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ABSTRACT: We address edge states and rich localization regimes available in
one-dimensional dynamically modulated superlattices, both theoretically and
numerically. In contrast to conventional lattices with straight waveguides, not
only is the quasi-energy band of an infinite modulated superlattice periodic in
the transverse Bloch momentum, but it also changes periodically with an
increase in the coupling strength between waveguides. Due to the collapse of
quasi-energy bands, dynamical superlattices admit a known dynamical
localization effect. If, however, such a lattice is truncated, periodic longitudinal
modulation leads to the appearance of specific edge states that exist within
certain periodically spaced intervals of coupling constants. We discuss unusual
transport properties of such truncated superlattices and illustrate different
excitation regimes and enhanced robustness of edge states in them that are
associated with the topology of the quasi-energy band.
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Periodically modulated lattice systems attract considerable
attention in diverse areas of physics, including condensed

matter physics1−9 and photonics.10−19 One of the main reasons
for the interest in such systems is that due to variations in the
parameters of the system along the evolution coordinate (time
in condensed matter physis or propagation distance in
photonics), not only does a rich variety of resonant dynamical
effects associated with specific deformations of quasi-energy
bands appear (for an overview of such dynamical effects, see
previous literature20,21), but one may also encounter the effects
of purely topological origin. One of the manifestations of such
effects is the appearance of topologically protected edge states
that are typically unidirectional (in the 2D systems) and that
demonstrate immunity to backscattering on disorder and other
structural lattice defects due to topological protection. In
modulated periodic photonic systems, frequently called Floquet
insulators,3,15,22 longitudinal variations of the underlying
potential were shown to lead to the appearance of the effective
external time-dependent “magnetic fields” that qualitatively
change the behavior of the system and allow the design of a
new class of devices employing topologically protected
transport, including photonic interconnects, delay lines,
isolators, couplers, and other structures. Periodically modulated
photonic lattices were employed for realization of discrete

quantum walks23,24 and allowed observation of Floquet
topological transitions with matter waves.25,26

Previous investigations of modulated lattices were mainly
focused on the 2D and 3D geometries, and less attention was
paid to the 1D settings. Moreover, upon consideration of bulk
and surface effects in the modulated photonic 1D systems, only
simplest lattices were utilized with identical coupling strength
between all channels and with identical (usually sinusoidal)
laws of their longitudinal variation.27−33 Only recently
dynamical superlattices with specially designed periodically
varying separation between channels belonging to two different
sublattices were introduced that allowed observation of
intriguing new resonant phenomena, such as light rectifica-
tion.34−36 Previously only bulk modulated superlattices were
considered, and no surface effects in such structures were
addressed. Therefore, the main aim of this work is the
exploration of new phenomena stemming from the interplay
between superlattice truncation and its longitudinal modu-
lation. We aim to show that dynamically modulated truncated
superlattices exhibit topological transition manifested in
qualiative modification of the quasi-energy spectrum upon
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variation of the coupling strength between waveguides forming
the lattice. Namely, within proper intervals of coupling strength
isolated eigenvalues appear that are associated with non-
resonant (i.e., existing within continuous intervals of coupling
strengths) edge states. Interestingly, such edge states persist
even when conditions for collapse of the bulk quasi-energy
band are met. We discuss specific propagation dynamics in the
regime, where edge states exist that can be studied in
experiments in a conservative and easily realizable system. We
believe that these findings substantially enrich the approaches
for control of propagation paths of light beams in periodic
media.
We also would like to emphasize that the significance of our

finding comes from the fact that we use a very simple tight-
binding model that is employed for description of excitations in
a number of different physical settings, including photonics
(with its diversity of fabricated or light-induced guiding
structures), matter waves held in the external time-dependent
potentials, mechanical anharmonic oscillators, solid-state
systems, and biophysics (upon description of energy transport
in biomolecules), to name just a few of them. The possibility to
implement periodic variations of coefficients (coupling
constants) in our physically realizable model introduces a
completely unexpected twist to its properties, opening the way
to study the whole realm of resonant effects that are not
available in similar static structures studied before. Our work
deals with one such resonant effect, which was never addressed
before, to the best of our knowledge: periodic appearance and
destruction of edge states in a truncated superlattice upon
variation of coupling strength between waveguides. The
predicted effect is universal and purely linear; hence it can be
observed in various systems beyond optics.
As an example of the dynamical superlattice we consider the

discrete structure depicted in Figure 1, which is somewhat

similar to the Su−Schrieffer−Heeger lattice.37 The superlattice
is composed of two sublattices, denoted as A and B (red and
green channels in Figure 1). The single-mode waveguides in
individual sublattices are curved such that the coupling strength
between nearest neighbors belonging to different sublattices
changes with propagation distance in a step-like fashion, as

schematically shown in Figure 1a [since there are two
sublattices, one can introduce two coupling strengths J1(z)
and J2(z) describing coupling between waveguides with equal
(n, n) or with different (n, n + 1) indices from two sublattices].
We assume that the coupling strength increases to a maximal
value J when two waveguides are close and drops down nearly
to zero when they are well separated, due to the exponential
decrease of the overlap integrals between modal fields with an
increase in the distance between the waveguides. The
longitudinal period of the structure is given by T, while the
transverse period is given by 2a. In Figure 1c we display one
longitudinal period of the structure indicated by a dashed box
in Figure 1b. Coupling constants on two different segments of
the lattice are indicated in Figure 1a. The lattices considered
here can be easily fabricated using a direct femtosecond laser
inscription technique.38 In this technique the ultrashort laser
pulses tightly focused inside a sample induce a localized
permanent refractive index change in the focal region. When
the sample is translated during the writing process, extended
waveguide forms. Waveguides can be written along nearly
arbitrary longitudinal paths, while sequentially written wave-
guides can be arranged into large and complex arrays with any
geometry (see, e.g., Figure 1), ranging from one- to three-
dimensional ones. Typical refractive index distributions created
with this technique were discussed previously.39,40 The
refractive index change in each waveguide can be controlled
with high precision and is determined by writing speed that can
reach 60 mm/min at a pulse energy of 200 nJ and a repetition
rate of 100 kHz. This technique has been used for inscription of
anomalous two-dimensional topological insulators.41,42 The
dimensionless coupling constant between two single-mode
laser-written waveguides m and m + 1 from Figure 1 is given by
J(z) = (k2x0

2/n) ∫ δnAqAqB dx/∫ qA2 dx, where qA,B(x, z) are
field distributions in two waveguides [max{qA, B = 1}], δnA(x, z)
is the small perturbation of the refractive index profile defining
the mth waveguide (we assume that it can change with
distance), k = 2πn/λ is the wavenumber, n is the background
refractive index, x is the dimensionless transverse coordinate
normalized to characteristic scale x0 = 10 μm, and z is the
dimensionless propagation distance scaled to diffraction length
kx0

2 ≈ 1.1 mm. The overlap integral in definition of J depends
on the particular shape of the waveguides, and it exponentially
decreases with an increase of separation between them (due to
exponential localization of the modes). Thus, for two Gaussian
waveguides with width 5 μm, 20 μm separation, and refractive
index contrast δnm = 6 × 10−4, written in fused silica (n ≈ 1.45),
the coupling constant at wavelength 800 nm is given by J ≈ 0.1.
Complete power transfer between two such waveguides (if they
are straight) should occur at a distance π/2J ≈ 1.8 cm, which is
substantially smaller than available sample lengths of ∼20 cm;
that is, many switching events can be observed. By adjusting the
separation between waveguides the coupling constant J can be
changed by several orders of magnitude and easily reaches the
level of ∼π/T required for observation of edge states (see
below). In the example above with J ≈ 0.1, such states can be
observed in structure with period T ≈ 10π (i.e., 3.5 cm).

■ RESULTS AND DISCUSSIONS

Theoretical Model and Band Structure. We describe
propagation of light in the infinite superlattice depicted in
Figure 1 using the discrete model43,44

Figure 1. (a) Schematic illustration showing coupling constants on
two half-periods of a superlattice composed from sublattices A and B.
Coupling occurs only between sites connected by solid lines and is
absent between sites connected by dashed lines. (b) Refractive index
distribution in a photonic lattice that reproduces the coupling scheme
illustrated in panel (a). (c) Magnification of the region marked by a
dashed box in (b) that shows one longitudinal period of the structure.
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where coupling constants J1,2(z) are step-like periodic functions
of the propagation distance z, while An and Bn stand for the
field amplitudes on sites of sublattices A and B. According to
the Floquet theory, the evolution of excitations in a
longitudinally modulated lattice governed by the Hamiltonian
H(k, t) = H(k, t + T) (here T is the period of longitudinal
modulation and k is the transverse Bloch momentum) can be
described by the Floquet evolution operator

∫= − ′ ′U t H t tk( ) exp[ i ( , ) d ]
t

0

where is the time-ordering operator. Defining the evolution
operator U(T) for one longitudinal period of the structure [i.e.,
|ϕ(k, T)⟩ = U(T)|ϕ(k,0)⟩, where |ϕ(k, t)⟩ is the Floquet
eigenstate of the system] and using an adiabatic approximation,
one can introduce an effective Hamiltonian Heff of the
modulated lattice in accordance with the definition U(T) =
exp(−iHeffT). In contrast to the instantaneous Hamiltonian
H(k, t), the effective Hamiltonian Heff is z-independent, and it
offers a “stroboscopic” description of the propagation dynamics
over a complete longitudinal period. The spectrum of the
system can be described by quasi-energies ϵeigenvalues of
the effective Hamiltonian45,46that can be obtained from the
expression U(T)|ϕ⟩ = exp(−iϵT)|ϕ⟩. Using this approach in
the case of an infinite discrete lattice we search for solutions of
eq 1 in the form of periodic Bloch waves An = A exp(ikxn) and
Bn = B exp(ikxn + ika), where xn = 2na is the discrete transverse
coordinate and k ∈ [−π/2a, π/2a] is the Bloch momentum in
the first Brillouin zone. Substituting these expressions into eq 1,
one obtains
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Thus, the Floquet evolution operator over one period can be
represented as2,4,41
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where Hamiltonians on the first and second half-periods are
given by
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One can see from eq 3 that the Floquet evolution operator is
a periodic function of transverse momentum k with a period π/
a and of the coupling strength J with a period 2π/T. Similarly,
by introducing the effective Hamiltonian through U =
exp(−iHeffT) and calculating its eigenvalues (quasi-energies
ϵ), one obtains that the latter are also periodic functions of k
and J. In Figure 2, we depict the dependence ϵ(k, J). The quasi-

energy band is symmetric with respect to the plane ϵ = 0 (it is
periodic also in the vertical direction with a period 2π/T
because eigenvalues of periodic system are defined modulo 2π/
T). The maxima of quasi-energies within a vertical interval
shown in Figure 2 are located at k = nπ/a and J = (2l + 1)π/T,
where n is an integer and l is a non-negative integer. To
highlight the details of this dependence we show quasi-energies
in Figure 3a and b for certain fixed values of coupling strength J
and Bloch momentum k, respectively. Importantly, it follows

Figure 2. Quasi-energy as a function of Bloch momentum k and
coupling constant J.

Figure 3. (a) Quasi-energy as a function of k for different J values. (b)
Quasi-energy as a function of J for different k values.
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from Figure 3a that the quasi-energy band is dispersive at J < π/
T (see red curves), so for this coupling strength any localized
wavepacket launched into the system will diffract. When J
increases up to π/T, the dependence ϵ(k) becomes linear47

(see black lines). This means that the effective dispersion
coefficient vanishes and excitations in such a lattice will
propagate without diffraction, but with nonzero transverse
velocity; this is the rectification regime. Further increase of the
coupling strength makes the quasi-energy band dispersive again.
Finally, the quasi-energy band collapses to a line at J = 2π/T
(see the blue line). In this regime of dynamical localization the
shape of any wavepacket launched into the system will be
exactly reproduced after one longitudinal period. Very similar
transformations can be observed for different Bloch momenta,
when the quasi-energy is plotted as a function of coupling
constant J, as shown in Figure 3b.
The situation changes qualitatively when the superlattice is

truncated in the transverse direction. In this case one cannot
introduce Bloch momentum anymore, so evolution dynamics is
described by the system eq 1, where equations for amplitudes
in the edge sites A1 and AN are replaced by the equations idA1/
dz = J1(z) B1, idAN/dz = J2(z)BN−1. One should stress that the
properties of the system do not change qualitatively if the
superlattice is truncated on the site belonging to sublattice A on
the left side and on the site belonging to sublattice B on the
right side. By introducing an effective Hamiltonian for the finite
longitudinally modulated superlattice, one can determine its
quasi-energies, which can be plotted as a function of the
coupling strength J. In Figure 4a we display the corresponding
dependence. One can see that this dependence inherits some
features of ϵ(J) dependence of the infinite lattice (compare

Figures 4a and 3b). Among them is the (partial) collapse of the
quasi-energy band for specific values of the coupling constant J
= 2πm/T. At the same time, there are two qualitative
differences. First, within the interval J ∈ [π/T, 3π/T] of
coupling constants the isolated quasi-energies emerged (see red
lines) that are associated with edge states. In fact, such edge
states appear periodically in the intervals [(4m + 1)π/T, (4m +
3)π/T], where m is an integer. The second difference is that the
period of the ϵ(J) dependence is doubled in comparison with
dependence in the infinite lattice. Qualitative modification of
the quasi-energy spectrum indicates the topological transition
that occurs in the finite modulated superlattice upon variation
of the coupling strength between waveguides. Interestingly, the
collapse of the quasi-energy band at J = 2π/T indicating the
presence of dynamic localization in the system coexists with the
fact of formation of edge states; so for this particular value of J
two qualitative different localization mechanisms are simulta-
neously available.
The width of the emerging edge states strongly depends on

the coupling constant. To illustrate this, we introduce the
participation ratio R = ∑n|qn|

4/(∑n|qn|
2)2, where qn = An, Bn

stands for light amplitudes on sites of sublattices A and B. The
width of the mode is inversely proportional to the participation
ratio. In Figure 4b, we show the width of the edge state versus
coupling constant J. Localization increases with an increase in
the coupling constant, so that already at J > 1.1π/T the edge
state occupies less than 10 sites of the lattice. Maximal
localization in a nearly single surface channel occurs at J = 2π/
T, and further increase of the coupling constant leads to gradual
delocalization of the edge state. Examples of profiles of edge
states (absolute value) with notably different localization
degrees at J = 1.16π/T and J = 1.56π/T are shown in Figure 4c.

Transport Properties. The topological transition that
occurs in a finite longitudinally modulated superlattice suggests
the existence of novel propagation scenarios in this system. To
study transport properties in such structures, we simultaneously
consider excitations of the internal and edge sites and use three
representative values of the coupling constant. In the particular
realization of the lattice that we use to study propagation
dynamics (see Figure 5) two edge sites belong to different
sublattices; that is, the “bottom” site belongs to sublattice A,
while the “top” site belongs to sublattice B. First, we consider
the case J = 0.5π/T, where the quasi-energy band has finite
width, while edge states do not appear. In Figure 5a, we excite
the internal waveguide and find that the beam diffracts during
propagation. Similarly, the excitation of the edge waveguide
shown in Figure 5b is also accompanied by rapid diffraction
without any signatures of localization. Second, we turn to the
system with the coupling strength J = 1.5π/T. For this coupling
constant according to Figure 4a, the width of the quasi-energy
band is still finite, but edge states already emerge. Therefore, if
an internal site is excited, discrete diffraction will be observed,
as shown in Figure 5c. In contrast, excitation of the edge site
leads to the formation of a well-localized edge state and only
weak radiation can be detected, as shown in Figure 5d. The
reason for small radiation is that we use excitation that does not
match directly the shape of the edge state; hence delocalized
bulk modes are excited too, but with small weights. Finally, we
consider the case with J = 2π/T, where the quasi-energy band
collapses (Figure 4a). In this particular case dynamic local-
ization occurs irrespectively of the location of the excited site.
In Figure 5e, we show such a localization for excitations of site
numbers 10, 20, and 30. In addition, we also excite the edge

Figure 4. (a) Dependence of quasi-energies on the coupling constant
in the finite superlattice containing 200 sites in each sublattice. (b)
Width of the edge state versus coupling constant. (c) Absolute value of
the edge states corresponding to J = 1.16π/T and J = 1.56π/T,
respectively.
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waveguides in Figure 5f, where one can see that the light beam
does not experience expansion and remains confined in two
near-surface sites. This is the regime where two distinct
localization mechanisms coexist.
The propagation dynamics in this system is specific at J = π/

T, and it deserves separate discussion. In the infinite lattice this
coupling constant corresponds to linear dependence of the
quasi-energy on the Bloch momentum k, i.e., the absence of
diffraction (rectification regime). The finite superlattice inherits
this property to some extent; that is, localized excitations in a
finite lattice also do not diffract, but move with constant
transverse velocity. Interestingly, despite the absence of
diffraction, the excitation of edge states in this regime does
not occur, since moving excitations just changes their
propagation direction when they hit edge sites. This is
illustrated in Figure 6a and b, where we simultaneously excite
two opposite edge waveguides. In this particular case we excited
sites belonging to different sublattices, as before, but the
dynamics does not change qualitatively if sites from one
sublattice are excited. Notice that in this interesting regime the
transverse confinement occurs without any nonlinearity, and at

the same time the propagation trajectory of the beam and its
output position can be flexibly controlled, which is advanta-
geous for practical applications. To illustrate enhanced
robustness of edge states introduced here, we deliberately
introduce considerable deformation at the surface of the lattice,
by replacing the whole section of the edge waveguide between z
= T and z = 2.5T with a straight section, as shown schematically
in Figure 6c. The coupling constant for internal waveguides is
selected as J = 1.8π/T; that is, it corresponds to a situation
where edge states form at the surface. The corresponding
propagation dynamics in this deformed structure is shown in
Figure 6d. Despite considerable deformation of the structure,
the edge excitation passes the defect without noticeable
scattering into the bulk of the lattice. However, it should be
mentioned that if the surface defect is too long and extends
over three or more periods of the structure, the edge state may
be destroyed and light will penetrate into the depth of the
lattice. Finally, we design a structure that is composed of two
parts with different coupling strengths between waveguides: in
the first part of the lattice J = π/T for closely spaced
waveguides, while in the second part of the lattice J = 1.5π/T.

Figure 5. Propagation dynamics in the finite superlattice when only one site in sublattice A is excited by the beam exp[−16 ln 2(x − xA)
2], where xA

is the coordinate of the site in sublattice A. Left panels: Internal site is excited. Right panels: Edge site is excited. First column: J = 0.5π/T. Second
column: J = 1.5π/T. Third column: J = 2π/T. Parameters: a = 1 and T = 1.

Figure 6. (a) Schematic illustration of the waveguide array without defects or deformation. Black curve with arrows indicates the propagation
direction for excitations of two opposite edge waveguides. (b) Propagation dynamics in the lattice without defects at J = π/T. (c and d) Same as (a)
and (b), but for the system with a defect on the edge. For the internal waveguides, the coupling strength is J = 1.8π/T, while for the straight edge
waveguide the coupling strength is J = π/4T at T < z ≤ 1.5T and 2T < z ≤ 2.5T, and J = π/15T at 1.5T < z ≤ 2T. (e and f) Same as (c) and (d), but
for the lattice with global deformation that changes the coupling constants after a certain distance z. The coupling strength is J = π/T at 0 ≤ z < 5T
and J = 1.5π/T at 5T ≤ z < 10T.
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Such variation in the coupling strength can be achieved by
reduction of the transverse period at certain distance z, as
shown in Figure 6e. Since in the first part of the lattice the
coupling constant is selected such that no edge states can form,
but diffractionless propagation is possible, the input beam will
propagate from one edge of the lattice toward the opposite
edge. If it arrives at the opposite edge in the point, where the
coupling constant changes and edge states become possible, the
beam may excite the edge state and stay near the surface of the
structure, as shown in Figure 6f. If, however, the beam hits the
opposite edge before the point where the coupling constant
increases, it will be bounced back and enter into the right half
of the lattice in one of the internal waveguides. This will lead to
fast diffraction of the beam without excitation of the edge states.
This setting can be considered as a kind of optical switch, where
the presence of signal in the output edge channel depends on
the position of the input excitation.

■ CONCLUSION
Summarizing, we investigated transport properties in the one-
dimensional dynamical superlattices. We have shown that in
finite modulated superlattices a topological transition may
occur that leads to the appearance of edge states, whose degree
of localization depends on the coupling constant between
lattice sites. This localization mechanism may coexist with
dynamic localization due to the collapse of quasi-energy bands.
In contrast to systems considered previously, where the entire
lattice bends periodically along the evolution coordinate,28,31

the coupling strength between neighboring channels in our
structure is periodically modulated. Due to this modulation, the
edge states appear and disappear periodically upon variation of
the maximal value of the coupling strength J. We believe that
our findings will allow observation of new regimes of dynamical
localization of light and provide new insight for topological
photonics and quantum-optical analogies.20,48
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