced
from the fusion process of the incident beads, the number 2n of
which will determine the number of the outer induced vortices.
So, the total number of vortices is (l − n) + 2n = l + n. The
evolution of incident azimuthons with n = 1 and n > 3 is also
simulated, and we find that l + n and l − n vortices are induced
during propagation, respectively. The lower the number of
beads, the more energy each bead will possess, which will
strengthen the energy flow. That is why the number of induced
vortices is l + n if n = 1. In other words, the NTC of the

FIG. 5. (Color online) Intensities and phases of azimuthons with
r0 = 30 μm at z = 30 cm for (a) l = 9, n = 3, (b) l = 9, n = 2, and
(c) l = 4, n = 2, respectively.

TABLE III. Induced vortices for azimuthon incidence when r0 <

rcr2 and l > n.

n = 1 n = 2(l � 5|l > 5) n � 3
Outer � � | � -
Inner � � | � �
No. l + n l + n|l − n l − n

azimuthons with n = 1 and n = 2, l � 5 in this part complies
with the rule given in Eq. (9).

Based on numerics, we can develop the common rules for
this case, as exhibited in Table III. Concerning the NTC of the
beam, we claim that it is still conserved for each case during
propagation but is not necessarily the same as the incident one;
this is similar to the NTC conservation rule given in Sec. IV B.

V. THE ENHANCEMENT REGION

Now we set �1 = 1.1 MHz and keep �2 fixed at −1, so
that �1 + �2 �= 0 and the EIT condition is lifted. We do the
corresponding simulations and the results are shown in Fig. 6.
Compared with the results obtained under the EIT condition,
we see that the phenomena observed and laws formulated
before are still applicable, but there are several differences.
First, the beams now spread more quickly, so that we can
observe almost the same results after only one third of the
distance covered before. Second, the saturable plateau shifts
to ∼60 V/m, which is much higher than before. Last, but not
the least, the two threshold values of the azimuthon size r0

become smaller.
We would like to note that the boundary values n = 2 and

l = 5 in the rule displayed in Table III are not suitable for this

FIG. 6. (Color online) Intensities and phases of (a) a vortex
with l = 5, n = 0, (b) a necklace with l = 4.5, n = 1.5, and
(c) an azimuthon with l = 6, n = 3, for r0 = 100 μm, respectively.
(d)–(f) Azimuthons with l = 9, n = 3, for r0 = 40, 20, and 23 μm,
respectively. (g) and (h) Azimuthons with r0 = 20 μm, n = 4, for
l = 4 and l = 6, respectively.
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case. The boundary values now are n = 4 and l = 5, indicated
by more numerical results. An example is shown in Figs. 6(g)
and 6(h), which are done for l = 4 and l = 6, respectively.
The reason for the change is that the beam spreads faster
in this case, so that the outside vortices appear at a shorter
propagation distance and have relatively longer distance from
the beam edge. Numerous numerical simulations demonstrate
that the vortices induced near the boundary of the beam may
annihilate, and so the higher the value of n, the shorter the
distance between the outside vortices and the beam edge.
Correspondingly, the boundary value of n for this case should
increase. We also performed a numerical simulation with
�1 = 0.9 MHz (not shown here), from which we find that the
beams also spread but the maximum of the plateau is reduced;
this means that the loss plays a more prominent role now.

VI. THE LIQUID-LIKE BEHAVIOR OF LIGHT AND
A POTENTIAL EXPERIMENT

Results presented in the above sections point to the devel-
opment of beam structures with flat tops and sharply decaying
edges. These features are characteristic of the so-called
droplets of light that tend to form in a system with competing
CQ nonlinearities [14,15,34,35], in which diffraction, self-
focusing nonlinearity, and self-defocusing nonlinearity are
regarded as the kinetic term, the cooling mechanism, and van
der Waals (vdW) force, respectively. Hence, the framework
described by Eq. (1) in this paper contains key ingredients to
guarantee the formation of light droplets.

The sharp decaying edge illustrates the strong surface
tension of the light droplet, due to the vdW force, which drives
the formation of a circular flat top, so that the surface tension
is uniform everywhere and helps the pressure on the surface
of light droplet reach an equilibrium state [36].

Thus far, liquid-like beams resulting from the signal
and probe beams generated in a four-wave mixing process
with atomic coherence have been experimentally observed
in sodium atomic vapors under the condition of competition
between the third- and fifth-order nonlinear susceptibilities.
Hence, the liquid-like beams with multivortices and vortex
pairs investigated in this paper can be possibly observed
in a similar experiment, even though such an experiment
would be more complicated. According to the multibeam
interference technique [37], the interference patterns can be
used to produce an incident beam with several beads. The
more beams that participate in the interference, the more
beads the interference pattern will produce [37]. Assuming
the topological charge in the multibeam interference pattern
is 1, one can put a phase mask [38] behind the interference
pattern to add more topological charges to the incident beam,
according to the requirements. Strong G2 guarantees that the
third- and fifth-order nonlinear susceptibilities will play role
in this system. One can change the temperature of the atomic
vapor to adjust the atomic density, which is equivalent to the
variation of the evolution distance.

VII. CONCLUSION

In conclusion, we have demonstrated that optical vortices
can form from vortex, necklace, and azimuthon incidences
with different topological charges, in dissipative multilevel

atomic vapors with linear, cubic, and quintic susceptibilities
present simultaneously. The appearance of vortices results
from a combined action of the number of topological charges,
the beam width of incidences, the diffusion effect, CQ
nonlinearities, and the loss or gain in the medium, all of them
acting simultaneously.

We have formulated common rules for finding the number
as well as the rotation direction of the induced vortices. We
have also discovered that the NTC of the vortex is conserved
during propagation. Some aspects of the liquid-like behavior
of light in our system and potential experimental investigations
are also involved.
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APPENDIX A: THE DENSITY MATRIX EQUATIONS

Considering the time-dependent Schrödinger equation, and
using a perturbation expansion and rotating wave approxima-
tion [39], we can obtain a series of density matrix equations
as follows:

∂

∂t
ρ

(r)
00 = −�00ρ

(r)
00 + i

[
G∗

1ρ
(r−1)
10 − G1ρ

(r−1)
01

]
, (A1)

∂

∂t
ρ

(r)
11 = −�11ρ

(r)
11 + i

[(
G1ρ

(r−1)
01 − G∗

1ρ
(r−1)
10

)
+G∗

2

(
ρ

(r−1)
21 − ρ

(r−1)
12

)]
, (A2)

∂

∂t
ρ

(r)
10 = −(i�1 + �10)ρ(r)

10

+ i
[
G1

(
ρ

(r−1)
00 − ρ

(r−1)
11

) + G∗
2ρ

(r−1)
20

]
, (A3)

∂

∂t
ρ

(r)
20 = −[i(�1 + �2) + �20]ρ(r)

20

+ i
[
G∗

2ρ
(r−1)
10 − G1ρ

(r−1)
21

]
, (A4)

∂

∂t
ρ

(r)
21 = −(i�2 + �21)ρ(r)

21

+ i
[
G2

(
ρ

(r−1)
11 − ρ

(r−1)
22

) − G∗
1ρ

(r−1)
20

]
. (A5)

APPENDIX B: DERIVATION OF THE SUSCEPTIBILITY

We display the detailed derivation process on − η

K2
|G1|2
d ′

1
, the

first term in Eq. (3), by using the dressed perturbation chain
method [40,41], which involves the perturbation chain [42,43]
and coupling equations together.

First, a ground state particle ρ
(0)
00 absorbs a probe photon

p and transits to ρ
(1)
G2±0, the dressed state of ρ

(1)
10 (ρ(0)

00
G1−→

ρ
(1)
G2±0). Under the weak-field and steady-state approximations,

the coupling equations can be obtained from Eqs. (A3)
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and (A4):

0 = −(i�1 + �10)ρG2±0 + iG1ρ00 + iG2ρ20,

0 = −[i(�1 + �2) + �20]ρ20 + iG∗
2ρG2±0,

which gives

ρ
(1)
G2±0 = iG1

i�1 + �10 + |G2|2
i(�1+�2)+�20

ρ
(0)
00 . (B1)

Second, the particle absorbs a pumping photon p and tran-

sits to the dressed state ρ
(2)
11 (ρ(1)

G2±0

G∗
1−→ ρ

(2)
11 ). From Eqs. (A2)

and (A5) as well as the approximations used in the first step,
we get the coupling equations

�11ρ11 = i
(−G∗

1ρG2±0 + G∗
2ρ21

)
,

(i�2 + �21)ρ21 = iG2ρ11,

which gives

ρ
(2)
11 = iG∗

1

�11 + |G2|2
i�2+�21

ρ
(1)
G2±0. (B2)

Third, the stimulated atom transits back to state ρ10 and

emits a pumping photon p∗ (ρ(2)
11

G∗
1−→ ρ

(3)
G2±0). Similar to the

first step, we get the coupling equations

0 = −(i�1 + �10)ρG2±0 + iG1ρ11 + iG2ρ20,

0 = −[i(�1 + �2) + �20]ρ20 + iG∗
2ρG2±0

and the corresponding solution

ρ
(3)
G2±0 = iG1

i�1 + �10 + |G2|2
i(�1+�2)+�20

ρ
(2)
11 . (B3)

Combining Eqs. (B1)–(B3), and considering the as-
sumption ρ

(0)
00 � 1 and the relations P = Nμ10ρ

(3)
G2±0 =

ε0χ
(3)|E1|2E1, we finally obtain the expression for the sus-

ceptibility:

χ (3)|E1|2 = − iNμ2
10

h̄ε0

1(
�10+i�1+ |G2 |2

�20+i(�1+�2)

)2
|G1|2

�11+ |G2 |2
�21+i�2

.

(B4)
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