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Abstract

A challenging problem in machine learning, informa-
tion retrieval and computer vision research is how to
recover a low-rank representation of the given data in the
presence of outliers and missing entries. The L1-norm
low-rank matrix factorization (LRMF) has been a popu-
lar approach to solving this problem. However, L1-norm
LRMF is difficult to achieve due to its non-convexity
and non-smoothness, and existing methods are often in-
efficient and fail to converge to a desired solution. In
this paper we propose a novel cyclic weighted median
(CWM) method, which is intrinsically a coordinate de-
cent algorithm, for L1-norm LRMF. The CWM method
minimizes the objective by solving a sequence of scalar
minimization sub-problems, each of which is convex and
can be easily solved by the weighted median filter. The
extensive experimental results validate that the CWM
method outperforms state-of-the-arts in terms of both
accuracy and computational efficiency.

Introduction
Many machine learning, computer vision and statistical prob-
lems can be posed as problems of learning low dimension-
al linear or multi-linear models, for example, social net-
works (Cheng et al. 2012b), structure from motion (Tomasi
and Kanade 1992), face recognition (Cheng et al. 2012a;
Wright et al. 2009), collaborative filtering (Koren 2008), in-
formation retrieval (Deerwester et al. 1990), object recog-
nition (Turk and Pentland 1991), layer extraction (Ke and
Kanade 2001) and plane-based pose estimation (Sturm 2000).
Methods for learning linear models can be seen as a special
case of subspace fitting. If there is no missing entries, efficien-
t algorithms based on singular value decomposition (SVD)
can be used. One drawback of SVD-type of approaches is
that they are based on least-square-estimation techniques and
hence fail to account for outliers which are common in realis-
tic training sets. Moreover, in many applications the data con-
tain missing entries due to analog-to-digital converter errors
(Wright et al. 2009), faulty memory locations in hardware (Ji
et al. 2010) or tracking failures (Tomasi and Kanade 1992).
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To deal with corrupted and incomplete data, recently the L1-
norm low-rank matrix factorization (LRMF) is commonly
used (Kwak 2008; Ding et al. 2006; Ke and Kanade 2005;
Eriksson and van den Hengel 2010).

The L1-norm LRMF problem is formulated as follows.
Given a matrix X = (x1,x2, · · · ,xn) ∈ <d×n, where each
column xi is a d-dimensional measurement. The missing
entries of X is indicated by a matrix W ∈ <d×n, whose
element wij is 0 if the corresponding element is missing,
and 1 otherwise (Buchanan and Fitzgibbon 2005). L1-norm
LRMF minimizes the following error1:

minU,V

∥∥∥W� (X− UVT )
∥∥∥
L1

, (1)

where U = [u1,u2, · · · ,uk] ∈ <d×k, V =
[v1,v2, · · · ,vk] ∈ <n×k, k < d, n and � denotes the
Hadamard product (component-wise multiplication). Unfor-
tunately, the above L1-norm minimization is very difficult
to solve. On one hand, the optimization is non-convex and
the global minimum is generally difficult to find. It is even
shown to be an NP-hard problem in presence of missing
entries (Gillis and Glineur 2011). On the other hand, the L1-
norm minimization is non-smooth, so it is hard to find an
efficient closed-form iteration formula by standard optimiza-
tion tools (Eriksson and van den Hengel 2010).

Many recent approaches to solving the L1-norm LRM-
F problem use variants of the Wiberg method (Eriksson
and van den Hengel 2010; Okatani and Deguchi 2007;
Strelow 2012). However, these general purpose methods are
often inefficient, requiring too much cost to reach the mini-
mum, especially for high-dimensional data encountered in
real world. This paper presents a surprisingly simple cyclic
coordinate descent (Tseng 2001) algorithm which howev-
er shows outstanding performance on L1-norm LRMF. The
core idea is to break the original complex minimization prob-
lem into a series of elementary simple sub-problems, each
having only one scalar parameter, and then recursively op-
timize them. Each of these small problems is convex and
can be easily solved by weighted median filter, which makes
our algorithm free of the time-consuming inner loop nu-
merical optimization. The recursively employed weighted
median filters further make the method be robust to outliers

1‖A‖L1 refers to the L1 norm of the matrix (the summarization
of the absolute values of all components in A).



and missing entries to a large extent. Although there is no
guarantee of convergence to the global minima for the non-
convexity of LRMF problems, empirically we found that the
proposed algorithm converges more often to a desired solu-
tion. Experiments on extensive synthetic and real data show
the effectiveness of our approach.

Throughout the paper, we use bold uppercase, bold low-
ercase and non-bold letters to denote matrices, vectors and
scalars, respectively.

Previous work
The problem of bilinear factorization with missing entries has
been studied in statistical analysis in the early 80’s. Gabriel
and Zamir (Gabriel and Zamir 1979) proposed a weighted
SVD technique that uses alternated minimization (or criss-
cross regression) to find the principal subspace of the data.
They minimize

minU,V

∥∥∥W� (X− UVT )
∥∥∥
F
. (2)

In general, Eq. (2) does not have a closed-form solution
in terms of a generalized eigenvalue problem. Moreover,
the problem of data factorization with arbitrary weights
has several local minima depending on the structure of the
weights (Buchanan and Fitzgibbon 2005). Shum et al. (Shum,
Ikeuchi, and Reddy 1995) further used PCA with missing
entries for polyhedral object modeling. Jacobs (Jacobs 1997)
proposed a method by linearly fitting the data with miss-
ing entries. Aguiar et al. (Aguiar, Stosic, and Xavier 2008)
proposed a closed-form solution to the data factorization
problem, when the missing entries has a special structure.

In order to handle outliers, De la Torre and Black (De la
Torre and Black 2003) proposed to change the Frobenious
norm to a robust function and used iterative re-weighted least
squares algorithms to solve it. Unfortunately, the problem is
non-convex and it is sensitive to the initialization. Ding et
al. (Ding et al. 2006) proposed to use the rotational invari-
ant R1 norm, defined by ‖X‖R1

=
∑n
i=1(

∑d
i=1x

2
ji)

1/2, to
replace the L1 norm in Eq. (1). Like the L1 norm, the R1

norm is also capable of weakening the contributions from
outliers. By maximizing the L1 dispersion of the data ma-
trix, i.e., maxU ‖UTX‖L1 , instead of minimizing the objec-
tive in Eq. (1), Kwak (Kwak 2008) presented the PCA-L1

approach to suppressing the influence of outliers in matrix
factorization to some extent. These methods, however, al-
ways lose effectiveness for LRMF problems with missing
entries. Ke and Kanade (Ke and Kanade 2005) proposed an
alternated linear/quatratic programming (ALP/AQP) method
to solve the L1-norm LRMF problem with missing entries.
Eriksson and Hengel (Eriksson and van den Hengel 2010;
2012) experimentally revealed that the alternated convex pro-
gramming approach frequently converges to a point that is not
a local minimum (typically, the evolution of the L1-norm cost
function stops after a small number of iterations), and thus
they introduced a Wiberg-L1 approach, which is an extension
of Wiberg method for L1 minimization. This method shows
good performance on some synthetic simulations and struc-
ture from motion problems. Candés et al. (Candès et al. 2011;
Wright et al. 2009) proposed a robust PCA method using

recent advances in rank minimization. They modeled the ob-
served data as the sum of a low-rank clean data matrix and a
sparse outlier matrix. A major advantage of this approach is
the convex formulation. However, the numerical algorithms
(e.g., augmented lagrange, fix-point) require computing an
SVD in each iteration which always makes its complexity
comparatively high.

Robust matrix factorization via cyclic
weighted median

Recent work on compressed sensing (Friedman, Hastie, and
Höfling 2007; Friedman, Hastie, and Tibshirani 2010) has
shown how coordinate descent can be an effective algorithm
to minimize convex non-smooth functions (e.g., Lasso). In
multivariate minimization, coordinate descent methods mini-
mize the objective by solving a sequence of scalar minimiza-
tion subproblems. Each subproblem improves the estimate of
the solution by minimizing along a selected coordinate with
all other coordinates fixed. The method is analogous to the
Gauss-Seidel iterative algorithm for solving linear systems
of equations (Jeffreys and Jeffreys 1988). Coordinate descent
is particularly attractive when the subproblems can be solved
quickly. In our case, each subproblem in the cyclic coordinate
descent can be solved easily by weighted median filter, and
thus we call our method cyclic weighted median method or
CWM in short.

Subproblem decomposition
Let’s first equivalently reformulate the objective function of
(1) as the following two decomposed expressions:∥∥∥W � (X−UV

T
)
∥∥∥
L1

=

∥∥∥∥W � (X−
∑k

j=1
ujv

T
j )

∥∥∥∥
L1

=
∥∥∥W � (Ei − uiv

T
i )
∥∥∥
L1

=
∑n

j=1

∥∥∥wj � (e
i
j − uivij)

∥∥∥
L1

=
∑n

j=1

∥∥∥wj � e
i
j −wj � uivij

∥∥∥
L1

,

and∥∥∥W � (X−UV
T
)
∥∥∥
L1

=
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T −
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j=1
vju

T
j )

∥∥∥∥
L1

=
∥∥∥W � (E

T
i − viu

T
i )
∥∥∥
L1

=
∑d

j=1

∥∥∥w̃j � (ẽ
i
j − viuij)

∥∥∥
L1

=
∑d

j=1

∥∥∥w̃j � ẽ
i
j − w̃j � viuij

∥∥∥
L1

,

where
Ei = X−

∑
j 6=i

ujv
T
j , (3)

wj and w̃j are the j-th column and row vectors of the indi-
cator matrix W, respectively, eij and ẽij are the j-th column
and row vectors of Ei, respectively, and uij and vij are the
j-th components of ui and vi, respectively.

It is then easy to separate the original large minimization
problem (1), which is with respect to U and V, into a series
of small minimization problems, which are each with re-
spect to only one scalar parameter uij (i = 1, 2, · · · , k, j =
1, 2, · · · , d) and vij (i = 1, 2, · · · , k, j = 1, 2, · · · , n), ex-
pressed as

minvij
∥∥wj � eij −wj � uivij

∥∥
L1

(4)

and
minuij

∥∥w̃j � ẽij − w̃j � viuij
∥∥
L1
. (5)



Fortunately, both the minimization problems in (4) and (5)
are not only convex, but also can be easily solved by weighted
median filter. This implies that it is possible to construct a fast
coordinate decent algorithm for L1-norm LRMF problem (1),
as presented in the following sub-sections.

Solving subproblems by weighted median filter
For the convenience of expression, we formulate Eq. (4) and
Eq. (5) as the following form:

minv fe,u(v) = ‖e− uv‖L1
, (6)

where e and u are d-dimensional vectors, and their i-th el-
ements are ei and ui, respectively. It is evident that fe,u(z)
is convex since each of its components |ei − uiz| is convex,
and the positive sum of convex functions is still convex.

Without loss of generality, we assume that all uis are non-
zeros. Then let’s reformulate Eq. (6) as follows:

‖e− uv‖L1
=
∑d

i=1
|ei − uiv| =

∑d

i=1

(
|ui|

∣∣∣∣v − ei
ui

∣∣∣∣) .

It is interesting to see that the problem actually corresponds
to a weighted median problem (Brownrigg 1984), and can
be easily solved by applying the weighted median filter on
the sequence { eiui

}di=1 under weights {|ui|}di=1. The global
solution of Eq. (6) (i.e., Eq. (4) and Eq. (5)) can then be
exactly and efficiently obtained in time and space complexity
O(d) (Rauh and Arce 2010).

We can now construct the whole CWM algorithm for solv-
ing the L1-norm LRMF problem (1).

CWM algorithm for L1-norm LRMF problem
The main idea of the CWM algorithm for solving the mini-
mization in Eq. (1) is to recursively apply weighted median fil-
ter to update each element of U = (u1,u2, · · · ,uk) ∈ <d×k
and V = (v1,v2, · · · ,vk) ∈ <n×k. The steps of the algo-
rithm are described as follows:

• Cyclicly apply the weighted median filter to update each
entry vij (i = 1, · · · , k, j = 1, · · · , n) of V with all the
other components of U and V fixed by solving

v∗ij = argminvij
∥∥(wj � eij −wj � uivij)

∥∥
L1
,

where wj is the j-th column vector of W and eij is the
j-th column vector of Ei defined in (3).

• Cyclicly apply the weighted median filter to update each
entry uij (i = 1, · · · , k, j = 1, · · · , d) of U with all the
other components of U and V fixed by solving

u∗ij = argminuij

∥∥w̃j � ẽij − w̃j � viuij
∥∥
L1
,

where w̃j denotes the j-th row vector of W and ẽij denotes
the j-th row vector of Ei.

Through iteratively implementing the above procedures,
the factorized matrices U and V can be recursively updated
until the termination condition is satisfied. We summarize the
aforementioned CWM algorithm in Algorithm 1.

As for the initialization of U and V in step 1 of the algorith-
m, in our experiments, we just simply use random initializa-
tion, and the proposed algorithm performs very well in all our

Algorithm 1: CWM algorithm for solving Problem (1)
Given: X = (x1,x2, · · · ,xn) ∈ <d×n, W
Execute:

1. Randomly initialize U = (u1, · · · ,uk) ∈ <d×k

and V = (v1, · · · ,vk) ∈ <n×k.
2. Cyclicly apply weighted median to update each

entry vij (i = 1, · · · , k, j = 1, · · · , n) of V with
all the other components of U and V fixed.

3. Cyclicly apply weighted median to update each
entry uij (i = 1, · · · , k, j = 1, · · · , d) of U with
all the other components of U and V fixed.

4. Iterate steps 2 and 3 until convergence.

experiments. And for the terminate condition in step 4 of the
algorithm, since the objective function of Eq. (1) decreases
monotonically in the iteration process, the algorithm can be
reasonably terminated when the updating rate of U or V is
smaller than some preset threshold, or the maximum number
of iterations is reached.

Convergence and computational complexity
We first prove that the proposed algorithm converges to a
coordinate-wise minimum point (Tseng 2001; Breheny and
Huang 2011) of the problem. The coordinate-wise minimum
point is defined as:

Definition 1 For function f : <d → <, we say that z =
(z1, z2, · · · , zd)T is a coordinate-wise minimum point of f if
for any α ∈ R and all i = {1, 2, · · · , d},

f(z) = minαf(z1, · · · , zi−1, α, zi+1, · · · , zd).

The convergence of the proposed algorithm is evaluated in
the following theorem.

Theorem 1 Algorithm 1 converges to a coordinate-wise min-
imum point of the L1-norm LRMF problem in (1).

Proof: In steps 2 and 3 of Algorithm 1, we can exactly
attain the global minimums of (4) and (5) with respect to
one single entry of V and U, with all the other ones fixed,
respectively, by weighted median filter. Therefore, in each of
the iterations between steps 2 and 3, the objective function of
(1) is monotonically decreasing. Since this objective function
is lower bounded by 0, the algorithm is guaranteed to be
convergent to a point (U∗,V∗).

Denote by

f(U,V) = f(u11, · · · , ud,k, v11, · · · , vn,k)

=
∥∥∥W � (X−UVT )

∥∥∥
L1

.

Since for any entry u∗ij (i = 1, · · · , d, j = 1, · · · , k) of U∗
and v∗ij (i = 1, · · · , n, j = 1, · · · , k) of V∗, the updating in
steps 2 and 3 of Algorithm 1 converges, we have

v∗ij = argminvij
∥∥(wj � (eij)

∗ −wj � u∗i vij)
∥∥
L1

= argminvijf(u
∗
11, · · · , u∗d,k, v∗11, · · · ,
v∗i,j−1, vij , v

∗
i,j+1, · · · , v∗n,k),



where u∗i is the j-th column vector of U∗ and (eij)
∗ is the

j-th column vector of E∗i = X−
∑
j 6=iu

∗
jv
∗T
j , and

u∗ij = argminuij

∥∥w̃j � (ẽij)
∗ − w̃j � v∗i uij

∥∥
L1

= argminvijf(u
∗
11, · · · , u∗i,j−1, uij , u∗i,j+1,

· · · , u∗d,k, v∗11, · · · , v∗n,k),

where v∗i is the j-th column vector of V∗ and (ẽij)
∗ denotes

the j-th row vector of E∗i . It is then easy to conduct that
(U∗,V∗) corresponds to a coordinate-wise minimum point
of f(U,V) based on Definition 1. �

We now discuss the space and time complexities of Algo-
rithm 1. It is easy to see that both complexities are essentially
determined by steps 2 and 3 of Algorithm 1, i.e., the cyclic
utilization of the weighted median filter. To compute each
element vij of V (i = 1, · · · , k, j = 1, · · · , n) in step 2, the
weighted median calculation needs around O(d) time and s-
pace, respectively (Rauh and Arce 2010). Updating the entire
V thus costsO(knd) in time andO(knd) in space, respective-
ly. Similarly, updating U in step 3 also needs O(knd) time
and O(knd) space costs, respectively. The entire time and
space complexities of Algorithm 1 are thus O(Tknd) and
O(knd), respectively, where T is the number of iterations for
convergence. That is, both the time and space complexities
of the proposed algorithm are linear in both the size n and
the dimensionality d of the input data.

A very interesting point is that when the input data contain
a large extent of missing entries, the intrinsic computational
complexity of the proposed algorithm, in terms of both time
and space, is always much lower than the above evaluation.
Let’s denote by d′ the maximal number of nonzero elements
in all column vectors (i.e., wi in (4)) of W and by n′ that of
all its row vectors (i.e., w̃i in (5)). It is easy to see that solving
(4) and (5) by weighted median actually needs only O(d′)
and O(n′) time and space complexities, respectively. If we
denote s = max(d′, n′), it is easy to obtain that the entire
time/space complexity of Algorithm 1 is at most O(Tk(d+
n)s) and O(k(d + n)s) (instead of O(Tknd) and O(knd)
in non-missing entry cases), respectively. This means that
when the input data are highly sparse, i.e., s � d and s �
n, the computational complexity of the algorithm can be
further reduced. Such a computational complexity makes the
proposed algorithm well-suited in solving L1-norm LRMF
problems with missing entries. This property also implies the
great potentials of our algorithm in real big and sparse data
applications, such as text mining (Li and Yeung 2009) and
gene analysis (Sinha 2010).

Difference with the ALP method
We would like to stress that although the idea of the pro-
posed CWM method looks somewhat similar to the ALP
method (Ke and Kanade 2005), the mechanisms of the two
methods are very different. We briefly introduce the imple-
mentation of ALP as follows. First, ALP decomposes the
objective function of L1-norm LRMF into a series of inde-
pendent sub-problems as:

‖wj � (xj − Uvj)‖1 , j = 1, 2, · · · , n (7)

and
‖w̃j � (x̃j − Vuj)‖1 , j = 1, 2, · · · , d, (8)

where xj and x̃j are the j-th column and row vectors of X,
respectively, vj and uj are the j-th row vectors of V and
U, respectively. Then the ALP algorithm recursively updates
each vj and uj (Ke and Kanade 2005).

Although both methods are constructed by alternatively
optimizing the convex sub-problems of the original problem,
ALP uses a linear programming or quadratic programming
technique to approximately solve (7) and (8), and typically
involves several inner loops and iteration, while our algorith-
m directly utilizes weighted median filter to exactly solve
(4) and (5) without inner loops. This explains why the pro-
posed method is always much faster and converges to a better
solution than ALP in the experiments.

An even more important and intrinsic difference between
the two methods is that their computational complexities will
differ significantly in handling missing entries. Note that the
indicator vector wj(w̃j) can be distributive over the terms
eij (̃e

i
j) and ui(vi) in Eq. (4)(Eq. (5)) in the bracket, while

wj(w̃j) cannot distributively multiply the terms xj(x̃j) and
U(V) inside the bracket in Eq. (7)(Eq. (8)). This means that
the sparsity of input data cannot be fully utilized to reduce
the computational cost in minimizing (7) and (8). Actually,
the LP process to solve (7) and (8) incurs in at least O(dk)
and O(nk) computational cost, respectively. The overall cost
of the algorithm will be at least O(Tknd), where T is the
iteration number in updating (7) and (8), which is generally
larger than the complexity (O(Tk(d+ n)s)) of the proposed
method in handling data with missing entries.

Experiments
To evaluate the performance of the proposed CWM algorithm
on L1-norm LRMF problems, we conducted extensive experi-
ments on various types of synthetic and real data with outliers
and missing entries. All the methods were implemented in
Matlab and run on a PC with Intel Core(TM) Q9300@2.50G
CPU and 4GB memory.

Synthetic data experiment
In this experiment, we synthetically generated 100 sets of
low rank matrices, each with size 7 × 12 and rank 3. Each
matrix was generated by UVT , where U and V are matrices
of size 7 × 3 and 12 × 3, respectively. Each element of U
and V was generated following Gaussian distribution with
zero mean and unit variance. Then 10% of the elements were
randomly selected and designated as missing entries, and
10% of the matrix elements were corrupted by uniformly
distributed noises over [−5, 5] (the same setting as (Eriksson
and van den Hengel 2010)).

Four representative LRMF methods were employed for the
performance comparison with the proposed CWM method.
They include two classical methods for L2-norm LRMF: WL-
RA (Srebro and Jaakkola 2003)2 and Wiberg-L2 (Okatani
and Deguchi 2007)3 and two state-of-the-art methods for

2We wrote the code for WLRA by ourselves.
3http://www.fractal.is.tohoku.ac.jp
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Figure 1: Comparison of relative reconstruction errors (RRE) and computational times obtained by the WLRA, Wilberg-L2,
ALP, Wiberg-L1 and CWM methods on 100 series of synthetic data experiments. The values are sorted in an ascending order for
easy visualization. For fair comparison, we plot all figures in the same scale (except for the computational time of ALP and
Wiberg-L1).

Table 1: Performance comparison of the competing methods in our experiments. The best result in each experiment is highlighted
in bold.

Computational time (s) Accuracy (RRE)

WLRA Wiberg-L2 ALP Wiberg-L1 CWM WLRA Wiberg-L2 ALP Wiberg-L1 CWM
Syntheticdata mean 0.165 0.030 0.826 3.554 0.021 0.64 395 19.01 4.82 0.51

Syntheticdata variance 0.0048 0.0004 1.0592 2.2174 0.0001 0.63 14331 192.1 245.2 0.23
Dinosaur sequence 2.9447 127.37 24.93 132.79 10.071 0.4539 0.7749 0.0426 0.0405 0.0031
Pingpong sequence 224.91 13265 718.82 166424 70.950 0.3498 0.5624 0.0903 0.0755 0.0151

Facedata1 0.5161 1380 32.8545 691.9 2.3120 0.0609 0.0539 0.0327 0.0417 0.0323
Facedata2 0.7548 1069 44.0804 603.7 2.2234 0.2029 0.4594 0.1940 0.4185 0.1458

L1-norm LRMF: ALP (Ke and Kanade 2005)4 and Wiberg-
L1 (Eriksson and van den Hengel 2010)5. For each input
matrix, the initialization was randomly generated and uti-
lized by all competing methods. The maximum number of
iterations were 100 for all methods. The means and vari-
ances of the accuracy and speed of all methods are com-
pared in the first and second rows of Table 1. The accuracy
is measured by relative reconstruction error (RRE) for the
100 realizations. The RRE (Luo, Ding, and Huang 2011;
Lin, Chen, and Ma 2009; Wright et al. 2009) is calculated as:∥∥∥Xori − ŨṼ

T
∥∥∥
F
/ ‖Xori‖F , where Xori is the groundtruth

data matrix. Figure 1 provides a more detailed visualization
of the performance.

By observing Table 1 (the first two rows) and Figure 1,
the advantage of CWM is clear in terms of both computa-
tional speed and accuracy. On one hand, our method always
achieves the most accurate reconstructions of the groundtruth
data matrices, and on the other hand, the computational cost
of the proposed method is much lower than other compet-
ing methods. Also, from Figure 1, we see that the proposed
method performs very stable and it has the smallest variance
among all methods. This shows that the proposed method
can always obtain a good solution to the original L1-norm
LRMF problem under different initializations.

Structure from motion experiments
The structure from motion (SFM) problem can be viewed
as a typical LRMF task (Ke and Kanade 2005; Eriksson
and van den Hengel 2010). In this series of experiments, we
employed two well known SFM sequences, the dinosaur se-
quence (http://www.robots.ox.ac.uk/˜vgg/) and the pingpong

4We used the code “l1decode pd.m” (Candès and Romberg
2005) for solving the linear programming problem in the iteration.

5http://cs.adelaide.edu.au/˜anders/code/cvpr2010.html

ball sequence (http://vasc.ri.cmu.edu/idb/). The dinosaur and
pingpong sequences contain projections of 336 and 839
points tracked over 36 and 226 frames, respectively, lead-
ing to a 336 × 72 matrix and an 839 × 452 matrix, re-
spectively. Each matrix contains more than 80% missing
entries due to occlusions or tracking failures. In order to ver-
ify the robustness of competing methods, we further added
10% outliers uniformly generated from [−5000, 5000] to
the two SFM data matrices. The WLRA, Wilberg-L2, ALP,
Wilberg-L1 and CWM methods were employed for com-
parison. The results obtained by the competing methods
are summarized in the third and fourth rows of Table 1 in
terms of both computational time and accuracy. Since the
groundtruth values of the missing entries in data are not
known, the relative reconstruction error is instead calculat-
ed as

∥∥∥W� (Xori − ŨṼ
T
)
∥∥∥
F
/ ‖W� Xori‖F , where W is

the indicator matrix of missing entries.
From Table 1 we can see that the proposed CWM method

performs the best among all competing methods in terms
of both computational speed and accuracy (except for the
computational time on the dinosaur sequence).

Face reconstruction experiments
We then test our algorithm in face reconstruction problem-
s. We generated some relatively small datasets and some
relatively large datasets in the experiments. The small face
datasets were generated by extracting the first subset of Ex-
tended Yale B (Georghiades, Belhumeur, and Kriegman 2001;
Basri and Jacobs 2003), containing 64 face images of size
192× 168. We downsampled the images to 24× 21 and con-
taminated the images with missing entries and salt-pepper
noise. The images were contaminated with (10%, 10%) and
(40%, 10%) of (missing entries, salt-pepper noise), respec-
tively, and then two data matrices of dimension 504× 64 are
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Figure 2: From left column to right column: faces reconstruct-
ed by CWM, original face images in Facedata8, the corrupted
images (black and white pixels denote noises and red pixels
denote missing entries), faces reconstructed by SVD, PCA-
L1, WLRA and robust PCA, respectively. The CWM results
are put to the left for easy visualization of latent features
discovered by the method from the images.
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Figure 3: From left column to right column: faces reconstruct-
ed by CWM, original face images in Facedata14, the corrupt-
ed images, faces reconstructed by SVD, PCA-L1, WLRA
and robust PCA, respectively.

formed, called Facedata1 and Facedata2, respectively.
The larger data matrices were built by using the subsets 1-4

of the Extended Yale B database, containing 256 face images
of size 192 × 168. 12 data matrices, denoted as Facedata3-
Facedata14, were generated in the following way. Facedata3-
Facedata8 are generated by setting (0%, 10%), (10%, 10%),
(20%, 10%), (30%, 10%), (40%, 10%), (50%, 10%) of the
randomly selected pixels of each image in the dataset as
(missing entries, salt-pepper noise), respectively. Facedata9-
Facedata14 are generated by first occluding each image with
salt-pepper noise located in a rectangular of size 50 × 70
or 70 × 50, at a random position of the image, and then
setting 0%, 10%, 20%, 30%, 40%, 50% of its pixels as miss-
ing entries. Each dataset corresponds to a matrix with size
32256× 256. Typical images of Facedata8 and Facedata14
are depicted in Figures 2 and 3, respectively.

We first compared our CWM method against WLRA,
Wilberg-L2, ALP and Wilberg-L1 on the small data matri-
ces. The results are shown in the fifth and sixth rows of
Table 1. For the large data matrices of Facedata3-Facedata14,
Wilberg-L2, ALP and Wilberg-L1 could not execute in our
computer. We thus employed another three methods for per-
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Figure 4: Comparison of the relative reconstruction errors
obtained by the SVD, PCA-L1, WLRA, robust PCA and
CWM methods on Facedata3-Facedata14 (missing entry rate
in data varies from 0% to 50%).

formance comparison. They include SVD (Golub and Loan
1989), state-of-the-art for L2-norm LRMF without missing
entries, PCA-L1 (Kwak 2008), a typical L1-norm LRMF
method without missing entries, and robust PCA (Wright et
al. 2009), state-of-the-art for LRMF with sparse noises. Fig-
ures 2 and 3 show some original and reconstructed images by
the used methods on Facedata8 and Facedata14, respectively.
The RRE values obtained by these methods on Facedata3-
Facedata14 are also depicted in Figure 4 for easy comparison.

From Table 1, it can be seen that the computational speed
of the proposed CWM method is faster than other methods
except for WLRA, which is designed for the smooth L2-
norm LRMF problem; and its computational accuracy is
clearly higher than all the other competing methods in both
Facedata1 and Facedata2. It can also be easily observed from
Figure 4 that the CWM method has the highest accuracy
among all competing methods (except that in the case of
LRMF without missing entries, its accuracy is slightly lower
than that of robust PCA), and its accuracy is only sightly
reduced with the rate of missing entries increasing (from 0%
to 50%). It can be observed from Figures 2 and 3 that some
latent features underlying the original faces can be recovered
by the proposed method, e.g., the shadows and the stripe
waves tend to be removed from the faces. What makes it
interesting is that these reconstructions are obtained from the
corrupted images, but not the clean faces. Such an advantage
attributes to the cyclicly employed weighted median filters in
our method, which is intrinsically insensitive to the impulsive
noises and outliers and always helpful in avoiding overfitting
on data corruptions (Brownrigg 1984). This shows that the
CWM method is potentially useful for latent information
retrieval from noisy measurements in practice.

Conclusion
In this paper we developed a novel cyclic weighted median
(CWM) method based on coordinate decent methodology
to solve the L1-norm low-rank matrix factorization (LRMF)
problem in the presence of outliers and missing entries. Based
on the extensive experimental results, it can be concluded
that the proposed CWM method is very robust to outliers and
missing entries, and it outperforms state-of-the-art methods in
terms of both accuracy and efficiency. A prominent advantage
of the proposed method is that it reduces the computational
complexity ofL1-norm LRMF from the state-of-the-art speed
O(dn) to O(d+ n) in the case that the input data matrix is
highly sparse, which makes it particularly useful in solving
real problems with big and sparse data.
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