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We numerically investigate interactions between two bright or dark incoherent localized beams in a strontium
barium niobate photorefractive crystal in one dimension, using the coherent density method. For the case of bright
beams, if the interacting beams are in-phase, they attract each other during propagation and form bound breathers;
if out-of-phase, the beams repel each other and fly away. The bright incoherent beams do not radiate much and
form long-lived, well-defined breathers or quasi-stable solitons. If the phase difference is π∕2, the interacting
beams may both attract or repel each other, depending on the interval between the two beams, the beam widths,
and the degree of coherence. For the case of dark incoherent beams, in addition to the above, the interactions
also depend on the symmetry of the incident beams. As already known, an even-symmetric incident beam tends
to split into a doublet, whereas an odd-symmetric incident beam tends to split into a triplet. When launched in
pairs, the dark beams display dynamics consistent with such a picture and in general obey soliton-like conser-
vation laws, so that the collisions are mostly elastic, leading to little energy and momentum exchange. But they
also radiate and breathe while propagating. In all the cases, the smaller the interval between the two interacting
beams, the stronger the mutual interaction. On the other hand, the larger the degree of incoherence, the weaker the
interaction. © 2014 Optical Society of America

OCIS codes: (190.6135) Spatial solitons; (160.5320) Photorefractive materials; (190.4420) Nonlinear optics,
transverse effects in; (190.5330) Photorefractive optics.
http://dx.doi.org/10.1364/JOSAB.31.002258

1. INTRODUCTION
Incoherent spatial solitons in photorefractive (PR) media have
come into research focus and attracted much attention in the
last two decades [1–24]. Lately, many types of incoherent
solitons have been reported in both theory and experiment.
This remarkable progress not only opened up new research
fields in soliton science and nonlinear optics but also broad-
ened the potential applications of optical solitons.

The progress was facilitated by the appearance of new
methods for the treatment of incoherent localized beams in
PR media: the coherent density method [4,5,9,14], the self-
consistent multimode method [2,7,8,11,13,15,18,19], and the
mutual coherence function method [6,12]. They were devel-
oped independently to describe exactly such sorts of solitary
waves in theory; however, it was soon demonstrated that
these three seemingly different theoretical methods are equiv-
alent to each other in inertial nonlinear media [21]. Recently,
the coherent density method seems to be employed more often
than the other in papers on incoherent solitons [20,22–24].
Thus, incoherent bright solitons interacting with incoherent
dark solitons or coherent dark solitons (which would enhance
the spatial coherence) have been investigated with the
coherent density method [20]. In addition, interactions of inco-
herent solitons were also considered in [22,25]. However, there
are still topics related with the interactions of copropagating

incoherent solitons that are worth investigating. For example,
interactions of dark incoherent beams have never, to our
knowledge, been discussed before. This is done here.

Thus far, interactions of bright coherent solitons have been
investigated thoroughly [26]. Fusion, fission, and repulsion
of solitons have been reported. On the other hand, inter-
actions of dark coherent solitons [27–29] have been less inves-
tigated yet are quite different from those of bright solitons.
From this point of view, interactions of incoherent dark
solitons may show interesting phenomena and deserve further
attention.

In this paper, we first introduce the coupled nonlinear
Schrödinger-like integrodifferential equations that provide a
general description of the incoherent solitary waves in PR
media. Then we numerically solve them by employing the co-
herent density method, combined with the beam propagation
method. Following this procedure, we investigate the inter-
actions between incoherent bright and dark solitary waves.
The target medium used in our numerical simulations is the
biased strontium barium niobate (SBN) PR crystal, which is
often employed in soliton experiments [30–34]. We refrain
from calling these localized beams solitons, because they
sometimes display inelastic collisions, breathe, and radiate,
but propagate quasi-stably over considerable lengths that out-
distance typical crystal thicknesses.
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The paper is organized as follows: in Section 2, we briefly
introduce the theoretical model; in Section 3, we discuss the
interactions of bright and dark incoherent beams in detail; in
Section 4, we conclude the paper.

2. THEORETICAL MODEL
We assume that the beams propagate along the z axis and are
allowed to diffract along the x axis. Under these conditions
and according to the theory developed in [5,20], in a biased
SBN PR crystal with the optical c axis oriented in the x direc-
tion, the two incoherent light beams evolve according to the
equation
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is the total beam intensity. In Eqs. (1)–(3), f represents the
so-called coherent density of the coupled incoherent beams
and θ is the ratio kx∕k of the transverse to the longitudinal
wave number. In the paraxial propagation we consider, this
ratio is approximately equal to the angle of the beam with re-
spect to the z axis. In addition, k � 2πne∕λ0 (in which λ0 is the
free-space wavelength and ne is the extraordinary refractive
index of the SBN crystal), r33 is the electro-optic coefficient
involved in the generation of the space-charge field, ρ is the
intensity when x → �∞, and E0 � �V∕W is the external bias
field needed for the development of nonlinearity (here V is the
applied bias andW is the transverse width of the SBN crystal).
For a biased SBN:75 crystal, the typical values of the param-
eters mentioned above are ne � 2.3, r33 � 1022 pm∕V,
W � 6 mm, and λ0 � 488 nm [4,9], which we are going to
use in our simulations.

Concerning the initial condition—that is, the incident
beam—the function GN(θ) is the normalized angular power
spectrum of the incoherent source, ϕ0�x� is the input complex
spatial modulation function of the two incoherent beams, and
rf is the maximum intensity of the incoherent beams. We
assume that the normalized angular power spectrum of the
incoherent source is Gaussian, that is, GN�θ� � exp�−θ2∕θ20�∕
� ���

π
p

θ0� [4,5,9,14], where θ0 is the angular half-width of the
power spectra associated with the incoherent beams. It also
a measure of the incoherence—the larger θ0, the more inco-
herent the beams. As concerns the modulation function ϕ0, for
bright incoherent beams we define it as
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in which 2d is the distance between the two Gaussian input
beams, l determines the phase difference between the beams,

and x0 is related to the full width at half-maximum (FWHM) of
the Gaussian beam. Corresponding to Eq. (4) we have
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For dark incoherent beams, we define ϕ0 as
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for the odd-symmetry case. In Eq. (5),
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to guarantee the two solitons are really dark. For the even-
symmetry case, we use
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We should mention at this point that the analytical incoherent
soliton solution is hard to obtain, owing to the complexity of
the nonlinear dynamical problem. The variational methods
[35–40] can be used to solve for the asymptotic soliton solu-
tions; however, as usual with variational methods, they are as
good as the presumed ansatz solutions are—optimized but
still approximate analytical solutions. Considering that we
focus on the interacting dynamics of incoherent bright and
dark beams in detail, which cannot be treated analytically,
the incident beams given in Eqs. (45)–(6) are still similar to
the incidents used in previous literature [4,5,9] and are good
enough for our purpose. The interactions of asymptotic inco-
herent solitons obtained by using the variational method are
beyond the scope of this paper.

3. NUMERICAL SIMULATIONS AND
DISCUSSION
A. Bright Incoherent Beams
We first investigate the interactions of two in-phase [viz., l � 0
in Eq. (4)] incoherent beams; the numerical results are shown
in Figs. 1(a1)–1(e1). It is seen that two incoherent solitons at-
tract each other during propagation and form a bound
breather. With the interval between beams increasing, the in-
teraction strength decreases, and the two incoherent beams
need a longer distance to form a breather.

If l � 1∕2, the phase difference between the interacting
incoherent beams is π∕2; the corresponding results are dis-
played in Figs. 1(a2)–1(e2). It is interesting to note that the
interacting beams still attract each other to form a deflected
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breather if the interval is not big, as shown in Figs. 1(a2) and
1(b2). When the interval is big enough, the interacting beams
repel each other, as shown in Figs. 1(c2)–1(e2). The reason is
that there exist attraction and repulsion simultaneously be-
tween the two interacting beams; when the interval is small,
the attraction prevails, while if the interval is big, the repulsion
prevails.

The reason why the breather is deflected is also not difficult
to explain. From Eq. (4) we can find the transverse group
velocity vx of the wave packet, which can be written as

vx � −

x − d
x20

exp
�
−

�x − d�2
2x20

�

− exp�ilπ� x� d
x20

exp
�
−

�x� d�2
2x20

�
: (7)

When d is not big, the two beams behave as one wave packet,
so that we can check the speed at x � 0 to obtain vxjx�0 ≠ 0.
Hence, the breather should deflect. Furthermore, the beams
accelerate transversely, as there are forces acting on them.

In the out-of-phase case [viz., l � 1 in Eq. (4)], exhibited in
Figs. 1(a3)–1(e3), the interaction is predominantly repulsion.
And the smaller the interval, the stronger the repulsion.
Also note that in the interactions of bright incoherent beams,
practically no radiation is observed—the solitons form fast
from the incident beams and continue to propagate quite
stably.

To check the influence of the degree of incoherence, which
is estimated by the width of the power spectrum, we change θ0
from 1 to 3 mrad and redo the simulation; the corresponding
results are displayed in Fig. 2. In comparison with those
shown in Fig. 1, we find that the interactions weaken. Espe-
cially, by comparing Fig. 2(c2) with Fig. 1(c2), we see that the
competition between attraction and repulsion is also affected
by θ0, the degree of incoherence. It can be predicted that
bigger θ0 and smaller interval make the attraction more
dominant.

B. Dark Incoherent Beams
As established previously [9,23,24], dark incoherent beams
tend split into a doublet under the even conditions, or into
a triplet or evolve into a gray soliton under the odd conditions
(depending whether FWHMs are large or small, respectively).
We discuss the interactions of dark incoherent beams under
the odd conditions first, and then under the even conditions.
To these ends, we use the modulation functions displayed in
Eqs. (5) and (6), respectively.

We assume first that the incident beams are narrow,
FWMH � 10 μm; the results are shown in Fig. 3. In Figs. 3(f)–
3(j), in which the intervals are bigger than the FWHM, one can
see that two gray solitons are formed, between which there is
little or no interaction. When d − dth is small, as shown in
Figs. 3(a)–3(e), there is attraction first and then the repulsion
between the two interacting dark incoherent beams. The rea-
son is that the two dips in the input incoherent beams are so
close that they will fuse into one at the beginning, strongly
radiate, and then separate into two gray solitons. In addition,
the function displayed in Eq. (5) looks like an even function
for small intervals, so the interaction is then in analogy with
the even case, which leads to the formation of a doublet [9].
One should note that, generally, the dark beams breathe and
initially strongly radiate but exchange little energy as they
propagate.
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Fig. 1. Interaction of two incoherent bright beams with different
intervals 2d between them (the numbers displayed on the top of
the panels). Other parameters are l � 0; 0.5, and 1 for (a1)–(e1),
(a2)–(e2), and (a3)–(e3), respectively; FWMH � 7 μm; V � 550 V;
and θ0 � 1 mrad.
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Fig. 2. Same as Fig. 1, but with θ0 � 3 mrad.
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Fig. 3. Interaction of two dark incoherent beams with
FWMH � 10 μm, for changing interval 2d under odd conditions. Other
parameters: V � −550 V and θ0 � 9.6 mrad.
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When the FWHM is increased to 20 μm, the results are dis-
played in Fig. 4. For d close to dth, as shown in Figs. 4(a)–4(d),
the dynamics is complex. There are many channels generated
during propagation, and the two main channels in the middle
first attract and then repel each other. The reason is similar to
that of the case in Fig. 3—the input is similar to an even case
with a much wider FWHM, which leads to additional chan-
nels [23,24].

However, when the interval is large, the input cannot be
in analogy to the even case and has to revert to the odd
case. This means that only six channels can form during
propagation—three beam components for each of the dark
incoherent beams—and the ensuing interaction is between
the two triplets. This is clearly seen in Figs. 4(e)–4(j). In
Fig. 4(g), the three channels marked by the three black circles
originate from the same dark incoherent beam source: the
main channel close to the center and the two secondary chan-
nels. One can note that the secondary channels are not sym-
metrically distributed about the main channel. For this case,
the interaction is relatively strong, and we can also find that
the secondary channels from different sources attract each
other. Note the strong radiation formed in the central region,
as well as the strong radiation emanating sideways in the
beginning.

In Fig. 4(i), with the interval increasing further, the interac-
tion between the two main channels becomes weak. In addi-
tion, we see that the secondary channels collide with the main
channels. As marked by the two circles, the collision does not
lead to the energy exchange between the secondary and main
channels but leads to some momentum exchange. The reason
for this elastic collision is that the intensities of the two par-
ticipating beams are almost of the same size at the collision
point. However, in the case of Fig. 4(j), there are also colli-
sions between the secondary and main channels, but these
collisions seem to be transparent, because the intensity of
the secondary channel is much smaller than that of the main
channel. We can also observe such transparent collisions in
Figs. 4(g) and 4(h). These phenomena obey the usual soliton
conservation laws, but with the caveat of considerable initial
energy loss in the form of shed radiation.

Finally, we turn to the cases of even conditions, which are
exhibited in Fig. 5. In Figs. 5(a) and 5(b), the intervals between
the input beams are not big, so the total incident beams can be
viewed as hyperbolic-like wave packets with FWMH � 30 μm
and FWMH � 40 μm, respectively. Thus, we can classify the
case as a splitting of one dark incoherent beam with large

FWHM into a doublet rather than the interaction of two dark
incoherent beams [24]. Indeed, we observe that more chan-
nels begin to appear at longer propagation distances. In
Figs. 5(c)–5(e), the doublets from different incidences begin
to interact. Due to the symmetry of the intensity distribution,
the intensities of the two interacting participants are the same,
and the collisions are always elastic. All the formed dark soli-
tary beams breathe and radiate.

4. CONCLUSION
In summary, we have investigated the interactions of bright
and dark incoherent localized beams in a PR medium. For
the bright incoherent beams, the interaction is attraction if
the interacting beams are in-phase, and repulsion if they
are out-of-phase. If the phase difference is π∕2, the interaction
will lead to either a deflected bound breather or two repulsive
solitons, depending on d and θ0. The bright beams may
breathe or propagate steadily over large distances, without
visible radiation.

For the dark incoherent beams, we have discussed the
cases of both odd and even symmetry conditions. Under
the odd conditions, the collisions may be elastic or transpar-
ent, while under even conditions, the collisions are always
elastic. Quite complex beam interaction scenarios may exist
but still be consistent with the theory developed. These inter-
actions comply with the soliton-like conservation laws, even
though the beams breathe and radiate.
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