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We demonstrate the fractional Talbot effect of nonparaxial
accelerating beams, theoretically and numerically. It is
based on the interference of nonparaxial accelerating solu-
tions of the Helmholtz equation in two dimensions. The
effect originates from the interfering lobes of a superposi-
tion of the solutions that accelerate along concentric semi-
circular trajectories with different radii. Talbot images form
along certain central angles, which are referred to as Talbot
angles. The fractional nonparaxial Talbot effect is obtained
by choosing the coefficients of beam components properly.
A single nonparaxial accelerating beam possesses duality—
it can be viewed as a Talbot effect of itself with an infinite or
zero Talbot angle. These results improve the understanding
of the nonparaxial accelerating beams and of the Talbot
effect among them. © 2016 Optical Society of America

OCIS codes: (070.6760) Talbot and self-imaging effects; (260.3160)

Interference; (070.7345) Wave propagation.
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Paraxial and nonparaxial accelerating beams that are based on
Airy [1–4], Bessel [5,6], Mathieu [7,8], and Weber wave func-
tions [7,9] have attracted a lot of attention in the past decade.
They produced a variety of potential applications in particle
manipulation [10–12], electron beam shaping [13], superreso-
lution imaging [14], and surface plasmon generation [15–18],
to name a few. Investigations of accelerating beams have opened
a new window in the exploration of elusive problems in general
relativity [19–21] and quantum particle physics [22]. Indeed,
the development of accelerating beams is growing explosively,
and one of the most exciting scenarios is the mutual promotion
and complementation between paraxial and nonparaxial accel-
erating beams. One example of that promotion is the theoreti-
cal development of nonlinear nonparaxial accelerating beams
[23] and their experimental observation [24], based on the lin-
ear and nonlinear paraxial accelerating beams [25–28]. In this
context, it is worth mentioning a recent investigation of inco-
herent paraxial and nonparaxial accelerating beams [29,30];

this work filled a gap in the understanding of accelerating
beams and helped in the management of challenging issues
connected with the incoherent accelerating beams.

Not related to incoherent accelerating beams, the interference
of superposed coherent accelerating beams still produces interest-
ing results. A new member of the Talbot effect [31] family, the
Airy–Talbot effect, was recently introduced [30,32]. Different
from the traditional Talbot effect [33–36], the accelerating
Airy–Talbot effect is not based on a periodic incident beam
but on the interference of a superposition of coherent Airy beams
with transverse displacements. The appearance of the accelerating
Airy–Talbot effect refreshed the understanding of the recurrence
of images. Even though both paraxial and nonparaxial accelerating
Talbot effects were reported in Ref. [30], the fractional nonparaxial
accelerating Talbot effect was not discussed in the literature, to the
best of our knowledge. This is accomplished in this Letter. The
fractional nonparaxial accelerating Talbot effect is defined as self-
imaging which is not at the full Talbot angle. In addition to the
demonstration of the fractional nonparaxial accelerating Talbot
effect, we also point out that the nonparaxial accelerating beam
that accelerates along the circular trajectory exhibits duality—it
is a Talbot effect of itself with the Talbot angle being π or zero.

Thus, in this Letter, we establish the fractional nonparaxial
accelerating Talbot effect by superposing nonparaxial acceler-
ating beams with proper coefficients that accelerate along con-
centric semicircular trajectories. In this investigation, we are
inspired by the content of the last paragraph in Ref. [30].

In vacuum, the two-dimensional Helmholtz equation can
be written as �
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where k is the wavenumber. For the transverse electric field
E⃗ � Ey�x; z�ŷ, a particular shape-preserving solution can be
written as [6,37]
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where kz �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2x

p
, and m is a real parameter that deter-

mines the radius �∼m∕k� of the main lobe of the solution
[29]. The solution in Eq. (1) is the nonparaxial accelerating
solution, which exhibits a semicircular trajectory [5]. Since this
solution of the Helmholtz equation depends on m, one can
obtain the general solution as a superposition

Ey�x; z� �
Z

k

−k
dkx

�
1

kz
exp�ikxx � ikzz�

×
X
m

cm exp

�
im sin−1

�
kx
k

���
; (2)

where cm is an arbitrary amplitude coefficient, and the summa-
tion goes over finite or infinite selections of these coefficients.
Thus, the general solution is a superposition of a number of
components given by Eq. (1).

In Fig. 1(a), we display the shape-preserving solution ac-
cording to Eq. (1) with m � 800, and the dashed curve indi-
cates the theoretical trajectory. A superposition of two solutions
will form a breather along the semicircular trajectory [5].
One obtains the nonparaxial accelerating Talbot effect when
the solution in Eq. (2) is used, with many components accel-
erating in unison. Then the difference in m between the nearest
components is equal and fixed, and cm ≡ 1, as shown in
Fig. 1(b), which is similar to Fig. 3(a) in Ref. [30].

Similar to the nonparaxial accelerating breathers, the perio-
dicity of the nonparaxial accelerating Talbot effect is also
determined by the difference between the two nearest values
of m. In light of the circular trajectory, it is natural to use
the Talbot angle instead of the Talbot length to explore the
self-images. For convenience, one may rewrite Eq. (2) in polar
coordinates �k; θ� by taking kx � k sin�θ� and kz � k cos�θ�:

Ey�x; z� �
Z

π∕2

−π∕2
dθ

�
exp�ikx sin�θ� � ikz cos�θ��

×
X
m

cm exp�imθ�
�
: (3)

To find the Talbot angle, one should find an angle that makes
the summation in Eq. (3) not affected by m. To this end, one
can pick the two nearest components as m0 � nΔm and
m0 � �n� 1�Δm, with m0 being the reference value of m

in Eq. (3), n an arbitrary integer, and Δm the radial difference
between the two nearest components. Thus, the superposition
of the two components is

exp�i�m0 � nΔm�θ� � expfi�m0 � �n� 1�Δm�θg
� exp�i�m0 � nΔm�θ��1� exp�iΔmθ��: (4)

Clearly, if Δmθ is an integer multiple of 2π, the value of the
expression in Eq. (4) can be rewritten as 2 exp�im0θ�, which is
independent of m. As a result, one may define the Talbot angle

θT � 2π

Δm
: (5)

From Eq. (5), one finds that the Talbot angle is inversely pro-
portional to the radial difference Δm. The smaller Δm, the
larger the Talbot angle. For the case in Fig. 1(b), the Talbot
angle is π∕5.

As reported in Ref. [5], to observe a periodic behavior, the
two solutions should accelerate in unison. Even though the
transverse displacement does not affect the unisonant oscilla-
tion of paraxial accelerating beams, which helps in explaining
the paraxial accelerating breathers and Talbot effect [30,32,38],
one cannot apply this to the nonparaxial accelerating beams.
The reason is that one has to make sure the sumP

m exp�ik sin�θ��x � mΔx�� is independent of m, which de-
mands Δx, the transverse displacement, to fulfill the relation
Δx � 2π∕�k sin�θ��, and this is impossible due to the factor
sin�θ� in the denominator. That is, the transversely displaced
components cannot accelerate in unison. Therefore, we
construct the general solution as displayed in Eq. (2) which
is based on different equidistant values of m that were previ-
ously reported in [30], even though the solution in Eq. (2) with
arbitrary transverse displacements is also a solution of the
Helmholtz equation.

From Fig. 1(a), one may observe that the beam deforms
when it bends close to π∕2 gradually, especially at the outer
rings. Therefore, the nonparaxial accelerating Talbot effect is
getting worse with increasing bending angle. One can obtain
well-resolved self-imaging in quite a large angle ∼2π∕5 that is
close to π∕2. Since the Talbot angle is inversely proportional to
Δm, one may increase the value of Δm to obtain a more precise
accelerating Talbot carpet with a smaller Talbot angle. In
Figs. 2(a) and 2(b), we exhibit the intensity distributions com-
posed by nine components in 500 ≤ m ≤ 900 with Δm � 50
and in 700 ≤ m ≤ 716 withΔm � 2, respectively. One can see
that the quality of resolution of the nonparaxial Talbot effect in
Fig. 2(a) is much improved. However, in Fig. 2(b), where the
Talbot angle θT � π, the superposition of nonparaxial accel-
erating beams cannot form the Talbot effect since it propagates
along a straight line without bending. One can also observe that
our theoretical beams in Figs. 1 and 2 generally agree with the
experimental curve presented in Fig. 3(b) of [29].

Going back to the Talbot angle, as expressed in Eq. (5), we
note an interesting feature by considering two limiting cases
Δm → 0 and Δm → ∞, which correspond to infinite and zero
Talbot angles. We first discuss theΔm → 0 case, which leads to
m0 � nΔm ≈ m0, so that the radii of the components are al-
most the same, that is ∼m0∕k. In other words, all the compo-
nents reduce to one, and one can only see the m0 component.
From this point of view, a single nonparaxial accelerating beam
itself is a case of the nonparaxial accelerating Talbot effect
with θT → ∞. Considering the periodicity of the angle, the

Fig. 1. (a) Nonparaxial accelerating beam with m � 800.
The dashed curve is the theoretical trajectory. (b) Nonparaxial
accelerating Talbot effect from the superposition of nonparaxial
accelerating beams with m changing from 700 to 800 and Δm � 10.
The mode of presentation is similar to Fig. 3 in Ref. [30].
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maximum Talbot angle is π. On the other hand, when Δm →
∞ the radii of the components with m0 � nΔm and n ≠ 0
approach infinity. Therefore, again, one can observe only
one component, m0. Thus, one may also state that a nonpar-
axial accelerating beam itself is a case of the nonparaxial accel-
erating Talbot effect with θT → 0. Similar to the paraxial
accelerating beams [32], the nonparaxial accelerating beams
also possess duality.

In Figs. 2(c) and 2(d), we present the intensity distributions
of two superposed nonparaxial accelerating beams by choosing
�m0;Δm� as (400, 500) and (700, 1), respectively. In accor-
dance with our prediction, the component with m0 � Δm
has a much bigger radius than the component with m0, as
in Fig. 2(a). Thus, the interference between the two compo-
nents is weakened greatly, and ultimately only the component
with m0 is left with the continuously increasing Δm. The sit-
uation is opposite in Fig. 2(d)—the two components are almost
the same due to small Δm. As a result, one seemingly finds that
there is only one component with m0. Thus, one can consider
the nonparaxial accelerating beam as the image of itself, with
the Talbot angle being infinity or zero.

As demonstrated in Refs. [30,32], the coefficients cm do not
have to be 1 for all the components. One may choose, e.g.,
cm � �� � � ; 1; 0; 1; 0; � � �� and cm � �� � � ; 1; i; 1; i; � � �� to still ob-
tain the Talbot effect. If we assume that the coefficients for odd
components are 0 or i, then the summation in Eq. (3) can be
written as

exp�im0θ�
X
n∈Z

exp�i2nΔmθ�; (6a)

for cm � �� � � ; 1; 0; 1; 0; � � ��, and

exp�im0θ��1� i exp�iΔmθ��
X
n∈Z

exp�i2nΔmθ�; (6b)

for cm � �� � � ; 1; i; 1; i; � � ��. From Eq. (6a), one can find that the
Talbot angle can be written as

θH � π

Δm
; (7)

which is halved in comparison with Eq. (5). That is, the Talbot
angle for this case is the same as that in Fig. 1(b), if Δm � 5 is
chosen.

We display the intensity distribution of superposed non-
paraxial accelerating beams in Fig. 3(a), with the same condi-
tion as the one used in Fig. 1(b) except for Δm � 5 and
cm � �� � � ; 1; 0; 1; 0; � � ��. Indeed, the intensity distribution in
Fig. 3(a) is same as that in Fig. 1(b). However, if cm �
�� � � ; 1; i; 1; i; � � �� is chosen and other parameters remain the
same, one obtains the intensity distribution, as shown in
Fig. 3(b). Even though Figs. 3(a) and 3(b) look the same,
the intensity distributions along the angles are different, as dis-
played in Figs. 4(b) and 4(c), which is not the case in Fig. 3(a).
The reason is that the term i exp�iΔmθ� in Eq. (6b) equals −1
when θ � θH∕2 and 1 when θ � −θH∕2, which indicates that
the peaks and valleys of the interference fringes in Figs. 4(b)
and 4(c) are the opposite. There, the intensity distributions in
Figs. 4(a), 4(d), and 4(e) are the same; however, one will find
the difference if the phase is also taken into account because the
term i exp�iΔmθ� is i in Fig. 4(a) and −i in both Figs. 4(d) and
4(e). Thus, the images along the angles marked with (IV) and
(V) in Fig. 3(b) are not the Talbot images of (I). In fact, (IV)
and (V) are the mutual Talbot images because the intensity and
phase for both cases are the same. If one assumes (I) represents
the incident beam, then (IV) and (V) are the fractional Talbot
images because they appear at half of the Talbot angles. For this
case, the Talbot angle is still θT instead of θH . We believe that
other interesting fractional Talbot images can be obtained
when the coefficients of the components are appropriately
chosen. For an eventual experimental demonstration of the
fractional nonparaxial accelerating Talbot effect, we suggest
the setup described in Ref. [30]. It seems that this experimental
realization can be directly applied to our case as well.

In summary, we have demonstrated the fractional nonpar-
axial accelerating Talbot effect among the beams that accelerate
along semicircular trajectories by choosing the coefficients for
components properly. The superposed nonparaxial accelerating
beams should be concentric to make the beams accelerate in

Fig. 2. Intensity distributions of the superposed nonparaxial acceler-
ating beams. (a) 500 ≤ m ≤ 900 with Δm � 50, (b) 700 ≤ m ≤ 716
with Δm � 2, (c) m � 400 and m � 900, and (d) m � 700 and
m � 701. These beams qualitatively agree with the experimental beam
presented in Fig. 3(b) of [29].

Fig. 3. Same as Fig. 1(b) but for Δm � 5 and
(a) cm � �� � � ; 1; 0; 1; 0; � � �� and (b) cm � �� � � ; 1; i; 1; i; � � ��.
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unison. We have found that the difference in radius of adjacent
beams determines the Talbot angle and that they display an
inverse proportionality. Similar to the Airy beam, a nonparaxial
accelerating beam is also a Talbot effect of itself, with the
Talbot angle being π or zero. We believe that our work not
only enriches the Talbot effect family but also broadens the
practical utility of nonparaxial accelerating beams.
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