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The dynamics of wave packets in the fractional Schrödinger equation is still an open problem. The
difficulty stems from the fact that the fractional Laplacian derivative is essentially a nonlocal operator. We
investigate analytically and numerically the propagation of optical beams in the fractional Schrödinger
equation with a harmonic potential. We find that the propagation of one- and two-dimensional input
chirped Gaussian beams is not harmonic. In one dimension, the beam propagates along a zigzag trajectory
in real space, which corresponds to a modulated anharmonic oscillation in momentum space. In two
dimensions, the input Gaussian beam evolves into a breathing ring structure in both real and momentum
spaces, which forms a filamented funnel-like aperiodic structure. The beams remain localized in
propagation, but with increasing distance display an increasingly irregular behavior, unless both the
linear chirp and the transverse displacement of the incident beam are zero.
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Fractional quantum mechanics is a promising extension
of quantum mechanics that has received a great deal of
attention since its introduction by Laskin [1]. It is based on
the fractional Schrödinger equation (FSE)—a generaliza-
tion of the Schrödinger equation (SE) which involves
fractional spatial derivatives instead of the usual ones
[2–7]. Most current research is focused on mathematical
issues and the steady behavior of wave packets in simple
potentials. However, even the relativistic massless har-
monic oscillator [2,4,6] associated with FSE turned out not
to be so simple. The difficulty comes from the fact that the
fractional Laplacian derivative, which sits in the FSE
instead of the ordinary Laplacian, is inherently a nonlocal
operator. Here, we address the dynamics of wave packets in
harmonic potential, but from a different viewpoint. We base
our analysis on the equivalence of the paraxial wave
equation and the SE, which can be extended to the FSE,
and focus on the differences in real and frequency spaces.
Recently, an optical realization of FSE was advanced by

Longhi [8], based on aspherical optical cavities. He
obtained the eigenmodes of a massless harmonic oscilla-
tor—the dual Airy functions [6,8]. Our approach is differ-
ent; we focus on the dynamics of optical beams in FSE with
harmonic potential and not on the eigenvalue problem.
Thus, a realistic input beam is launched into the system and
its dynamics followed, with an emphasis on the differences
from the usual quantum harmonic oscillator.
Similar to the standard SE, the potentials introduced into

the FSE [9] can vary widely [10]. Among various poten-
tials, the harmonic potential—broadly used in quantum

mechanics, most notably in Bose-Einstein condensates
[11], laser-plasma physics [12], ultracold atoms [13],
ion-laser interactions [14], and optical lattices [15], is
probably the most useful of all. In the linear case, naturally,
beams exhibit perfect harmonic oscillation during propa-
gation in both real and inverse spaces, because from a
mathematical point of view the guiding equations remain
the same in both spaces. However, the dynamics in the
harmonic potential in FSE is different. To the best of our
knowledge, it has not been treated before.
In this Letter, we investigate the dynamics of waves in

the FSE with harmonic potential. We supply an analytical
method to study such dynamics and make comparison with
numerical simulation. We discover that the beams follow
zigzag and funnel-like paths in real space in one and two
dimensions, which, after prolonged propagation, become
irregular. Based on the methods discussed in Ref. [8],
results reported in this Letter can easily be experimentally
verified; e.g., they directly apply to the fractional gradient
refractive index (GRIN) media.
The FSE is written as

i
∂ψ
∂z ¼

�
1

2

�
−

∂2

∂x2
�

α=2

þ VðxÞ
�
ψ ; ð1Þ

where α is the Lévy index (1 < α ≤ 2) and VðxÞ ¼ β2x2=2
is the external harmonic potential, with β being an arbitrary
scaling parameter [16]. Variables x and z are the transverse
coordinate and the propagation distance, scaled by some
characteristic transverse width and the corresponding
Rayleigh range [17]. When α ¼ 2, one recovers the usual
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SE. Here, we treat the opposite limiting case α ¼ 1, as the
most interesting [4,6,8]. We exploit the fact that in
momentum space (or k space), Eq. (1) transforms into

i
∂ψ̂
∂ξ þ

�
fjkj þ 1

2

∂2

∂k2
�
ψ̂ ¼ 0; ð2Þ

where ψ̂ is the Fourier transform of ψ , k is the spatial
frequency, ξ ¼ β2z, and f ¼ −1=ð2β2Þ is a constant.
Clearly, Eq. (2) is a normal Schödinger equation with
symmetric linear potential, which brings a déjà vu feeling
[18]. If one considers k > 0 and k < 0 cases separately, the
solution of Eq. (2) can be written as

ψ̂ðk; ξÞ ¼
ffiffiffiffiffiffiffiffiffi
1

2πiξ

s
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�
i
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�fkξ −

f2ξ3

6

��Z þ∞
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dκ

× ψ̂ðκ; 0Þ exp
�
i
2ξ

�
k∓ fξ2

2
− κ

�
2
�
; ð3Þ

where� corresponds to k positive or negative, respectively.
However, the corresponding solution of Eq. (1) cannot be
directly obtained by doing an inverse Fourier transform of
Eq. (3), due to the non-differentiability of the potential at
k ¼ 0. That is, it is not so easy to obtain the exact solution
of Eq. (1), unless one is only interested in its eigenvalues
and eigenfunctions. Here, we provide an accurate analytical
method and investigate the dynamics of beams with a
specific input.
We assume that the input beam is chosen as a common

chirped Gaussian

ψðxÞ ¼ exp ½−σðx − x0Þ2� expð−iCxÞ; ð4Þ
with x0 being the transverse displacement, C being the
linear chirp coefficient, and σ controlling the beam width.
The corresponding Fourier transform is

ψ̂ðkÞ ¼
ffiffiffi
π

σ

r
exp

�
−
ðkþ CÞ2

4σ

�
expð−ikx0Þ; ð5Þ

which is the initial condition that appears in Eq. (3).
Therefore, the corresponding solution can be written as

ψ̂ðk; ξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
π
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where A ¼ 1=4σ − i=2ξ and ω ¼ k=ξ∓fξ=2þ C=ξþ x0.
Here, � corresponds to the C≶0 case. From Eq. (6), one
can immediately find the trajectory of the beam in k space,

k ¼ ∓ β2

4
z2 − x0β2z − C; ð7Þ

which is a quadratic function with the symmetry axis

zsym ¼ ∓2x0; ð8Þ

and with the sign of k changing at

z0 ¼ ∓2x0 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20∓ C

β2

s
: ð9Þ

Now, we analyze the propagation of the beam in such a
symmetric linear potential in inverse space [Eq. (2)]. We
assume C > 0. The analysis is as follows. (i) In the
region 0 ≤ z ≤ z0, the beam propagates as in Fig. 1(a).
(ii) Because of the symmetry of the potential, the propa-
gation of the beam with −C will appear as in Fig. 1(b).
(iii) Continuing with the beam presented in Fig. 1(b), it will
propagate as in Fig. 1(c), if it is launched into the medium
in the opposite direction. (iv) According to the reciprocal
property of the system, the beam from Fig. 1(a) will
propagate along the same trajectory, Fig. 1(c), when
propagating beyond z0.
Based on the above analysis, the beam with C positive

will propagate along the trajectory shown in Figs. 1(a),
1(c), 1(d), and 1(e), which forms a whole period of this
oscillation. Clearly, the period is

Z ¼ 4ðz0 − zsymÞ ¼ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20∓ C

β2

s
: ð10Þ

Together with Eq. (9), one can see that the bigger the chirp
and the transverse displacement and the smaller the
potential, the bigger the period Z.
In Figs. 2(a) and 2(b) we display the comparison of

analytical results and numerical simulations of the propa-
gation in k and x spaces, with β ¼ 1, C ¼ 50, and x0 ¼ 0.
As seen in Fig. 2(a), the beam exhibits a modulated
oscillation during propagation, in which the numerical
and analytical (the dashed curve) trajectories agree very
well. However, this is not a harmonic oscillation, because
the trajectory is composed of pieces of parabolas. In x
space, as shown in Fig. 2(b), the beam propagates along a
zigzag trajectory, which is similar to a total internal
reflection trajectory in a fiber—in this case, a fractional
GRIN fiber.
To analyze the propagation in real space, it is necessary

to perform an inverse Fourier transform of Eq. (6), which is
not an easy task. It is found to be

FIG. 1 (color online). Schematics of the beam propagation.
Here, x0 ¼ 0.
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where A1 ¼ 1=Aξ2 − i=2ξ and A2 ¼ ið∓fξ2=2þ CÞ=ξ−
2ð∓fξ2=2þ x0ξþ CÞ=Aξ2 − ið∓fξÞ. From Eq. (11), one
can deduce the trajectory of the beam in real space,

x ¼ ∓ 1

2
zþ x0: ð12Þ

Corresponding to Figs. 1(a), 1(c), 1(d), and 1(e), the beam
propagates along the pieces of straight lines. As a whole, a
zigzag trajectory is obtained, which is shown by the dashed
lines in Fig. 2(b) and is in full accordance with the
numerical simulation.
The physical explanation for the reflectionlike behavior

is most easily acquired in k space. The equivalent refractive
index is the biggest along the k ¼ 0 axis, so the beam will
always be pulled to the axis during propagation; i.e., there
is a restoring force. Since C ≠ 0, the beam will be pulled
from k ≠ 0 to k ¼ 0 and acquire acceleration, which
corresponds to an inverse pulling from x ¼ 0 to x ≠ 0 in
real space. The direction of the restoring force felt by the
incident beam is reversed when it goes across the axis, but
the velocity of the beam does not change its direction, so it
will drive the beam from k ¼ 0 to k ≠ 0, that is, from x ≠ 0
to x ¼ 0 in real space. As it happens, the restoring force in k

space is constant; thus, in real space, according to the FSE,
it is not harmonic but impulsive, with sudden momentum
changes. As a result, the beam as it propagates is reflected
at the places where jxj reaches maximum.
Even though the beam is well localized in the harmonic

potential, it still broadens during propagation, which can be
recognized in Fig. 2(b). Since the beam follows a zigzag
trajectory during propagation, the“incident” and “reflected”
beams interfere with each other at the reflection points. This
causes fringes or a modulation of the beam intensity at the
turning points. Such turnings also increase the spectral
width of the beam.
In Fig. 3, we display the propagation of a displaced

beam, with C ¼ 0 and x0 ¼ 10. Again, the analytical
trajectories agree well with the numerical simulations, both
in real and k spaces, at short distances. However, at long
distances an irregular behavior appears, because more and
more spatial frequencies are generated in k space. This
instability should not be confused with the instability in
nonlinear optics. It comes from the fact that the spatial
evolution in FSE involves a path integral over all interfering
rays—or, in k space, it represents a nonlocal operation that
involves a continuum of wave numbers. Here, Fourier
optics is evoked to realize the fractional Laplacian, which is
represented through a kernel and leads to a spectral
broadening of the input beam in k space [8]. Thus, unlike
the usual quantum mechanics, an input chirped displaced
Gaussian broadens in both k and x spaces, until becoming a
featureless broad beam. It remains bounded, with the power
unchanged, oscillating back and forth as a broad pulse.
As is visible in Eq. (10), the period is Z ¼ 0 when

x0 ¼ C ¼ 0, so that the beam will be localized along the
x ¼ 0 and k ¼ 0 axes during propagation [19]. Numerical
simulations in k and x spaces confirm that [Figs. 4(a)
and 4(b)]. It is clear that the beam exhibits breatherlike
behavior in both spaces, which is also a consequence of the
nonlocal interference during anharmonic oscillation.

FIG. 2 (color online). Propagation of a chirped Gaussian beam
with σ ¼ 1, x0 ¼ 0, and C ¼ 50 according to Eq. (1) with α ¼ 1
and β ¼ 1. (a) In k space. (b) In real space. The dashed curves are
analytical trajectories.

FIG. 3 (color online). Propagation of a displaced Gaussian,
with C ¼ 0 and x0 ¼ 10. Other parameters are as in Fig. 2.
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Now, we turn to the 2D case. The guiding equation is
rewritten as

i
∂ψ
∂z ¼

�
1

2

�
−

∂2

∂x2 −
∂2

∂y2
�

α=2

þ β2

2
ðx2 þ y2Þ

�
ψ : ð13Þ

We assume that the incident beam is ψðx; yÞ ¼
expð−σr2Þ expð−iCrÞ, with r2 ¼ ðx − r0Þ2 þ ðy − r0Þ2
and r0 the transverse displacement. Clearly, the potential
in real space has a parabolic surface profile, and in k space
it will be funnel-like. Since the incident Gaussian beam is
circularly symmetric, the period for the 2D case is

Z ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20∓ C

β2

s
: ð14Þ

The corresponding numerical simulations are shown in
Figs. 5(a) and 5(b) for real space and k space. The
propagation is also indicated in the left and right panels
in the movie in the Supplemental Material [20].
Since the 2D case more easily becomes unstable and

irregular than the 1D case, we only display the propagation
over one period. In real space, the beam evolves to a funnel-
like profile, while in k space, it propagates along a
parabolic surface. The rules of analysis are similar to those
for the 1D case. The interesting new feature is that now a
filamented structure forms during propagation, both in real
and k spaces, which means that at places the beam width
becomes very small and the peak intensity very large, as
displayed in the movie [20]. The physical reason is that the
potential enforces the refractive index change at the turning
points to be kinklike in one dimension and conelike in two
dimensions. So, in the 2D case, the intensity of the
propagating beam will focus along the x ¼ y ¼ 0 line,
which will form a filamented structure, as shown in
Fig. 5(a). In the Fourier domain, as shown in Fig. 5(b),

the process unfolds opposite to real space. The beam spread
is big at the focus in real space, and small where the beam
is wide. To see the big change in the peak intensity of
the beam during propagation, we depict the intensity in
Fig. 5(c).
We believe our research not only deepens understanding

of the FSE, but also may have potential applications in the
fabrication of light modulators, in signal processing, and
other areas connected with harmonic potential. In addition,
this research may open a way to investigate other fractional
oscillation processes (e.g., the fractional Langevin equation
and fractional integral-differential operators [21]), and even
dynamics of nonlinear FSE [22].
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