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We propose the concept of intrinsic spatial distance (ISD) for the study of a spatial relationship between

any two points in space. The ISD is a distance measure that takes into account the separation of two points

with respect to their physical and attribute closeness. We construct an algorithm to implement this concept

as an ISD measurement. Based on the ISD concept, two points inspace are related through a transitional

path linking one to the other. As an ISD measurement decreases, the spatial relationship between two points

becomes increasingly stronger. We argue theoretically anddemonstrate empirically that the ISD concept is

not predisposed in favor of the first law of geography, but directly considers variance of nearness in physical

distance and attribute distance to derive the extent to which two points are spatially associated. Specifically,

in single attribute cases, the information uncovered by an ISD measurement is more elaborate than that

revealed by Moran’s I, local Moran’s I, and a semivariogram,giving a meticulous account of relatedness

in both local and global contexts. The ISD concept is also sufficiently general to be used to study multiple

attributes of relationships.
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Introduction

“Everything is related to everything else, but near things are more related than distant things.” This is the

so-called first law of geography invoked by Tobler in 1970. This statement essentially posits that things near

each other in space are more similar in profile for a set of attributes than are things distant from each other in

space. That is, the degree of relatedness possesses a distance decay structure whereby near phenomena are

more closely related than distant phenomena. This conceptualization has aroused much interest and debate

over the years (see, for example, Sui 2004; Barnes 2004; Miller 2004; Phillips 2004; Smith 2004; Goodchild

2004; Tobler 2004 in a special issue of the Annals of the AAG).Whether or not it can be regarded as a law,

Tobler’s invocation did bring to the fore the essential premises that have long served as a basis for the study

of spatial relationships. In brief, spatial relationshipsshould be evaluated in terms of their similarity in

attributes and proximity in space (Gatrell 1983; Elhorst 2001).

To quantitatively describe the covariation of properties of proximal observations/locations /points (to

avoid confusion, the terms observation, location and pointare used interchangeably in our discussion),

measures of relationships relative to distance have been formulated in spatial statistics. In this paper, we

mainly focus on spatial relationship with respect to a single attribute variable. All our analysis can be easily

generalized to spatial relatedness with respect to a profileof attributes.

In single attribute cases, a spatial relationship among proximal observations is commonly characterized

as spatial autocorrelation, which is the correlation amongvalues of a single variable strictly attributable to

the proximity of such values in a two-dimensional (2-D) geographic space, introducing a deviation from the

independent observations assumption of classical statistics (Griffith 2003). The functions most often used to

describe spatial autocorrelation are related to variance,covariance, and correlation. Area-based techniques

are aimed at constructing quantitative criteria for measuring global or local spatial autocorrelation. Moran’s

I and Geary’s c are widely adopted spatial correlation statistics. Moran’s I takes the form of the classical

Pearson product moment correlation coefficient with valuesapproximately ranging from−1 to+1 (Moran

1950). Asymptotically, the value 0 indicates randomness (no spatial autocorrelation). A positive value

indicates a positive spatial autocorrelation among proximal locations, whereas a negative value indicates a

negative spatial autocorrelation. Geary’s c is always positive with a semi-variance type of numerator (Geary

1954). Its values tend to range from 0 to+2, where positive spatial autocorrelation is indicated by avalue
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less than 1 and negative spatial autocorrelation is indicated by a value greater than 1. Both the classic

Moran’s I and Geary’s c require a binary weight/link matrix to reflect distances/linkages between neighbors,

and give only a global measure of spatial autocorrelation embedded in a dataset.

Because of the presence of spatial heterogeneity, the degree of spatial autocorrelation may vary

significantly over space. Because Moran’s I and Geary’s c measure only the global pattern of spatial

association, they do not identify local areas exhibiting spatial heterogeneities with significant local

departures from randomness. Local indicators of spatial association (LISA statistics) ameliorate this

disadvantage of such global measures to a certain extent (Anselin 1995). A LISA decomposes a global

indicator, such as Moran’s I, into the contributions of its individual locations. In essence, LISA statistics

measure the degree of spatial autocorrelation within the neighborhood of each location; i.e., they describe the

spatial autocorrelation of certain local areas. Local Moran’s I and local Geary’s c (Anselin 1995), as well as

Ord and Getis G statistics (Getis and Ord 1992; Ord and Getis 1995, 2001) are widely used local measures

of spatial autocorrelation. Each can be expressed as the ratio of quadratic forms in observations (Leung

et al. 2003). These statistics have been employed to study the spatial autocorrelation of various geographical

phenomena (see for example, Griffith 2003, 2009; Lee and Rogerson 2007; Yamada et al. 2009). Again, each

of these measures requires the specification of a weight/link matrix stipulating the contiguity of locations

over space, with the distance effect being the same in all specified directions (Aldstadt and Getis 2006;

Cressie and Chan 1989).

Although the preceding area-based global or local spatial measures incorporate distance in geographic

space into measures of spatial autocorrelation, they stillfall short in describing the degree of spatial

relatedness between all pairs of locations. The weight matrix is too crude a representation of the intricate

local variations between all pairs of locations in the presence of sizeable spatial heterogeneity. Furthermore,

its specification is predisposed to obey Tobler’s first law that “near things are more related than distant

things.”

In addition to area-based techniques, distance-based methods also have been formulated to measure

spatial autocorrelation. The semivariogram, commonly referred to as the variogram (a component of

kriging in geostatistics), is perhaps the method most widely used to describe spatial autocorrelation (Cressie

1993; Wackernagel 2003). The variogram is a plot of semivariance structured as a function of distance

between points. Instead of using covariance or correlation, both of which are measures of the similarity of
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a variable in a geographic space, semivariance depicts the squared differences of a variable as a function

of the distances between all known points, and measures the dissimilarity of subjects in terms of that

variable (Cressie 1993). Recently, the semivariogram has been further extended to non-stationary and

directional biases (Goovaerts 1997; Deutsch and Journel 1998). However, similar to area-based methods,

the semivariogram does not capture detailed inter-point variations for all pairs of observations essential to

the description of global and local spatial autocorrelation, and does not locate the paths along which spatial

data are intrinsically related.

The purpose of this paper is to present a newly constructed measure called intrinsic spatial distance

(ISD) to quantitatively describe spatial association between all pairs of locations over space. The main idea

underlying this concept is to integrate proximities in space and attribute values into a unified measure to

depict the intrinsic relatedness of observations. This method involves finding a chain between two locations

by linking a long series of interconnected relatedness observations. Along such a chain, spatial relatedness

within the context of a particular attribute variable can begradually and optimally differentiated over space.

As such, the spatial relationship between a pair of locations can be calculated as the sum of the variable

variances in that chain.

The measure we propose here has four main advantages over existing measures. First, the technique can

measure in detail spatial relatedness between all pairs of observations, and can be utilized to study spatial

relationships in the presence of non-stationarity and anisotropy. The method is particularly important to

the study of interaction proximity, where the relative proximity of any location to each designated location

needs to be evaluated (Brown and Horton 1970; Gatrell 1983).Second, the spatial relationship measure

we construct forms a metric on the observation space, and thus can be treated as a distance measure in

the conventional sense. Third, the interconnected chains between observation pairs meticulously reflect

the location-to-location interrelationships essential to spatial analysis in global and local contexts. The

transitional path so constructed is tractable, and can reflect complexity/heterogeneity in the continuous

surface between any two locations. It also is in line with theconvention of measuring distance by a path

(see, for example, Lösch 1954; Warntz 1966; Leung 1984). Moreover, the corresponding matrix of distance

represents a certain spatial relation. Fourth, the proposed spatial relationship measure not only provides

a quantitative realization of “everything is related to everything else” in Tobler’s first law by giving the

value of the ISD, but also can measure relatedness when observations are: (1) near in both geographical
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and attribute distances; (2) far in both geographical and attribute distances; (3) near in geographical distance

but far in attribute distance; and, (4) far in geographical distance but near in attribute distance. These four

situations simply represent a crude classification of relatedness for the convenience of discussion. The ISD

concept and its related algorithm cover the entire range of both distance and attribute values. In brief, our

proposed concept of ISD faithfully reflects relatedness through proximity in distance and attribute values.

Measuring a spatial relationship by the concept of intrinsic

spatial distance

In this section, we propose the concept of intrinsic spatialdistance (ISD) and the ISD-estimation algorithm

for the characterization and measurement of the spatial relationship between two locations.

Three basic assumptions underlying a spatial relationship

The building block of a spatial relationship is the association of any two locations in geographic space.

Two points are related through a path that provides a smooth transition of relatedness among all relevant

in-between neighboring points. A point is related to a distant point through this smooth propagation of

relatedness. That is, attribute values should vary gradually along a path connecting two designated points

in a geographical space. The fundamental problem then becomes the search for an underlying path along

which two points are related, with its inter-point spatial relationship being determined by integrating local

variations in the physical and attribute spaces. Consequently, the basic question asks how to find such a path

that relates two points by both geography and attributes.

The path along which spatial objects are intrinsically related should possess three basic properties:

A(i) Attribute values should vary along the path as smoothlyas possible;

A(ii) The overall attribute-value variation of the path should be as small as possible; and,

A(iii) The physical length of the path should be as short as possible.

These three properties are both intuitive and natural. Property A(i) captures the gradual local variation

of attribute values along a path, while properties A(ii) andA(iii) mean that a spatial relationship between
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objects should reflect the most direct physical and attribute relationships between them. These two properties

also ensure the uniqueness of the spatial association path between spatial objects obtained by our proposed

method.

As an illustration, Figure 1 depicts spatial association paths between two locations that satisfy the

preceding three properties. Such paths capture inter-location spatial relatedness in an intuitive and natural

way. Each path provides a smooth gradation of attribute values (sandstorm intensity in this case) with the

shortest physical length.

Our strategy to find an intrinsic path for the measurement of aspatial relationship is to construct a

quantitative measure of the path in the geographical space that appropriately assesses the extent to which the

path deviates from the three basic spatial relationship properties. A path between any two spatial points with

the smallest deviation from these properties can be employed to measure an inter-point spatial relationship.

The starting point of this task is to construct a measure for the direct connection between neighboring spatial

points. This becomes the local measure of a spatial relationship. Once the local measure is obtained, we can

establish a global measure that integrates all relevant local measures. Then the intrinsic distance between

two locations can be obtained along the path that gives the smallest global measure. In what follows, we

give a detailed description of these related tasks.

The local measure of a spatial relationship

We construct the local measure of a spatial relationship based on the following observation. If two points

are a very short physical distance apart, and their attribute values are significantly different (points A and

B in Figure 2(b)), then the indicated path connecting them seriously violates property A(i). This violation

implies that the spatial relationship of the two points should be weak despite their nearness in physical

distance. In other words, the local measure in terms of attribute distance should give a remarkably high

value. In contrast, if the two points have very similar attribute values (points A and B in Figure 2(a)), then

the direct path connecting them reflects all three properties of a spatial relationship. This means that the

two points are strongly associated, and the local measure interms of attribute distance should give a very

low value. Thus, the local measure to be constructed should severely penalize large differences in attribute

values along a path.
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Before formulating the local measure, we first undertake a formal analysis of the spatial relationship

between two georeferenced locations. LetΩ be the spatial data space. For anyx∈ Ω, a spatial relationship

is composed of two features: the geographical feature (coordinates in space)xg ∈R2 and the attribute feature

xa ∈R, wherex= (xg,xa)1. For any pair of data pointsx,y∈Ω, our aim is to measure the spatial relationship

between them.

First, we construct the local measure of a spatial relationship in terms of distance. For any data pair

x,y∈ Ω, we denote their physical distance asdg(x,y) = ‖xg−yg‖, and their attribute distance asda(x,y) =

|xa−ya|. In this context, physical distance also can be defined on thebasis of travel time, cost of separation,

social relations, and cognitive distance between the spatial objects, as investigated by Gatrell (1983). The

Minkowski metric (Bertazzon and Olson 2009) orLp-norms (Josselin and Ladiray 2002) also can be adopted

to measure this distance.

Integrating these two distances, we define theε-spatial-distancebetweenx andy as

dε(x,y) =











ecda(x,y)−1+cdg(x,y) , if dg(x,y) < ε,

∞ , otherwise,
(1)

wherec is a positive constant for penalizing significant variations in attribute values betweenx andy, andε

specifies the neighborhood.

Theε-spatial-distancedε(x,y) constructs a local measure of a spatial relationship between neighboring

points along a path by simultaneously accounting for their physical and attribute nearness. This measure

penalizes sudden changes in attribute values. Moreover, itfully adheres to the preceding three properties of

a rational measure of a local spatial relationship.

Specifically, for situations in which the attribute distance da(x,y) between theε-neighboringx andy is

short,dε(x,y) can be approximated byc(da(x,y)+dg(x,y)) becauseecda(x,y) −1≈ cda(x,y). In this case,

a local measuredε(x,y) corresponds to the simple summation of the geographical andattribute distances

betweenx andy with a scale parameterc, and yields a relatively small value.

For situations in which the attribute distanceda(x,y) is large whiledg(x,y) is small,dε(x,y) imposes

an exponential penalty upon abrupt changes in attribute values betweenx andy. Due to the well-known

property of the exponential functionecda(x,y), a larger difference in attribute valuesda(x,y) leads to a much

greaterε-spatial-distancedε(x,y); i.e., the penalty is more severe. In this case, the local measuredε(x,y)
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imposes a substantial penalty on attribute variation betweenx andy, and thus gives a much larger value.

According to the preceding analysis,dε(x,y) is a reasonable measure of a local spatial relationship

along the connection path between pointsx andy. The smaller the value ofdε(x,y), the stronger the spatial

relatedness between two locally neighboring points, and vice versa.

Based on the local measure given by equation (1), we can construct a measure of a global spatial

relationship between any two locations along a path in space.

The global measure of a spatial relationship

A natural way of evaluating the global measure along a path (asmooth curve) connecting two locations is to

partition the curve into local connections between neighboring points residing on the path before integrating

all local measures between such neighboring points to form aspatial relationship measure of the entire path.

Because each local measure reflects the extent of deviation from basic spatial relationship properties along

the corresponding local path, as explained in the previous section, the global measure so obtained naturally

represents the extent to which the entire path deviates fromthe basic spatial relationship properties.

To facilitate construction of a global measure of a spatial relationship, we first define a specific path. A

sequence(x0, · · · ,xn) is called anε-spatial-pathbetweenx andy in Ω if x0 = x, xn = y, xi ∈ Ω(i = 1, · · · ,n−

1) anddg(xi ,xi−1) < ε(i = 1, · · · ,n) are satisfied. Allε-spatial-paths betweenx andy in Ω constitute the

ε-spatial-path-setΓε(x,y).

A global spatial relationship measure for a path(x0, · · · ,xn) ∈ Γε(x,y) can be constructed as

n

∑
i=1

dε(xi ,xi−1).

With respect to the two cases referred to in the discussion ofthe ε-spatial-distance, we justify this global

measure as follows. When variations in attribute values along theε-spatial-path(x0, · · · ,xn) are gradual, we

have
n

∑
i=1

dε(xi ,xi−1)≈
n

∑
i=1

c(da(xi ,xi−1)+dg(xi ,xi−1)). (2)

In this case, Equation (2) shows that
n
∑

i=1
dε(xi ,xi−1) is the sum (with a scale transformation) of all variations

in both the geographical and attribute space along theε-spatial-path. If the global measure of a path is a
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large value, then either the degree of attribute variation is large or the path is physically long. This means the

path deviates from property A(ii) or A(iii), and the global spatial relationship should be weak. In contrast, if

the global measure is a small value, then both the degree of attribute variation and the physical length of the

path are small. That is, the path satisfies properties A(i), A(ii) and A(iii), and the global spatial relationship

should be strong.

For some spatial points{xi}i∈I along theε-spatial-path(x0, · · · ,xn) with attribute values that differ

greatly in theirε neighborhoods, if we denote the variation in attribute values atxi (i ∈ I) as∆i = da(xi ,xi−1),

then we have
n

∑
i=1

dε(xi ,xi−1)≈
n

∑
i=1

cdg(xi ,xi−1)+
n

∑
i=1(i /∈I)

cda(xi ,xi−1)+∑
i∈I

(ec∆i −1)). (3)

Equation (3) shows that
n
∑

i=1
dε(xi ,xi−1) corresponds to the sum of the curve length of the spatial path, the

variations of the attribute values along the path, and the specific exponential penalty for each abrupt change

in attribute values along the path. Specifically, as the magnitude of this change increases, the severity of

the penalty increases. This case seriously violates the spatial relationship property A(i). Because there

is an exponential penalty term∑
i∈I
(ec∆i − 1)) in the global measure, it always has a large value. Gradual

attribute variation (i.e.,
n
∑

i=1(i /∈I)
cda(xi ,xi−1)) and curve length (i.e.,

n
∑

i=1
cdg(xi ,xi−1)) still play a smaller but

non-negligible role in this global measure. That is, this measure also reflects the extent to which the path

deviates from properties A(ii) and A(iii). Therefore, the presented global measure still faithfully reflects the

extent to which a path deviates from the three spatial relationship properties.

Based on the aforementioned properties of
n
∑

i=1
dε(xi ,xi−1), Equation (3) gives a reasonable spatial

relationship measure of theε-spatial-path(x0, · · · ,xn) ∈ Γε(x,y) betweenx and y. Given that the

ε-spatial-path is not unique, our final task is to choose a paththat reflects the maximum spatial relatedness

betweenx andy. We propose the concept of intrinsic spatial distance to achieve this goal.

Intrinsic spatial distance

Based on the preceding formulation of a global spatial relationship measure of a path in geographical space,

the path along which a pair of spatial points is intrinsically associated naturally should be the one with

the smallest global measure; i.e., the smallest deviation from the three basic spatial relationship properties.

9



Leung and et al. Geographical Analysis

Mathematically, the spatial relationship of any two pointsx,y ∈ Ω can be quantitatively measured by the

following concept of “intrinsic spatial distance” (ISD):

dISD(x,y) = min
(x0,··· ,xn)∈Γε(x,y)

n

∑
i=1

dε(xi ,xi−1). (4)

We call the path along whichdISD(x,y) is attained the shortest spatial path (SSP) betweenx andy. The terms

involved in equation (4) are graphically depicted in Figure3 for ease of interpretation. Here, the attribute

value of a point in the figure is indicated by its grey level.Γ1, Γ2, Γ3 and Γ4 are fourε-spatial-paths in

Γε(A,B). Γ4 represents the SSP along which the minimal value of
n
∑

i=1
dε(xi ,xi−1) is attained. The value

of
n
∑

i=1
dε(xi ,xi−1) corresponds to the spatial relationship intrinsic to the geographical and attribute distances

between A and B; i.e.,dISD(A,B). Correspondingly, the SSP betweenx and y intrinsically reveals the

underlying path along which the two data points are spatially related through a series of interconnected

relationships.

The smaller the ISD, the stronger the relationship between two points, and vice versa. Interestingly,

by virtue of the ISD, Tobler’s well-known law can be more precisely restated as: “Everything is related to

everything else by the inter-point ISD, but things with a smaller ISD value are more strongly related than

things with a larger ISD value.” This, however, should not bemisunderstood to mean “near things are more

related to each other than distant things,” because things near each other in geographical space might differ

significantly in attribute space, resulting in large value of dISD(x,y). The case depicted in Figure 2(b) is

a typical example of this. Conceptually, we call the ISD a “distance.” However, does the ISD satisfy the

classical concept of distance in metric space? The answer ispositive, with the corresponding theorem being

as follows:

Theorem 1 The ISD function dISD(x,y) is a distance metric on the spatial data spaceΩ.

(The proof is given in the Appendix.)

To make the concept operational, we need a method to calculate the ISD given a limited number of data

points. The ISD calibration algorithm is formulated in the next section.
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The algorithm for calculating the ISD

Given a spatial data setX = {xi = (xg
i ,x

a
i )}

l
i=1, our aim is to obtain the ISDdISD(xi ,x j) (1 ≤ i, j ≤ l ) as

defined by equation (4). By specifying the spatial data spaceΩ as the data setX, the ISD between anyxi and

x j (1≤ i, j ≤ l ) can be calculated directly with equation (4). Graph theorytools may be employed to achieve

this task. In particular, by connecting theε-NN neighbors2 of all verticesX, a graph superimposed on the

spatial data setX can be constructed. Thus, each path on this graph corresponds to anε-spatial-path of the

data. By weighing eachε-NN edge betweenxi andx j as theε-spatial-distanceecda(xi ,xj ) − 1+ cdg(xi ,x j)

previously defined, the length of anε-spatial-path corresponds to the global spatial relationship measure

for the path. By virtue of some standard shortest-path algorithms employed in graph theory, such as the

well-known ones by Dijkstra (Dijkstra 1959) and Floyd (Floyd 1962; Silva and Tenenbaum 2003), the ISD

can be computed efficiently.

The ISD algorithm

Step I (Initialization) : Preset the constantc> 0; the neighborhood sizeε (a positive real number).

Step II (Data normalization): Normalize the geographical and attribute vectors inXl respectively as:

xg
i = xg

i /( max
1≤ j≤l

‖xg
j ‖), xa

i = xa
i /( max

1≤ j≤l
‖xa

j‖), i = 1,2, · · · , l .

Step III (Neighborhood graph construction): Constructε-NN graphG= (V,E) superimposed on the

spatial data setX, where the vertex setV corresponds to all data inX and the edge setE contains theε-NN

edges of all vertices. The weight for each edge inE betweenxi andx j is set asecda(xi ,xj )−1+cdg(xi ,x j).

Step IV (Shortest path calculation): Calculate the SSPΓi, j between any data pairxi andx j in the

graphG, and record the length of the calculated path asdi, j .

Step V (Exportation): Output the ISD matrixD = {di, j}l×l , wheredi, j is the estimated ISD betweenxi

andx j and the shortest spatial path setΛ = {Γi, j}1≤i, j≤l .

In the algorithm, data normalization in Step II puts the geographical and attribute feature vectors on a

similar scale so the same parameterc can be employed to measure both geographical and attribute features.

Step III approximates theε-spatial-distancedε(xi ,x j), as defined by equation (1), for allε-NN data pairs.

Step IV calculates the ISD valuedISD(xi ,x j) as defined by equation (4).

The output of the ISD algorithm includes the estimated ISD matrix D and the SSP setΛ between

all spatial data pairs inX. The results so obtained are of specific significance in the analysis of spatial
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relationships. First, the ISD can be employed to describe a spatial relationship between any pair of spatial

data in a much more elaborate way than currently available spatial relationship measures do, and, second, the

pathΓi, j tends to reveal intrinsically the transition of relatedness between any two data points, and explicitly

depicts how they are associated in both geographical and attribute space. We substantiate our theoretical

arguments in the next section with simulation experiment results and real-life applications.

Simulation experiment results and real-life applications

To verify the effectiveness of the ISD method, and to demonstrate the ability of the ISD measure to evaluate

spatial relationships (in the single variable cases), we employ four sets of spatial data: a synthetic data set,

two climatic data sets (mean daily cloud coverage, and mean daily humidity), and a gross domestic product

(GDP) data set. We utilize three classical measures of spatial autocorrelation for comparison: Moran’s I

(Moran 1950), a widely adopted global measure of spatial autocorrelation; local Moran’s I (Anselin 1995),

a widely used local measure of spatial autocorrelation; andthe semivariogram (Cressie 1993; Wackernagel

2003), a common distance-based measure of spatial autocorrelation. All programs are implemented in

Matlab 7.0.

Simulation results based on synthetic spatial data

The synthetic spatial data set consists of 1,000 spatial points{(xg
i ,x

a
i )}

1000
i=1 , wherexg

i and xa
i denote the

location and attribute of thei-th point, respectively. Specifically, the two-dimensional (2-D) locationxg
i =

(x1,x2) of each point is randomly generated within the rectangle area [−1.4,1.4]× [−1.4,1.4], and the value

of its attribute is obtained withxa
i = e(−2(x2

1+x2
2−1)2), as portrayed by Figure 4(b). The distribution manifold

of the data set with respect to location and attribute valuesis depicted by Figure 4(a).

The spatial autocorrelation information obtained by localMoran’s I, Moran’s I, and semivariogram

measures are portrayed by Figures 4(d), (c) and (e), respectively. The ISD outputs corresponding to two

randomly selected data points are depicted in Figures 5(b) and (c), respectively (the background spatial

distribution is obtained by the kernel interpolation method (Nadaraya 1964) for all experiments). For each

data point, we can obtain the corresponding ISD exhibiting its degree of intrinsic spatial relatedness to all

other points of its parent data set. The transitional paths between four pairs of randomly selected data points
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also are shown in Figure 5(a). The transitional path meticulously reveals how the two points are intrinsically

related in both geographical and attribute space.

Figure 4 shows that Moran’s I only gives a unique positive value for the spatial autocorrelation of the

entire data set, indicating a strong degree of spatial relatedness among neighbors on a global scale. This

measure is too coarse to reflect the fine details of spatial relationships within a data set. Local Moran’s

I, in contrast, better reveals the spatial autocorrelationaround each point on a local scale. Neighboring

points located on the ridge and at the bottom of the attributemanifold tend to be positively autocorrelated,

whereas those on the inclines of the manifold tend to be negatively autocorrelated. Although this local

measure is clearly a more detailed gauge of a spatial relationship, it only reveals relatedness isotropically

in the neighborhood within a specific radius around each point. This spatial relationship yardstick again

is predisposed to the first law, and does not measure spatial relatedness between any two points of the

entire data set elaborately and globally, particularly those that defy the maxim “Near things are more related

than distant things.” To a certain extent, the semivariogram measure is also a global spatial autocorrelation

measure. It measures spatial autocorrelation as a functionof the distances between all known points (see

Figure 4(e)). The limitation of the semivariogram measure is that its computation generally hinges on the

assumptions of stationarity (mean and variance are not a function of location) and isotropy (no directional

trends in the data) among spatial observations. Furthermore, it does not describe in detail the spatial

relationship between any two locations.

The ISD measure capitalizes on two main aspects. First, the ISD measure can be quantitatively evaluated

between each point and any other point. Thus the ISD reflects global spatial relationship information

between all data points in an extremely elaborate way, and the evaluation it provides not only is not

predisposed to the first law, but also does not require any spatial data assumptions such as stationarity and

isotropy. This advantage of the ISD measure can easily be observed in Figures 5(b) and (c). In particular, a

point located on the ridge of the underlying distribution manifold of the attribute (Figure 5(b)) is more related

to points along the ridge according to the ISD measure, but isless related to points at the bottom of the ridge

in terms of the ISD measure, although it is nearer in geographic space to many of the latter. Furthermore, the

point located at the bottom of the inner part surrounded by the ridge of the manifold (Figure 5(c)) is more

related to points located at the bottom part according to theISD measure, while it is less related to those

outside this part. The results agree completely with our intuitive understanding of a spatial relationship. The

13



Leung and et al. Geographical Analysis

proposed ISD measure quantitatively addresses the qualitative statement of the first law that “Everything is

related to everything else,” and precisely evaluates the extent to which two points are related with varying

combinations of nearness in space and attributes.

The second advantage of the ISD measure is that for any pair ofpoints, it can be used to construct a

transitional path along which the points are intrinsicallyrelated in space. Such a path reveals the intrinsic

spatial relationship between the two points, and meticulously reflects how they are spatially related to

each other. Figure 5(a) depicts such transitional paths corresponding to the four situations described

in the Introduction, respectively. Specifically, the triplet of attribute distanceda, physical distancedg,

and ISD dISD for the four pairs of points (connecting the curves 1 to 4, respectively) in Figures 5(a)

are(0.0007,0.0397,0.8079) (near in both geographical and attribute distances),(0.2438,0.0297,17.1990)

(near in geographical distance but far in attribute distance), (0.0126,0.6918,36.6081) (far in geographical

distance and near in attribute distance), and(0.7010,0.4432,52.2622) (far in both geographical and attribute

distances), respectively. Although both point pairs connecting the curves 1 and 2 are near in geographic

space, the latter pair has a much larger ISD value because of the significant difference in their attribute

values. Despite the spatial distance between the points connecting the curve 3 being longer than that

connecting the curve 4, the ISD for the former pair is smallerdue to its smoother attribute variation along

the corresponding ISD path, as can be observed in the figure. The points lying on the ridge of the manifold

(residing on the curve 3) are spatially related along the ISDpath on the ridge, but are not related along

the shortest connection in space. These results provide a good level of agreement between reality and our

intuition, and thus verify the validity supporting the conceptual arguments of the ISD evaluation method.

Climate data applications

To further demonstrate the appropriateness of the ISD-estimation algorithm, we also apply it to study spatial

relationships in terms of daily cloud coverage and daily humidity data recorded at 641 stations in China

from 1990 to 1999. The two attribute data sets are derived from the data files of the Key Laboratory

of Regional Climate-Environment Research for Temperate East Asia, Institute of Atmospheric Physics,

Chinese Academy of Sciences. Each station is identified by its latitude and longitude as depicted in Figures

6(a) and 7(a), respectively, and each attribute is measuredin terms of its mean value. As a comparison,
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Moran’s I, local Moran’s I, and the semivariogram also are calculated for both data sets to measure spatial

autocorrelation.

Figures 6(b) and 7(b) show the distributions of local Moran’s I with respect to cloud coverage and

humidity, respectively. The gray lines across the bars in Figures 6(c) and 7(c) indicate the global Moran’s I

of the two respective data sets, indicating strong global spatial autocorrelation of the two phenomena. Local

Moran’s I, however, gives further information concerning local variations of cloud coverage and humidity.

Daily cloud coverage tends to be more autocorrelated in the northeast and southeast regions than in other

areas of China, and daily humidity tends to be more autocorrelated in the northwest and southeast parts

of China than in other places. Figures 6(d) and 7(d) depict the semivariogram curves, showing the global

tendency of inter-point spatial relatedness for differentdistances.

By applying the ISD measure, we can obtain more complete information concerning a spatial

relationship between any two locations. By way of illustration, we show the spatial relationship of a chosen

point and all other points obtained by the ISD measure in bothcases. The Mianyang station located west

of the Sichuan Basin is chosen as the reference station, and the ISD results are shown in Figures 8(a), (b)

and (c). These figures show that Mianyang is strongly relatedto places within the same basin, despite some

being far away, but is weakly related to those to its west (i.e., the Tibetan Plateau), even though some are

very near geographically. This result is as expected, because regions in the Sichuan Basin have a subtropical

climate, and hence tend to have greater cloud cover, whereasthose on the Tibetan Plateau have a high

altitude climate, and hence lack cloud cover. These interesting relationships are fully reflected by the ISD

results, but are not revealed by the other spatial autocorrelation methods. With respect to daily humidity,

Figure 9(a) depicts spatial associations between the Henanstation in Qinghai province in the northeastern

part of the Tibetan Plateau and other stations. Figure 9(b) and (c) indicate that this station has stronger spatial

relationships with places on the plateau, and weaker spatial relationships with places at lower elevations to

its east. This outcome is due to the different climatic regions within which the stations are located. Places

at higher elevations around the Henan station are in the aridregion of northern China, whereas those at

lower elevations east of the station are in the monsoon region of east China. These two regions have distinct

humidity conditions, meaning places within the same regiontend to be more closely related. The ISD

outputs in both experiments reveal a high degree of spatial heterogeneity in the data sets and their embedded

spatial autocorrelation.
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Our ISD-evaluation algorithm also was applied to both data sets to obtain inter-station transitional paths

with respect to daily cloud coverage and humidity. In terms of cloud coverage, two stations (Huili and

Yuanping) are randomly selected from the entire data set to obtain the transitional path connecting them,

as shown in Figure 10(a). The path passes though the two stations at comparatively high elevations, while

it just bypasses those at relatively low elevations. This outcome agrees with the tendency for stations at

high elevations to be more closely related with each other because of their similarity in cloud coverage

caused by topographical conditions. Thus, the transitional path reveals how the two stations are intrinsically

related in attribute and geographical space. We also identify the transitional path between two arbitrarily

chosen stations (Huaiyin and Shipu) in terms of humidity in Figure 10(b). This figure shows that the path

connects the two stations along the East China seashore, meticulously circumventing the inland stations.

This outcome matches the general pattern of humidity along the seashore being higher than that inland.

These results further demonstrate the discriminating power of the ISD evaluation method in the study of

complex spatial relationship.

Application to the study of spatial relationships for gross domestic product

The data set for this case study is drawn from the 2009 Statistical Yearbook of Chinese cities, and contains

figures for the per capita gross domestic product (GDP) of 287Chinese cities. Each city is identified by its

latitude and longitude (Figure 11(a)). The ISD measure, Moran’s I, local Moran’s I, and the semivariogram

are employed to measure spatial autocorrelation/relationships in terms of GDP.

Figure 11 depicts results obtained by applying the three spatial relationship measures currently in use.

Moran’s I detects positive global spatial autocorrelationamong the cities (Figure 11(c)). Local Moran’s I

gives more local information, especially by revealing stronger autocorrelation in the Yangtze River Delta

and the Pearl River Delta (Figure 11(b)). The semivariogramplot (Figure 11(d)) depicts the range of spatial

autocorrelation.

In comparison, our ISD measure provides the spatial relationship and transitional path between any two

cities, giving more detailed spatial association information than the other measures. For example, Figure

12(b) depicts spatial relationships between Xiamen and allother cities with respect to GDP. The per capita

GDP of Xiamen tends to be more closely related to that of places along the seashore, from the Taiwan Strait
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to the South China Sea. It reveals that GDP figures are more strongly related among coastal cities than

among inland cities because of their economic linkages. Figure 12(a) depicts the transitional path between

Baoshan and Jinzhou. This path closely bypasses less-developed areas at higher altitude with a lower GDP,

but passes though cities at comparatively low altitudes where GDP is higher.

The preceding empirical results establish that the ISD estimation algorithm precisely measures spatial

relationships in terms of attribute and physical distances. It substantially extends our ability to analyze

spatial relationships in general.

Conclusion and discussion

In this paper, we develop the concept of intrinsic spatial distance (ISD) and present an associated ISD

algorithm for the analysis of a spatial relationship between any two points in geographic space. The ISD is

a distance measure that accounts for the nearness of two points with respect to their physical and attribute

distances. We argue conceptually that the ISD measure of a spatial relationship naturally reflects how two

points are related locally and globally. The transitional path linking two points vividly depicts how they

are related in space. Unlike conventional spatial autocorrelation measures with respect to a single variable,

the ISD is not predisposed in favor of the first law of geography, but directly accounts for the varying

physical and attribute distances to measure the extent to which two points are spatially autocorrelated. We

also point out that the information provided by ISD is more elaborate than that revealed by Moran’s I, local

Moran’s I, and the semivariogram. Because ISD measures the relationship between any two points, the

spatial relatedness of any single point with all other points over space can be evaluated. The distance matrix

thus derived shows the intrinsic spatial relations betweenpoints. Our conceptual arguments are substantiated

and validated by a series of experiments based on synthetic and real-world data sets.

As a point of interest, we now discuss the relationship between the ISD path – the shortest path in both

physical and attribute space – and the least/minimum effortpath. The ISD path accounts for both nearness in

space and nearness in attribute distance. The shortest pathconnecting two spatial data points is constructed

in either the physical or attribute space. This can be clearly observed in all of our experiments (e.g., the ISD

paths in the cloud coverage experiment shown in Figure 10). The least effort path is defined as the physical

or metaphorical pathway among a set of alternatives that requires the least effort (potential energy) for a
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given object or entity to make forward motion. Given that theISD path guarantees a smooth gradation of

attribute values and is likely to be physically short, the gradient, with respect to either physical or attribute

values, is always shallow along the ISD path. Because an abrupt change in attribute values along a physical

path always implies a significant increase in potential energy (or effort), as can be seen in differential human

behaviors in adjacent administrative areas under different political regimes, the ISD path is related to the

least effort path in this sense. Thus, the proposed ISD measure might provide a new way of gauging the

potential energy discussed by Warntz (1961). This potential application of the proposed ISD measure is

worthy of investigation in further research.

In the present analysis, we employ the ISD to study spatial relationships with respect to a single variable.

However, the definition in equation (4) is a general definition for the relatedness of two points by reference

to a profile of variables. That is, it is also suitable for the analysis of multivariate spatial relationships. This

conceptualization represents a natural extension warranting further examination.

Another line of research with potential is an extension of the framework proposed here to 3-dimensional

(3-D) space. Such an extension would be very useful when it isnecessary to evaluate a spatial relationship

over a topographical profile in geographical research in general and in 3-D GIS research in particular. In

addition to its application to spatial points, the proposedISD method should be further extended to other

spatial data types, such as curves, surfaces, and polygons.

To make the notion of spatial relationship a complete concept, the approach suggested here also could be

extended to the temporal domain. Extending the proposed definition would allow us to construct a distance

measure of relationship in space and time. The framework we provide posits that two points are related

through a space-time transitional path that simultaneously accounts for the variation of attribute values.

This is perhaps both an important issue in space-time integration and a building block for the study of

spatio-temporal relationships.

The cartographic transformation method (Tobler 1979) sheds light on the evaluation of spatial

relationships. By taking attribute values as elevations ofobservations, geographical-attribute characteristics

can be viewed as an imaginary earth surface and relevant cartographic transformation techniques might

be employed to measure spatial relationships. Furthermore, future investigations need to make a thorough

comparison between the proposed method and other flexible spatial-weight-matrix-specification approaches,

such as the generalized-moments estimation approach (Belland Bockstael 2000).
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The methodological and practical importance of the proposed ISD measure in solving problems and

advancing theory in multiple knowledge domains suggests a number of promising research directions in

addition to those highlighted here: (1) Instead of using Euclidean distance, the ISD can be employed to

extend any distance-based aspatial data mining method to the spatial context; (2) Using the ISD measure

in place of a Euclidean-distance-based weight matrix givesa more reliable and informative weight matrix

for the analysis of many geographical problems involving the nearness of spatial entities in physical and

attribute space, such as in geographically weighted regression; (3) Because the ISD path is the intrinsic least

effort path between spatial data points, it can be used to extract intrinsic relations in data and explore the

progression of feature relatedness from one place to another; and, (4) Give the status of image data as a

specific type of spatial data, the ISD method can be applied toimage processing, such as in evaluating the

weights of intensity values under the well-known bilateralfilter method.

Appendix: Proof of Theorem 1

Theorem 1 The ISD function (dISD(x,y)) is a distance metric on the spatial data spaceΩ.

Proof: The ISD function satisfies the conditions of a distance metric:

(i) Positive definiteness: dISD(x,y) ≥ 0 for anyx,y∈ Ω, anddISD(x,y) = 0 if and only ifx= y.

Because

dε(x,y) =











ecda(x,y)−1+cdg(x,y) , if dg(x,y) < ε,

∞ , otherwise,

and

dISD(x,y) = min
(x0,··· ,xn)∈Γε(x,y)

n

∑
i=1

dε(xi ,xi−1),

it is evident thatdISD(x,y) ≥ 0 for anyx,y∈ Ω.

If dISD(x,y) = 0, then for eachxi along the shortest spatial path betweenx and y, dε(xi ,xi−1) = 0.

Therefore,da(xi ,xi−1) = dg(xi ,xi−1) = 0 holds. We then havexi = xi−1 for any i = 1,2, · · · ,n. Thus, it is

apparent thatx = x0 = x1 = · · · = xn−1 = xn = y. The positive definiteness property ofdISD(x,y) is then

verified.
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(ii) Symmetry: dISD(x,y) = dISD(y,x) for anyx,y∈ Ω.

Because(x0, · · · ,xn)∈ Γε(x,y) implies that(xn, · · · ,x0)∈ Γε(y,x), it is easy to obtain this property based

on the definition of the ISD.

(iii) Triangle inequality: dISD(x,z) ≤ dISD(x,y)+dISD(y,z) for anyx,y,z∈ Ω.

Let the shortest spatial paths betweenx andy andy andz be (x0, · · · ,xn) and(x̄0, · · · , x̄n̄), respectively.

Based on the definitions of the SSP and the ISD,x0 = x, xn = x̄0 = y, x̄n = z, and along the two paths, the

respective ISD valuesdISD(x,y) anddISD(y,z) can be calculated precisely.

Construct a new path asx0, · · · ,xn, x̄1, · · · , x̄n̄ connecting pointsx andz. The value of the global measure

along this path is:
n

∑
i=1

dε(xi ,xi−1)+
n̄

∑
i=1

dε(x̄i , x̄i−1) = dISD(x,y)+dISD(y,z).

Thus,

dISD(x,z) = min
(x0,··· ,xn)∈Γε(x,z)

n

∑
i=1

dε(xi ,xi−1)≤ dISD(x,y)+dISD(y,z).

Therefore, the triangle inequality property of the ISD measure is satisfied.

This completes the proof of the theorem.
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Notes

1In this paper, we mainly focus on single attribute cases, while throughout the paper, all our analysis can be easily

generalized to multiple attribute cases by settingxa ∈ Rd, whered is the number of variables involved in a problem.

2ε-NN defines the neighbors of a vertex as those with distances from the vertex smaller than the thresholdε (Roweis

and Saul 2000; Tenenbaum et al. 2000).
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(a) (b) (c)

Figure 1. Sandstorm maps downloaded from “http://www.cpus.gov.cn/ZLG/shachenbao/img”. In
each sub-figure, the curve depicts the path between points possessing the properties A(i), A(ii) and
A(iii).

(a) (b)

Figure 2. Two sandstorm maps downloaded from “http://www.cpus.gov.cn/ZLG/shachenbao/img”.
(a) Neighboring locations with highly similar attribute values; (b) Neighboring locations with
significantly different attribute values.

Figure 3. An example of the ISD concept defined by equation (4). Red lines indicateε-spatial-paths
between A and B, and the yellow line corresponds to the ISD path between the two points.
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Figure 4. (a) The distribution manifold (function) of an attribute. (b) Distribution of 1,000
synthetic points. The circles are locations of the points inthe coordinated space. Each point
is represented by a circle with a radius drawn in proportion to the value of its attribute. (c)
Distribution of local Moran’s I (LISA) with radii drawn in proportion to LISA values. The
background gray values are obtained by applying the kernel interpolation method to LISA values.
Larger LISA values are indicated by a lighter gray value. (d)Global Moran’s I, the gray line
across the bar, for the entire data set. (e) The semivariogram of the data with respect to different
neighborhood distances.
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Figure 5. (a): The transitional paths (denoted as 1, 2, 3, and4) between four pairs of points of the
synthetic data set obtained by the ISD estimation algorithm, corresponding to the four situations
described in the Introduction, respectively. The circles are locations of data points, with each
point being represented by a circle with a radius drawn in proportion to its attribute value. (b)(c):
The ISD outputs of two randomly selected spatial points (thestars) in the synthetic data set. The
background gray scale is obtained by applying the kernel interpolation method to the ISD values
of these points. The brighter the spatial location, the morerelated the corresponding point is to the
selected point.
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Figure 6. (a) The spatial distribution of mean daily cloud coverage observations from 641 stations
with the circle radius of each point scaled to its attribute value. (b) The spatial distribution of local
Moran’s I (LISA) for each of the 641 stations. The circles represent the locations of the points and
the circle radius of each point is scaled to its LISA value. The background gray scale is obtained
by applying the kernel interpolation method to the LISA values of these points. (c) The gray line
across the bar is the global Moran’s I measure of the entire data set. (d) The semivariogram plot
for the data.
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Figure 7. (a) The spatial distribution of mean daily humidity observations from 641 stations with
the circle radius of each point scaled to its attribute value. (b) The spatial distribution of local
Moran’s I (LISA) for each of the 641 stations. The circles represent the locations of the points, and
the circle radius of each point is scaled to its LISA value. The background gray scale is obtained
by applying the kernel interpolation method to the LISA values of these points. (c) The gray line
across the bar is the global Moran’s I measure of the entire data set. (d) The semivariogram plot
for the data.

Figure 8. (a) Spatial relatedness as measured by the ISD between the Mianyang station (denoted
by the star) and 640 other stations with respect to daily cloud coverage. The background gray scale
is obtained by applying the kernel interpolation method to the ISD values of these stations. (b)(c)
The demarcated area of (a) on a larger scale. In (c), the circle radius of each station is scaled to its
elevation.
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Figure 9. (a) Spatial relatedness as measured by the ISD between the Henan station (denoted
by the star) and 640 other stations with respect to daily humidity. The background gray scale is
obtained by applying the kernel interpolation method to theISD values of these stations. (b)(c)
The demarcated area of (a) on a larger scale. In (c), the circle radius of each station is scaled to its
elevation.

Figure 10. (a) The ISD transitional path, with respect to cloud coverage, between the Huili and
Yuanping stations. The stations on the path include Huili, Yanyuan, Muli, Daocheng, Batang,
Xinlong, Daofu, Ganzi, Dege, Shiqu, Maduo, Xinghai, Dulan,Qiabuqia, Gangcha, Qilian, Gansu,
Yongchang, Minqin, Wuwei, Jingdai, Zhongning, Yinchuan, Etuokeqi, Hengshan, Yulin, Hequ,
Wusai and Yuanping. The background gray scale indicates elevation: the brighter the location, the
lower the elevation. (b) The ISD transitional path between the Huaiyin and Shipu stations (denoted
by the squares) with respect to humidity. The stations on thepath include Huanyin, Xuyi, Gaoyou,
Dongtai, Lvsi, Chengsi, Dinghai and Shipu.
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Figure 11. (a) The spatial distribution of per capita GDP of 287 Chinese cities, with the circle
radius of each point scaled to its GDP value. (b) The spatial distribution of the local Moran’s I
(LISA) for each of the 287 cities. The circles represent the locations of the cities, and the circle
radius of each point is scaled to its LISA value. The background gray scale is obtained by applying
the kernel interpolation method to the LISA values of these cities. (c) The gray line across the bar
indicates the global Moran’s I of the entire data set. (d) Thesemivariogram plot for the data.
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Figure 12. (a) The transitional path, with respect to per capita GDP, between Baoding and Jinzhou
(denoted by the squares) obtained by applying the ISD estimation algorithm. The cities along
the path include Baoshan, Linchuang, Simao, Kunming, Qujing, Liupanshui, Anshui, Zunyi,
Chongqing, Guangan, Nanchong, Bazhong, Guangyuan, Longnan, Tianshui, Pingliang, Qingyang,
Tongchuan, Xianyang, Hanzhong, Ankang, Shiyan, Nanyang, Pingdingshan, Xuchang, Kaifeng,
Xinxiang, Hebi, Anyang, Puyang, Heze, Shangqiu, Huaibei, Xuzhou Zaozhuang, Jining, Taian,
Liaocheng, Dezhou, Cangzhou, Langfang, Tangshan, Qinhuangdao, Huludao and Jinzhou. The
gray scale in the background corresponds to the elevation. (b) Spatial relationships measured by
ISD between Xiamen and all other cities. The circles represent the locations of the cities, with the
radius of each point being scaled to its GDP value. The gray scale in the background is obtained
by applying the kernel interpolation method to the ISD values of these cities.
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