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a b s t r a c t

Various sparse principal component analysis (PCA) methods have recently been proposed to enhance

the interpretability of the classical PCA technique by extracting principal components (PCs) of the given

data with sparse non-zero loadings. However, the performance of these methods is prone to be

adversely affected by the presence of outliers and noises. To alleviate this problem, a new sparse PCA

method is proposed in this paper. Instead of maximizing the L2-norm variance of the input data as the

conventional sparse PCA methods, the new method attempts to capture the maximal L1-norm variance

of the data, which is intrinsically less sensitive to noises and outliers. A simple algorithm for the

method is specifically designed, which is easy to be implemented and converges to a local optimum of

the problem. The efficiency and the robustness of the proposed method are theoretically analyzed and

empirically verified by a series of experiments implemented on multiple synthetic and face reconstruc-

tion problems, as compared with the classical PCA method and other typical sparse PCA methods.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Principal component analysis (PCA) is one of the most classical
and popular techniques for data processing and dimensionality
reduction, and has wide range of applications throughout science
and engineering [1]. In essence, PCA seeks the so-called principal
components (PCs) along which the data variance can be maxi-
mally preserved. By projecting the data into the low-dimensional
linear subspace constituted by the PCs so extracted, the data
structure in the original input space can be effectively captured.

Despite its many advantages, the traditional PCA suffers from
the fact that each component is generally a linear combination of
all the original variables and all weights in the linear combination,
also known as loadings, are typically non-zeroes. In many appli-
cations, however, the original variables have meaningful physical
interpretations. In biology for example, each involved variable
might correspond to a specific gene. In these cases, the inter-
pretation of the PCs will be facilitated if the derived PCs involve
fewer non-zero loadings.

Accordingly, sparse PCA has been an active research topic for
more than a decade, and a variety of methods for this topic have
been developed [2–14]. For example, good results have been
achieved by the SPCA algorithm of Zou et al., which is developed
based on iterative elastic net regression [2]. D’Aspremont et al.
proposed a method, called DSPCA, for finding sparse PCs by
solving a sequence of semidefinite program relaxations of sparse

PCA [3]. Journée et al. designed four algorithms ðGPowerl0 ,
GPowerl1 , GPowerl0 ,m, and GPowerl1 ,mÞ for sparse PCA by formu-
lating the issue as non-concave maximization problems with
L0- or L1-norm sparsity-inducing penalties and extracting single
unit sparse PC sequentially or block units ones simultaneously [4].
Based on expectation-maximization for probabilistic generative
model of PCA, Sigg and Buhmann derived EMPCA for sparse
and/or non-negative principal component analysis [5]. Very
recently, Lu and Zhang developed an augmented Lagrangian
method (ALSPCA briefly) for sparse PCA by solving a class of
non-smooth constrained optimization problems [6]. Additionally,
greedy methods were investigated for sparse PCA by Moghaddam
et al. (GSPCA [7]) and d’Aspremont et al. (PathSPCA [8]). These
methods have been successfully applied to many problems for
extracting sparse and interpretable PCs from the given raw data.

However, the intrinsic principle underlying the current sparse
PCA methods is to maximize the L2-norm variance of the input
data under certain sparsity constraint (which is to be introduced
in detail toward the next section). This naturally conducts the
problem that the methods are prone to the presence of outliers or
noises due to the fact that the influence of outliers or noises with
a large norm tends to be considerably exaggerated by the use of
the L2-norm. This robustness problem conducted by L2-norm
variance has been emphasized by multiple traditional PCA
researchers [15–20], while has not been noted in sparse PCA area.

In this paper, instead of maximizing variance with intrinsic
L2-norm, a new optimization model that maximizes the L1-norm
variance is presented to achieve robust sparse PCA. A simple
algorithm for solving the proposed L1-norm optimization is
correspondingly developed. The proposed algorithm is easy to
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be implemented, and especially, it is theoretically evaluated that
the computational speed of the new algorithm surprisingly
exceeds many of the current sparse PCA methods. The algorithm
is also proved to be able to converge to a reasonable local
optimum of the original optimization model. By a series of
experiments, it is verified that the proposed algorithm has an
efficient and robust performance on data with intrinsic outliers
and noises.

In what follows, the robustness problem of the current sparse
PCA methods is first formulated in Section 2. The new robust
sparse PCA algorithm is then proposed in Section 3. Also in this
section the local optimality of the algorithm is proved and the
computational complexity of the algorithm is evaluated. To verify
the effectiveness of the proposed algorithm, results obtained from
a series of empirical studies, as compared with those of other
conventional methods, are analyzed and interpreted in Section 4.
The paper is then concluded with a summary and outlook for
future research.

2. Problem formulation

Denote the input data matrix as X ¼ ½x1, . . . ,xn�ARd�n, where
d and n are the dimensionality and the size of the given data,
respectively. After a location transformation, we can assume all
fxig

n
i ¼ 1 to have zero mean.
The classical PCA model tries to find an mðodÞ dimensional

linear subspace where the variance of the input data X is
maximized. Such a subspace can be achieved by solving the
following optimization problem:

Wn ¼ arg max
W

JWT XXT WJ2 ¼ JWT XJ2
2, subject to WT W ¼ Im, ð1Þ

where W ¼ ½w1,w2, . . . ,wm�ARd�m, where each column wk of W

corresponds to the k-th PC of the original data and J � J2 denotes
the L2-norm of a matrix or a vector. Under the constraint that
WT W ¼ Im, it is known that all fwkg

m
k ¼ 1 constitute the regular

orthogonal bases of the m-dimensional linear subspace where the
maximal L2-norm variance of X is captured.

Sparse PCA model aims at achieving sparse PCs on which
maximal amount of data variance can be possibly obtained. This
aim can be attained by solving the following optimization:

Wn ¼ arg max
W

JWT XJ2
2, subject to WT W ¼ Im, JWJ0ok: ð2Þ

Note that the only difference between the optimizations (1) and
(2) for classical PCA and sparse PCA is that the latter involves
an extra l0 penalty, i.e., JWJ0ok, to enforce sparsity of the
output PCs.

It is easy to see that the optimization (2) is a hard combina-
torial problem and very difficult to solve. Hence a more generally
employed sparse PCA formulation is to relax the non-convex l0
penalty to a weaker but convex l1 penalty, i.e., JWJ1ot. This leads
to the following amended optimization:

Wn ¼ arg max
W

JWT XJ2
2, subject to WT W ¼ Im, JWJ1ot: ð3Þ

The formulation (3), as well as (2), constitutes the fundament of
most of current sparse PCA methods [2–14].

Note that the objective of both of the above optimizations for
sparse PCA is to maximize the data variance with intrinsic
L2-norm, i.e., JWT XJ2

2. Yet it is known that the L2-norm variance
is sensitive to outliers and noises with large norms [15–23]. This
phenomenon is graphically depicted in Fig. 1, which shows the
L2-norm variance curve f ðxÞ ¼ JxJ2

2 and L1-norm one f ðxÞ ¼ JxJ1,
respectively. From the figure, the exaggerative effect of L2-norm
variance at points with large norms, as compared with the

L1-norm one, is evident. This on one hand clarifies the robust
problem of the traditional sparse PCA methods on the data with
heavy outlier or noise pollution, and on the other hand implies a
meliorative strategy to this problem by substituting the L1-norm
variance JWT XJ1 for the L2-norm one JWT XJ2

2 in optimization
problems (2) or (3).1

Motivated by the above analysis, we formulate the following
optimization to realize the robust sparse PCA:

Wn ¼ arg max
W

JWT XJ1, subject to WT W ¼ Im, JWJ1ot, ð4Þ

which is expected to be more robust to outliers and noises than
the traditional sparse PCA techniques.

One downside of (4) is that the optimal i-th PC wi yielded from
(4) varies with different preset number m of PCs. Besides, finding
a global solution of (4) for m41 is very difficult. To ameliorate
the problems, we simplify the problem (4) into a sequence of
m¼1 optimizations using a greedy search strategy. That is, (4) is
simplified as the following optimization problem:

wn ¼ arg max
w

JXT wJ1, subject to wT w¼ 1, JwJ1ot: ð5Þ

Although the successive greedy solutions of (5) may differ from
the optimal solution of (4), it is expected to provide a good
approximation for (4). In the following, an efficient algorithm to
solve (5) is first introduced and the greedy algorithm for search-
ing m41 PCs is then presented.

3. Robust sparse PCA

Even for the simplified problem (5), it is difficult to solve it by
traditional optimization techniques due to its absolute value
operations both on objective function and constraint. In this
paper, a simple while efficient algorithm (called the robust sparse
PCA algorithm, or simply RSPCA algorithm) is especially designed
for (5), which is introduced in the following.
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Fig. 1. Graphical presentation of the exaggerative effect of the L2-norm variance

curve, as compared with the L1-norm curve. In particular, at point x¼5, JxJ2
2 is

dominantly (five times) larger than JxJ1.

1 It should be noted that the similar idea, i.e., substituting the L1-norm

objective for the L2-norm one, has been employed by multiple machine learning

algorithms to enhance the robustness of the related problems, such as the robust

face recognition algorithm proposed in [22] and the robust PCA algorithm

proposed in [23]. In this sense, these algorithms, including the proposed algo-

rithm, are related to each other to a certain extent.
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3.1. RSPCA algorithm for one sparse PC

The new algorithm for solving the optimization (5) is listed as
follows. The initialization of the algorithm is to be discussed
toward the end of this section. In the algorithm, X ¼

½x1, . . . ,xn�ARd�n denotes the data matrix, w(0) the initialized PC
vector, w(t) the sparse PC vector in t-th iteration, and wn the
sparse PC the algorithm finally converges to.

Algorithm 1. RSPCA algorithm for one sparse PC.

Input: data matrix X, sparsity k.
(1) Initialize w(0); set wð0Þ ¼ wð0Þ

Jwð0ÞJ2
and t¼0.

(2) Set v¼ ðv1, . . . ,vdÞ
T
¼
Pn

i ¼ 1 piðtÞxi, where piðtÞ ¼

1 if wT ðtÞxiZ0

�1 if wT ðtÞxio0

(
; let g be the (kþ1)-th largest

element of jvj.
(3) Let b¼ ðb1, . . . ,bdÞ

T , where bi ¼ sgnðviÞðjvij�gÞþ for

i¼ 1, . . . ,d. Here ðxÞþ ¼
x,x40

0,xr0

(
and sgnðxÞ ¼

1,x40

0,x¼ 0

�1,xo0

8><
>: denote the thresholding and sign func-

tions, respectively. Set wðtþ1Þ ¼ b
JbJ2

, and t¼ tþ1.

(4) Convergence check:
(4.1) If wðtÞawðt�1Þ, go to step (2); otherwise,

check (4.2).
(4.2) If thereexists i such that wT ðtÞxi ¼ 0 and

jsgnðwT ðtÞÞjjsgnðxiÞja0, then let wT ðtÞþDw
JwT ðtÞþDwJ2

and

go to step (2); otherwise, go to (4.3). Here Dw

is a small non-zero random vector.
(4.3) Set wn ¼wðtÞ and stop iteration.

Output: The k sparse PC wn.

The convergence of the above algorithm and the rationality of
the obtained wn are theoretically substantiated by the following
theorem.

Theorem 1. By implementing Algorithm 1, w(t) converges to a

k-sparse vector wn, which is a local maximum point of JXT wJ1 in

the k-dimensional subspace where the non-zero loadings of wn are

located (denoted as the k-subspace of wn briefly in the following).

We first present a lemma which is necessary to prove the
above theorem.

Lemma 1. Given the vector v¼ ðv1, . . . ,vdÞ
T , the solution of the

following optimization problem

max
w

wT v, subject to wT w¼ 1, JwJ1ot ð6Þ

is of the following form

wn ¼
b

JbJ2
ð7Þ

where b¼ ðb1, . . . ,bdÞ
T and

bi ¼ sgnðviÞðjvij�gÞþ , i¼ 1, . . . ,d: ð8Þ

Furthermore, if the sparsity of the solution wn is known to be k

beforehand, then g¼ ykþ1, where yk denotes the k-th largest element

of jvj.

Proof of Lemma 1. We first prove that the solution of the
optimization problem (6) can be expressed as the (7) form.

It is known that the Lagrangian formulation of (6) is

LðwÞ ¼wT v�aðwT w�1Þ�gðJwJ1�tÞ,

where aAR and g40 are Lagrangian multipliers. Since

@LðwÞ=@w¼ v�2aw�g sgnðwÞ, it follows that the optimal solution

wn of (6) corresponds to

wn ¼
1

2a
b¼

1

2a
ðb1, . . . ,bdÞ

T ,

where bi ¼ sgnðviÞðjvij�gÞþ , 8i¼ 1, . . . ,d. To further make the

constraint wT w¼ 1, we have that a¼ JbJ2=2. That is, the optimal

solution of (6) is of the form wn ¼ b=JbJ2.

Then we prove that if the sparsity of the solution wn is known to

be k, it holds that g in (8) should be ykþ1.

Since the wn is known to be k-sparse, based on (7) and (8), it is

evident that g should be evaluated in the interval ½ykþ1,ykÞ. Let

~v ¼ ð ~v1, . . . , ~vdÞ
T , where ~vi ¼ vi if jvijZykþ1, otherwise ~vi ¼ 0, and

e¼ sgnð ~vÞ. Based on (7) and (8), it is easy to obtain that when

gA ½ykþ1,ykÞ, it holds that

wnT v¼
ð ~v�geÞT ~v

J ~v�geJ2
:¼ f ðgÞ:

Differentiate f ðgÞ w.r.t. g, we then get

f 0ðgÞ ¼ � ~vT eð ~v�geÞ2þ
~vT
ð ~v�geÞð ~v�geÞT e

J ~v�geJ3
2

¼�

g 1� ~v
J ~vJ2

� �T
e

JeJ2

� �� �2
 !

J ~vJ2
2JeJ2

2J ~v�geJ3
2

r0:

That is, f ðgÞ monotonically decreases w.r.t. g in the interval

½ykþ1,ykÞ. Then it is easy to see that to maximize the objective

wnT v in optimization problem (6), g should be set as ykþ1. The

proof is then completed. &

Based on Lemma 1, Theorem 1 is then proved as follows.

Proof of Theorem 1. Inspired by the idea presented in [15], the
convergence of w(t) is proved by verifying the nondecreasing
property of JXT wðtÞJ w.r.t. t as follows:

JXT wðtÞJ1 ¼
Xn

i ¼ 1

jwT ðtÞxij ¼wT ðtÞ
Xn

i ¼ 1

piðtÞxiZwT ðtÞ
Xn

i ¼ 1

piðt�1Þxi

ZwT ðt�1Þ
Xn

i ¼ 1

piðt�1Þxi ¼
Xn

i ¼ 1

jwT ðt�1Þxij ¼ JXT wðt�1ÞJ1:

Because the objective function JXT wðtÞJ1 is obviously bounded
and nondecreasing w.r.t. t, the convergence of Algorithm 1 is then
naturally conducted. In the above deduction, due to the fact that
piðtÞw

T ðtÞxiZ0 for all i, the first inequality is evident. The second
inequality holds since for any t, w(t) is the k-sparse unit vector
which maximizes the inner product of wðtÞT vðt�1Þ ¼

Pn
i ¼ 1

wðtÞT ðpiðt�1ÞxiÞ according to Lemma 1.

Then we prove the local optimality of the k-sparse point wn

yielded by the algorithm in its located k-subspace.

For all i¼ 1,2, . . . ,n, let pi ¼�1 if wnT xio0; otherwise let pi ¼ 1.

Due to the convergence condition (4.2) of the algorithm, it is

evident that wnT pixi40 for any xi satisfying jsgnðwnT Þjjxija0. For

such xi, it is easy to conduct that in a small neighborhood NðwnÞ of

wn in its k-subspace, it holds that for any wANðwnÞ, wT pixiZ0, i.e.,

wT pixi ¼ jw
T xij. Besides, if xi satisfies jsgnðwnT Þjjxij ¼ 0, it is easy to

conduct that the k loadings of such xi in the k-subspace of wn are

all zeroes. This implies that for any w in the k-subspace of wn, it

holds that wT xi ¼wT pixi ¼ jw
T xij ¼ 0. Accordingly, it follows that

D. Meng et al. / Pattern Recognition 45 (2012) 487–497 489
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for any wANðwnÞ, wT pixi ¼ jw
T xij. Then according to Lemma 1 and

the convergence of our algorithm as proved above, wn is the

optimal k-sparse unit vector to maximize wT pixi, and it naturally

follows that JXT wnJ1 ¼wnT
Pn

i ¼ 1 pixiZwT
Pn

i ¼ 1 pixi ¼ JXT wJ1 for

all wANðwnÞ.

Thus, wn yielded by Algorithm 1 corresponds to a local max-

imum of JXT wJ1 in its k-subspace. &

So far, we have clarified that Algorithm 1 tends to attain a
reasonable k-sparse PC of the given data. In the following we
further extend this algorithm to a heuristic greedy strategy for
finding an arbitrary number of k-sparse PCs for RSPCA model (4).

3.2. RSPCA algorithm for m sparse PCs

The RSPCA algorithm for mð41Þ sparse PCs is constructed by
applying Algorithm 1 greedily to the remainder of the projected
samples Xj. The procedure is listed as follows.

Algorithm 2. RSPCA algorithm for m sparse PCs.

Input: data matrix X, sparsity k, desired PC number m41;
(1) Set w0 ¼

~0ARd, where ~0 is the all-zero vector;
denote X0 ¼ fx0

i ¼ xig
n
i ¼ 1.

(2) For j¼ 1, . . . ,m, do the following iteration:
(2.1) Let Xj ¼ fxj

i ¼ xj�1
i �wj�1ðw

T
j�1xj�1

i Þg
n
i ¼ 1.

(2.2) Apply Algorithm 1 to the projected data Xj to
get the k-sparse PC vector wj.

End for
Output: m k-sparse PCs fwig

m
i ¼ 1.

It should be noted that the sparse PCs yielded by the proposed
heuristic algorithm only offer an approximate solution to (4). On one
hand, only a local maximum of the L1-norm optimization (4) can be
achieved by Algorithm 1; and on the other hand, the orthonormality
of the projection vectors fwig

m
i ¼ 1 generated by Algorithm 2 cannot

be theoretically guaranteed. However, since in each iteration of the
algorithm, the projected samples Xj are in fact located in the
subspace orthogonal to the (j�1)-dimensional space spanned by
fwig

j�1
i ¼ 1, i.e., wT

k xj
i ¼ 0 for all i¼ 1, . . . ,n and k¼ 1, . . . ,j�1, the

k-sparse PC wj obtained from the projected data Xj also inclines to
be approximately orthogonal to all wis (i¼ 1, . . . ,j�1Þ. Besides,
despite the heuristic approximation of Algorithm 1, the proposed

algorithm is expected to provide good projections that can possibly
capture a large L1 dispersion of the original data, and hence offer
good robust sparse PCs. All the aforementioned is further to be
verified by experiments depicted in the next section.

An important issue still remains in the implementation of the
proposed algorithm: the initial w0 in Algorithm 1 needs to be
properly specified to guarantee that the algorithm can converge
to a good local optimal solution. Here two strategies are sug-
gested. The first is to specify w0 as the solution of the classical
PCA. Since PCA precisely attains the global optimal solution where
the L2-norm variance of the original data is maximized, it is
expected that the proposed algorithm could also converge to a
good sparse PC by starting the iteration from the PCA solution. Yet
the downside is that the supplemental implementation of PCA in
step (1) might materially increase the computational complexity
of the proposed algorithm, especially for large data set. The
second strategy is to run the proposed algorithm multiple times
with different initial w0 (which can be easily specified as the
random vector or simple all-0 or all-1 vector) and output the
solution that gives the maximal L1 dispersion. This strategy is
simple and easy to be implemented, and hence was employed for
specification of initial w0 in our experiments.

The computation of the proposed algorithm is mainly costed on
its iterative process, i.e., steps (2)–(4) of Algorithm 1. Evidently,
only simple vector computation is involved in these steps, and it is
easy to obtain that the computational complexity of the whole
algorithm is around Oðnd logdÞ � nit , where nit is the number of the

Table 1
Performance comparison of 11 methods, including the classical PCA method, nine

current sparse PCA methods, and the proposed RSPCA method, by applying them

to the toy data with intrinsic two outliers. The iteration time t1þt2 of a method

denotes that it needs t1 and t2 iterations to compute PC1 and PC2, respectively.

Methods PC1 PC2 ARSE Iteration times

PCA (0.6811,0.7322) (�0.7322,0.6811) 1.0155 0

SPCA (0,�1) (1,0) 1.2500 4

DSPCA (0,1) (�1,0) 1.2500 8þ4

PathSPCA (0,1) (1,0) 1.2500 1þ1

EMPCA (0,1) (1,0) 1.2500 2þ1

GPowerl1 (0,1) (1,0) 1.2500 3þ3

GPowerl0 (0,1) (1,0) 1.2500 3þ3

GPowerl1 ,m (0,1) (0.9945,0.1048) 1.2500 5

GPowerl0 ,m (0.6766,0.7363) (0,0) 1.0188 11

ALSPCA (0,1) (1,�0.003) 1.2500 3

RSPCA (1,0) (0,1) 0.5720 2þ2

2.5 2 1 0 1 2
1
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8

Input samples
PCA, GPower l0m
SPCA
DSPCA, PathSPCA, EMPCA, GPowerl1,
GPower l0, GPowerl1m, ALSPCA
RSPCA
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1

2
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4

5
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SPCA
DSPCA
PathSPCA
EMPCA
GPowerl1
GPowerl0
GPowerl1m
GPowerl0m
ALSPCA
RSPCA

1.5 0.5 0.5 1.5 2.5 2.5 2 1 0 1 21.5 0.5 0.5 1.5 2.5

Fig. 2. (a) The toy data points with two intrinsic outliers, and the first PCs yielded by applying the PCA, SPCA, DSPCA, PathSPCA, EMPCA, GPowerl1 , GPowerl0 , GPowerl1 ,m ,

GPowerl0 ,m , ALSPCA, and RSPCA methods to this data set. (b) Residual errors of the data by projecting them to the first PC calculated by the 11 methods.
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iterations for convergence. As compared with the computational
complexities of most of the current sparse PCA methods, such as
Oðnd3

Þ � nit of SPCA, Oðnd4 logdÞ � nit of DSPCA, Oðnd logdÞ � nit of
EMPCA, Oðnd2

Þ � nit of ALSPCA, OðndÞ � nit of GPowerl0, and
Oðn3dÞ � nit of PathSPCA (where nit is the iteration time of the
corresponding method), the proposed algorithm does not sub-
stantially increase (for EMPCA and GPowerl0 methods), or even
decrease (for other methods) the computational time for sparse
PCA calculation. Besides, the iteration number nit of the proposed
algorithm is generally very small, further conducting the efficiency
of the proposed algorithm. All of the aforementioned will be
further verified by the simulation results given in the next section.

4. Experiment results

To evaluate the performance, especially the robustness, of the
proposed method, it was applied to problems with intrinsic noises
and outliers to different extents. For comparison, the classical PCA
and nine of the current sparse PCA methods, including SPCA [2],
DSPCA [3], PathSPCA [8], EMPCA [5], GPowerl1 , GPowerl0 ,
GPowerl1 ,m, GPowerl0 ,m [4], and ALSPCA [6] methods, have also
been utilized. The results are summarized in the following
discussion. All programs were implemented under Matlab 7.0
platform. The implementation environment was the personal
computer with Intel Core(TM)2 Q9300@2.50 G (CPU), 3.25 GB
(memory), and Windows XP (OS).

4.1. A toy problem with two outliers

The performance of the proposed RSPCA method was first
evaluated on the 2D toy data fxi,yig

50
i ¼ 1 as depicted in Fig. 2(a). The

data were generated by picking xi from �2.4 to 2.5 with the
similar interval 0.1, and yielding yi from the uniform distribution
on [�0.25,0.25], except that at xi¼1.3 and xi¼1.5, yis were set
values around 7. Evidently, the data contain two intrinsic outliers,
and if we discard the outliers, the first principal component of the
data should be the sparse vector (1,0).

The first PC vectors obtained by applying the classical PCA
method, nine existing sparse PCA methods, and the RSPCA method
to the toy data are depicted in Fig. 2(a) and also listed in Table 1.
Fig. 2(b) shows the residual error of each xi (i¼ 1, . . . ,nÞ conducted
by each of the 11 employed methods. Here the residual error of xi

is calculated by ei ¼ jxi�wwT xij, where w is the first PC vector
obtained from the corresponding method. Furthermore, the aver-
age residual errors (denoted as ARSE in brief) of 11 utilized
methods and the iteration times of these methods on calculating
the PCs of the toy data are listed in Table 1 for further comparison.

By observing Fig. 2 and Table 1, it is evident that the RSPCA
outperforms the other methods in the toy problem. First, the
RSPCA attains the accurate sparse PC (1,0) of the original data set,
while all of the other 10 methods do not. Second, RSPCA achieves
the smallest ARSE of all of the 11 utilized methods. These results
show that the other methods are much influenced by the outliers
than the proposed method. Besides, from Table 1, it is impressive
that the RSPCA only needs four iterations to attain such a robust
result, no larger than most of the other sparse PCA methods. This
further verifies the efficiency of the proposed method in the
outlier case.

4.2. Tests on benchmark data with intrinsic noises and outliers

In this section we consider the data first proposed by [2]. The
data set contains a collection of 10D data points ðx1, . . . ,x10Þ
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Fig. 3. The tendency curves of the misidentification rate w.r.t. the noise extent s corresponding to the classical PCA method, nine current sparse PCA methods, and the

RSPCA method, respectively.
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generated via the following two processes: first three hidden
factors were created:

V1 �Nð0,290Þ, V2 �Nð0,300Þ, V3 ¼�0:3V1þ0:925V2þe,

where e�Nð0,1Þ, and V1,V2 and e are independent; afterwards,
10 observed variables were generated as

xi ¼ Vjþej
i , ej

i �Nð0,sÞ ð9Þ

with j¼1 for i¼ 1,2,3,4, j¼2 for i¼ 5,6,7,8, j¼3 for i¼9, 10, s¼ 1
and all ej

i s independent. It has been clarified that the data so
generated are of intrinsic sparse PCs [2]. In particular, the first PC
should recover the factor V2 only using ðx5,x6,x7,x8Þ, and the
second should recover V1 only using ðx1,x2,x3,x4Þ. This type of
data is one of the most frequently utilized benchmark examples
to evaluate the performance of the sparse PCA method [3,6], and
hence employed here to verify the robustness of the proposed
method. Specifically, two sequences of data were constructed by
blending such benchmark data with noises and outliers respec-
tively as follows:

� Noise data sequence: Contain 2000 collections of 10D data sets,
each with size 10,000. Each data set in the sequence was
generated from the benchmark distribution as formulated
in (9) with noise extent s varying from 1 to 2000 at regular
interval 1.
� Outlier data sequence: Contain 3000 collections of 10D data

sets, each with size 10,000. In each data, 9500 points were
generated via the aforementioned benchmark process, and 500
ones were obtained by letting xi¼0, for i¼ 1, . . . ,8, and xi ¼ xi

for i¼9, 10, where xi �Nð0,sÞ (i¼9, 10) and x9 and x10 are
independent. By varying the outlier extent s from 1 to 3000

with the fixed interval 1, the sequence of outlier data sets was
then yielded. Evidently, 5% outliers are intrinsically mixed in
each of the data set so generated.

For each data of the above cases, the classical PCA, the nine
current sparse PCA methods, and the RSPCA method were,
respectively, employed to calculate the first two PCs of the data.
By virtue of the oracle information of the ideal sparse PCs (i.e., the
positions of the intrinsic non-zero loadings of the first two PCs),
the misidentification rate (MR in brief) of each method corre-
sponding to the data can thus be obtained. By calculating the
average of every 10 successive MR values so obtained, the
tendency curves of MR w.r.t. the noise extent and the outlier
extent were then attained (with lengths 200 and 300), as depicted
in Figs. 3 and 4, respectively. To make a clearer clarification,
Tables 2 and 3 summarize performance of the 11 employed
methods when they were applied to the data sets with the largest
noise (s¼ 2000Þ and outlier (s¼ 3000Þ extents, respectively.

From Figs. 3 and 4, it is easy to observe that both MR tendency
curves of the RSPCA w.r.t. the noise and outlier extents are always
located at or very close to 0. Combined with Tables 2 and 3, it is
apparent that the RSPCA method robustly delivers the ideal sparse
representations of the first two PCs underlying the data, and has a
stable performance w.r.t. different extents of noises and outliers.
As compared with the tendency curves of the other 10 methods, it
is evident that the proposed method significantly improves the
robustness of the current sparse PCA methods. Furthermore, it is
seen from Tables 2 and 3 that for each of the listed outlier and
noise cases, the iteration time of the RSPCA method is the smallest
of all of the utilized 10 sparse PCA methods. This further implies
the efficiency of the proposed method.
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Fig. 4. The tendency curves of the misidentification rate w.r.t. the outlier extent s corresponding to the classical PCA method, nine current sparse PCA methods, and the

RSPCA method, respectively.
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4.3. Face reconstruction problems with occluded and dummy images

The proposed method was also applied to face reconstruction
problems and the performance was compared with those of the

other methods. The employed data set is the well-known Yale face
database [15,21]. The database contains 165 gray-scale images of 15
individuals, and there are 11 images per subject, one per different
facial expression or configuration. The data can be downloaded from

Table 2
Performance comparison of the classical PCA method, nine current sparse PCA methods, and the proposed RSPCA method by applying them to the benchmark data with

noise extent s¼ 2000. Here IT denotes the iteration time of the corresponding method on calculating the PCs.

PCA SPCA DSPCA PathSPCA EMPCA

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

�0.1314 �0.4858 0.5290 0 0 �0.8513 0 �0.5176 0 �0.5013

�0.0761 �0.4850 0.4878 0 0 �0.4320 0 �0.4908 0 �0.5081

�0.0853 �0.4824 0.5014 0 0 �0.2979 0 �0.5020 0 �0.5174

�0.0849 �0.4676 0.4805 0 0 0 0 �0.4891 0 �0.4720

0.4011 �0.1450 0 0.5522 0.6121 0 �0.5049 0 0 0

0.3968 �0.1094 0 0.3149 0.1301 0 �0.4889 0 �0.5017 0

0.4146 �0.1430 0 0.7386 0.7776 0 �0.5253 0 �0.5422 0

0.3809 �0.1432 0 0.2242 0.0613 0 �0.4797 0 �0.4768 0

0.4070 0.0482 0 0 0 0 0 0 0 0

0.4020 0.0351 0 0 0 0 0 0 �0.4764 0

IT: 110 IT: 15þ12 IT: 4þ4 IT: 341þ48

GPowerl1 GPowerl0 GPowerl1 ,m GPowerl0 ,m ALSPCA RSPCA

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

0 0 0 0 0.1231 0.4883 0.0487 0.4854 0 0.9949 0 0.4952

0 0 0 0 0.0679 0.4864 0.0539 0.4933 0 0 0 0.4662

0 0 0 0 0.0771 0.4840 0.0641 0.4803 0 0 0 0.5383

0 0 0 0 0.0769 0.4692 0.0289 0.5019 0 0 0 0.4977

0 1 0 1 �0.4035 0.1368 �0.4147 0.1098 0 0 0.5504 0

0 0 0 0 �0.3986 0.1013 �0.3967 0.0899 0 0 0.3476 0

1 0 1 0 �0.4169 0.1345 �0.4165 0.0598 �1 0 0.6621 0

0 0 0 0 �0.3832 0.1354 �0.4023 0.0851 0 0.1008 0.3712 0

0 0 0 0 �0.4061 �0.0564 �0.4155 �0.0527 0 0 0 0

0 0 0 0 �0.4014 �0.0433 �0.3905 �0.0680 0 0 0 0

IT: 3þ3 IT: 3þ3 IT: 17 IT: 16 IT: 7 IT: 2þ2

Table 3
Performance comparison of the classical PCA method, nine current sparse PCA methods, and the proposed RSPCA method by applying them to the benchmark data with

outlier extent s¼ 3000.

PCA SPCA DSPCA PathSPCA EMPCA

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

�0.1120 �0.4786 0.5003 0 0 �0.6777 �0.0311 0 0 �0.5002

�0.1122 �0.4785 0.5003 0 0 �0.7092 0 0 0 �0.5002

�0.1121 �0.4783 0.4999 0 0 �0.1942 0 0 0 �0.4999

�0.1120 �0.4782 0.4995 0 0 0 0 �0.0267 0 �0.4997

0.3841 �0.1453 0 0.0155 0.0773 0 0.4574 0 �0.4881 0

0.3843 �0.1452 0 0.0223 0.0784 0 0.3574 0.5477 �0.4883 0

0.3843 �0.1448 0 0.0185 0.0785 0 0 �0.7999 �0.4882 0

0.3837 �0.1455 0 0 0.0748 0 �0.8137 0.2439 0 0

0.4254 0.0101 0 0.9995 0.9250 0 0 0 �0.5339 0

0.4227 0.0102 0 0 0.3471 0 0 0 0 0

IT: 10 IT: 17þ13 IT: 4þ4 IT: 48þ4

GPowerl1 GPowerl0 GPowerl1 ,m GPowerl0 ,m ALSPCA RSPCA

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

0 0 0 0 �0.3717 �0.3070 0 0.0001 0 0 0 0.4998

0 0 0 0 0.2652 0.3032 0.0004 0 0 0 0 0.5006

0 0 0 0 �0.3988 �0.4566 �0.0005 0 0 0.8986 0 0.5000

0 0 0 0 0.2663 0.3039 0.0001 0 0 0 0 0.4995

0 0 0 0 0.2090 �0.2508 �0.0001 0.0001 0 0 0.5013 0

0 0 0 0 �0.1148 0.3606 0.0001 0 0 0 0.5036 0

0 0 0 0 0.2083 �0.2512 �0.0001 �0.0002 0 0 0.5016 0

0 0 0 0 0.2085 �0.2511 0.0001 0 0 0.4387 0.4934 0

1 0 1 0 �0.6331 0.4264 0.7137 0.6985 1 0 0 0

0 1 0 1 �0.1309 �0.1097 0.7004 �0.7156 0 0 0 0

IT: 3þ3 IT: 3þ3 IT: 4 IT: 4 IT: 5 IT: 2þ2
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the website ‘‘http://cvc.yale.edu/projects/yalefaces/yale-faces.html’’.
The original pixel size of the face image is 320�243. In our
experiments, preprocessing was first performed to crop the original
face images: the facial areas were cropped into the final images for
matching, and the size of each cropped image is 171�215. Some
typical cropped faces are depicted in Figs. 5 and 6. Each pixel was
regarded as an input variable, and hence the input space of the
database is of intrinsic 36,765 dimensionality.

Based on the database so generated, the occluded and dummy
databases were then generated as follows, with intrinsic noises
and outliers, respectively.

� Occluded face data: Randomly pick two images from each of
the 15 individuals’ face images, and then occlude them with a
rectangular noise consisting of random black and white dots
whose size was 80�160 or 150�70, located at a random
position of the image. Fig. 5 shows typical images so occluded.
� Dummy face data: Add 30 dummy images which consist of

random black and white dots to the original 165 cropped face
images to constitute the dummy data set.

We have performed the classical PCA, nine existing sparse
PCA methods, and the RSPCA method on the occluded and
dummy face databases, respectively, while each of the SPCA,
DSPCA, PathSPCA, GPowerl1 ,m, GPowerl0 ,m, ALSPCA methods
encountered the ‘‘out of memory’’ problem and could not be
executed. Consequently, only the performance of PCA, EMPCA,
GPowerl1 , GPowerl0 , and RSPCA is involved for the following
substantiation.

Our aim is to detect how well the images could be recon-
structed by utilizing only a small number of PCs extracted from
the employed methods. By taking the average reconstruction error
(ARCE in brief [15]) as the criterion, the quality of the reconstruc-
tion can be quantitatively assessed. The ARCE of each method

with the first m PCs is calculated as [15]: eðmÞ ¼ ð1=nÞ
Pn

i ¼ 1 xorg
i �

��Pm
j ¼ 1 wjw

T
j xik2, where n¼165 is the number of original face

samples, xi
org and xi are the i-th original image and the correspond-

ing one in the occluded or dummy data sets, respectively, and m is
the number of the involved PCs. Fig. 7(a) and (b) show the ARCE
tendency curves of the employed five methods with various
numbers of extracted PCs in occluded and dummy cases, respec-
tively. Besides, Figs. 5 and 6 demonstrate some of the original and
the reconstructed images by projecting the occluded and the
dummy images into the subspaces constituted by the 20 and the
30 PCs calculated from the five employed methods, respectively.
Tables 4 and 5 further list the summarizations of the performance
of the five methods on the two utilized databases, respectively.

For occluded case, it is seen from Fig. 7(a) that when the number
m of the extracted PCs is small, the ARCE value of the RSPCA is non-
substantially larger than those of the other four methods. Yet from
around m¼20, it is apparent that the RSPCA starts to be better than
the other methods. From Fig. 5, we can observe that when projected
into the subspace constituted by the first 20 PCs yielded from
different methods, the images reconstructed by the RSPCA elim-
inate the largest extent of noises of the original occluded images.
Considering that ARCE curve of the RSPCA tends to be decreasing
while those of the other methods incline to be increasing from
m¼20, the advantage of the RSPCA is evident.

Original face Occuluded face PCA EMPCA GPowerl 1 GPowerl 0 RSPCA

Fig. 5. The original face images, the corresponding images with occlusion, and the faces reconstructed by the classical PCA, EMPCA, GPowerl1 , GPowerl0 , and RSPCA

methods with 20 corresponding projection PCs, respectively.
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For dummy case, the similar phenomenon as the occluded case
is observed from Fig. 7(b): as m is small, the ARCE value of the
RSPCA is a little larger than those of the other four methods, while

from around m¼10, the better reconstruction capability of the
RSPCA becomes apparent. This can be further substantiated by
Fig. 6: by projecting the images to the subspace spanned by the

Original face PCA EMPCA GPowerl 1 GPowerl 0 RSPCA

Fig. 6. Face images trained with dummy images and the faces reconstructed by the classical PCA, EMPCA, GPowerl1 , GPowerl0 , and RSPCA methods with 30 corresponding

projection PCs, respectively.
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Fig. 7. Tendency curves of the average reconstruction errors of the classical PCA, EMPCA, GPowerl1 , GPowerl0 , and RSPCA methods w.r.t. the different extracted PC numbers

for the Yale data set. (a) Occluded case; (b) dummy case.
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first 30 PCs calculated by the employed methods, it is clear that
the RSPCA best reconstructs the original images.

Furthermore, from Tables 4 and 5, it is easy to see that in both
cases, by extracting sparser PCs, RSPCA achieves smaller ARCE
values and spends less computational cost (naturally conducted
by less iteration steps) than the other utilized sparse PCA
methods. These results further demonstrate the robustness and
efficiency of the proposed RSPCA method.

5. Conclusion

In this paper we have proposed a new sparse PCA method,
called RSPCA method, to enforce robustness of the sparse PCA
calculation. The most distinguished characteristic of the new
method is that it intends to find the PC directions of the feature
space where the L1 dispersion, instead of the L2-norm variance
generally employed by the current sparse PCA methods, of the
input data can be maximally captured. A simple algorithm to
implement the RSPCA has also been developed, which has been
proved to be able to converge to a local optimum of the problem.
The robustness of the proposed method to outliers and noises has
been supported by a series of experiments performed on the
synthetic and face reconstruction problems. The efficiency of the
method has also been theoretically and empirically substantiated.

There are, however, limitations of the proposed method. For
example, the proposed RSPCA method only attains an approxima-
tion while not the rigorous solution to the original optimization
problem (4), as aforementioned in Section 3.2. Endeavors still
need to be made to design an effective and efficient algorithm to
get the exact solution of (4) and hence to further enhance the
performance of the robust sparse PCA. Besides, in our future
research, the proposed method will be further evaluated by more
practical applications.
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Table 4
Performance comparison of the classical PCA, EMPCA, GPowerl1 , GPowerl0 , and

RSPCA methods by applying them to the occluded face database. The ARCE and

computation time of each method are evaluated and recorded at m¼40.

Methods Average

sparsity

ARCE Computation

time

IT (the first

three PCs)

PCA 36,765 6384.9971 0.417860 0

EMPCA 18,000 6726.0090 1415.837026 110þ30þ32¼172

GPowerl1 22,836.125 6531.1172 58.448949 24þ10þ19¼53

GPowerl0 22,781.85 6494.5514 56.339795 15þ11þ22¼48

RSPCA 18,000 5829.2719 34.795060 10þ17þ12¼39

Table 5
Performance comparison of the classical PCA, EMPCA, GPowerl1; GPowerl0, and

RSPCA methods by applying them to the dummy face database. The ARCE and

computation time of each method are evaluated and recorded at m¼40.

Methods Average

sparsity

ARCE Computation

time

IT (the first

three PCs)

PCA 36,765 6223.0231 0.488258 0

EMPCA 18,000 6665.7251 7114.826249 52þ38þ47¼137

GPowerl1 24,961.775 6315.7237 82.327144 16þ14þ18¼48

GPowerl0 24,946.675 6295.4676 60.607400 14þ12þ16¼42

RSPCA 18,000 5507.8358 39.602456 9þ7þ5¼21
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