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We propose the concept of intrinsic spatial distance (19D)He study of a spatial relationship between
any two points in space. The ISD is a distance measure thes tako account the separation of two points
with respect to their physical and attribute closeness. Westruct an algorithm to implement this concept
as an ISD measurement. Based on the ISD concept, two poigtaae are related through a transitional
path linking one to the other. As an ISD measurement decse#se spatial relationship between two points
becomes increasingly stronger. We argue theoretically gamdonstrate empirically that the ISD concept is
not predisposed in favor of the first law of geography, bugctily considers variance of nearness in physical
distance and attribute distance to derive the extent to whio points are spatially associated. Specifically,
in single attribute cases, the information uncovered by 8D measurement is more elaborate than that
revealed by Moran’s I, local Moran’s |, and a semivariogragiving a meticulous account of relatedness
in both local and global contexts. The ISD concept is alsficeantly general to be used to study multiple

attributes of relationships.
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| ntroduction

“Everything is related to everything else, but near thingsraore related than distant things.” This is the
so-called first law of geography invoked by Tobler in 1970isEtatement essentially posits that things near
each other in space are more similar in profile for a set dbates than are things distant from each other in
space. That is, the degree of relatedness possesses aadéay structure whereby near phenomena are
more closely related than distant phenomena. This conalgtion has aroused much interest and debate
over the years (see, for example, Sui 2004; Barnes 2004eM\2i004; Phillips 2004; Smith 2004; Goodchild
2004; Tobler 2004 in a special issue of the Annals of the AA@)ether or not it can be regarded as a law,
Tobler’s invocation did bring to the fore the essential pisera that have long served as a basis for the study
of spatial relationships. In brief, spatial relationshgisould be evaluated in terms of their similarity in
attributes and proximity in space (Gatrell 1983; ElhorddP0

To quantitatively describe the covariation of propertiépmximal observations/locations /points (to
avoid confusion, the terms observation, location and paiet used interchangeably in our discussion),
measures of relationships relative to distance have baenmufated in spatial statistics. In this paper, we
mainly focus on spatial relationship with respect to a @rajtribute variable. All our analysis can be easily
generalized to spatial relatedness with respect to a paifégtributes.

In single attribute cases, a spatial relationship amongipral observations is commonly characterized
as spatial autocorrelation, which is the correlation amaalges of a single variable strictly attributable to
the proximity of such values in a two-dimensional (2-D) geqdic space, introducing a deviation from the
independent observations assumption of classical &at{griffith 2003). The functions most often used to
describe spatial autocorrelation are related to variacmegriance, and correlation. Area-based techniques
are aimed at constructing quantitative criteria for meaguglobal or local spatial autocorrelation. Moran’s
| and Geary’s ¢ are widely adopted spatial correlation stiai. Moran’s | takes the form of the classical
Pearson product moment correlation coefficient with vahpgsroximately ranging from-1 to +1 (Moran
1950). Asymptotically, the value O indicates randomness qpatial autocorrelation). A positive value
indicates a positive spatial autocorrelation among praximcations, whereas a negative value indicates a
negative spatial autocorrelation. Geary’s c is alwaystpesivith a semi-variance type of numerator (Geary

1954). Its values tend to range from 0+@, where positive spatial autocorrelation is indicated walae



Leung and et al. Geographical Analysis

less than 1 and negative spatial autocorrelation is inglichty a value greater than 1. Both the classic
Moran’s | and Geary’s c require a binary weight/link matixéflect distances/linkages between neighbors,
and give only a global measure of spatial autocorrelatiobesided in a dataset.

Because of the presence of spatial heterogeneity, the elagfrespatial autocorrelation may vary
significantly over space. Because Moran's | and Geary’s csoreaonly the global pattern of spatial
association, they do not identify local areas exhibitingtip heterogeneities with significant local
departures from randomness. Local indicators of spatisb@ation (LISA statistics) ameliorate this
disadvantage of such global measures to a certain exterse(ilAnl995). A LISA decomposes a global
indicator, such as Moran’s |, into the contributions of nglividual locations. In essence, LISA statistics
measure the degree of spatial autocorrelation within tighberhood of each location; i.e., they describe the
spatial autocorrelation of certain local areas. Local M@raand local Geary’s ¢ (Anselin 1995), as well as
Ord and Getis G statistics (Getis and Ord 1992; Ord and G885,12001) are widely used local measures
of spatial autocorrelation. Each can be expressed as tioeofatjuadratic forms in observations (Leung
et al. 2003). These statistics have been employed to stedsptitial autocorrelation of various geographical
phenomena (see for example, Griffith 2003, 2009; Lee andiRog007; Yamada et al. 2009). Again, each
of these measures requires the specification of a weidghtfiatrix stipulating the contiguity of locations
over space, with the distance effect being the same in atlifspe directions (Aldstadt and Getis 2006;
Cressie and Chan 1989).

Although the preceding area-based global or local spatilgures incorporate distance in geographic
space into measures of spatial autocorrelation, they fatllishort in describing the degree of spatial
relatedness between all pairs of locations. The weightixiattoo crude a representation of the intricate
local variations between all pairs of locations in the pneseof sizeable spatial heterogeneity. Furthermore,
its specification is predisposed to obey Tobler’s first laat thhear things are more related than distant
things.”

In addition to area-based techniques, distance-basedodwetiso have been formulated to measure
spatial autocorrelation. The semivariogram, commonlemrefl to as the variogram (a component of
kriging in geostatistics), is perhaps the method most widekd to describe spatial autocorrelation (Cressie
1993; Wackernagel 2003). The variogram is a plot of semavae structured as a function of distance

between points. Instead of using covariance or correlaboth of which are measures of the similarity of
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a variable in a geographic space, semivariance depictsgtieed differences of a variable as a function
of the distances between all known points, and measuresissandarity of subjects in terms of that
variable (Cressie 1993). Recently, the semivariogram le& urther extended to non-stationary and
directional biases (Goovaerts 1997; Deutsch and Jourrg8)1However, similar to area-based methods,
the semivariogram does not capture detailed inter-poinatians for all pairs of observations essential to
the description of global and local spatial autocorretatand does not locate the paths along which spatial
data are intrinsically related.

The purpose of this paper is to present a newly constructeasune called intrinsic spatial distance
(ISD) to quantitatively describe spatial association teetwall pairs of locations over space. The main idea
underlying this concept is to integrate proximities in spand attribute values into a unified measure to
depict the intrinsic relatedness of observations. Thigwabinvolves finding a chain between two locations
by linking a long series of interconnected relatednessrohiens. Along such a chain, spatial relatedness
within the context of a particular attribute variable cargbadually and optimally differentiated over space.
As such, the spatial relationship between a pair of locaticem be calculated as the sum of the variable
variances in that chain.

The measure we propose here has four main advantages ostamgerneasures. First, the technique can
measure in detail spatial relatedness between all pairbsdroations, and can be utilized to study spatial
relationships in the presence of non-stationarity andoamipy. The method is particularly important to
the study of interaction proximity, where the relative groity of any location to each designated location
needs to be evaluated (Brown and Horton 1970; Gatrell 198&cond, the spatial relationship measure
we construct forms a metric on the observation space, argldhn be treated as a distance measure in
the conventional sense. Third, the interconnected chahsden observation pairs meticulously reflect
the location-to-location interrelationships essentmbkpatial analysis in global and local contexts. The
transitional path so constructed is tractable, and cancteflemplexity/heterogeneity in the continuous
surface between any two locations. It also is in line with ¢bavention of measuring distance by a path
(see, for example, Losch 1954; Warntz 1966; Leung 1984) e\, the corresponding matrix of distance
represents a certain spatial relation. Fourth, the prapepatial relationship measure not only provides
a quantitative realization of “everything is related to mwieing else” in Tobler’s first law by giving the

value of the ISD, but also can measure relatedness whenvakises are: (1) near in both geographical
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and attribute distances; (2) far in both geographical amibate distances; (3) near in geographical distance
but far in attribute distance; and, (4) far in geographidatasthce but near in attribute distance. These four
situations simply represent a crude classification of eeia¢ss for the convenience of discussion. The ISD
concept and its related algorithm cover the entire rangeotif Histance and attribute values. In brief, our

proposed concept of ISD faithfully reflects relatednessugh proximity in distance and attribute values.

Measuring a spatial relationship by the concept of intrinsic

gpatial distance

In this section, we propose the concept of intrinsic spdlistance (ISD) and the ISD-estimation algorithm

for the characterization and measurement of the spatetioakhip between two locations.

Three basic assumptions underlying a spatial relationship

The building block of a spatial relationship is the assaormbf any two locations in geographic space.

Two points are related through a path that provides a smaoaitsition of relatedness among all relevant
in-between neighboring points. A point is related to a distgoint through this smooth propagation of

relatedness. That is, attribute values should vary gradaling a path connecting two designated points
in a geographical space. The fundamental problem then bestime search for an underlying path along
which two points are related, with its inter-point spatialationship being determined by integrating local

variations in the physical and attribute spaces. Conselyyutre basic question asks how to find such a path
that relates two points by both geography and attributes.

The path along which spatial objects are intrinsically tetlashould possess three basic properties:
A(i) Attribute values should vary along the path as smoo#s#ypossible;
A(ii) The overall attribute-value variation of the path sitabbe as small as possible; and,
A(iii) The physical length of the path should be as short assjie.

These three properties are both intuitive and natural. étgpA(i) captures the gradual local variation

of attribute values along a path, while properties A(ii) a(@di) mean that a spatial relationship between
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objects should reflect the most direct physical and ateibefationships between them. These two properties
also ensure the uniqueness of the spatial association patiedn spatial objects obtained by our proposed
method.

As an illustration, Figure 1 depicts spatial associatiothpdetween two locations that satisfy the
preceding three properties. Such paths capture intetidocapatial relatedness in an intuitive and natural
way. Each path provides a smooth gradation of attributeega{gandstorm intensity in this case) with the
shortest physical length.

Our strategy to find an intrinsic path for the measurement spatial relationship is to construct a
guantitative measure of the path in the geographical spat@ppropriately assesses the extent to which the
path deviates from the three basic spatial relationshipgati@s. A path between any two spatial points with
the smallest deviation from these properties can be emgltyyeneasure an inter-point spatial relationship.
The starting point of this task is to construct a measurehi@direct connection between neighboring spatial
points. This becomes the local measure of a spatial rekttipnOnce the local measure is obtained, we can
establish a global measure that integrates all relevaat lneasures. Then the intrinsic distance between
two locations can be obtained along the path that gives tlalesh global measure. In what follows, we

give a detailed description of these related tasks.

Thelocal measure of a spatial relationship

We construct the local measure of a spatial relationshipdas the following observation. If two points

are a very short physical distance apart, and their at&iliatues are significantly different (points A and
B in Figure 2(b)), then the indicated path connecting theriossly violates property A(i). This violation

implies that the spatial relationship of the two points dtidee weak despite their nearness in physical
distance. In other words, the local measure in terms otbatti distance should give a remarkably high
value. In contrast, if the two points have very similar atite values (points A and B in Figure 2(a)), then
the direct path connecting them reflects all three propedfea spatial relationship. This means that the
two points are strongly associated, and the local measuerims of attribute distance should give a very
low value. Thus, the local measure to be constructed shewieraly penalize large differences in attribute

values along a path.
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Before formulating the local measure, we first undertakeren#b analysis of the spatial relationship
between two georeferenced locations. Delbe the spatial data space. For any Q, a spatial relationship
is composed of two features: the geographical feature ¢ouates in spaced € R? and the attribute feature
x® € R, wherex = (x9,x2)L. For any pair of data pointsy € Q, our aim is to measure the spatial relationship
between them.

First, we construct the local measure of a spatial relatipna terms of distance. For any data pair
X,y € Q, we denote their physical distanced¥x,y) = ||x3 —y?||, and their attribute distance d3(x,y) =
Ix® —¥y2|. In this context, physical distance also can be defined obahis of travel time, cost of separation,
social relations, and cognitive distance between the apaltjects, as investigated by Gatrell (1983). The
Minkowski metric (Bertazzon and Olson 2009)Lgy-norms (Josselin and Ladiray 2002) also can be adopted
to measure this distance.

Integrating these two distances, we definegfspatial-distancebetweernx andy as

Fixy) = R0V —14edd(xy) ,if dI(xy) <€, n
00 , otherwise,
wherec is a positive constant for penalizing significant variasiam attribute values betweerandy, ande
specifies the neighborhood.

The e-spatial-distancel®(x,y) constructs a local measure of a spatial relationship betweghboring
points along a path by simultaneously accounting for thihirsical and attribute nearness. This measure
penalizes sudden changes in attribute values. Moreovalyitadheres to the preceding three properties of
a rational measure of a local spatial relationship.

Specifically, for situations in which the attribute distar®(x,y) between the-neighboringx andy is
short,d?(x,y) can be approximated by(d?(x,y) +d9(x,y)) because®®*¥) — 1~ cd?(x,y). In this case,

a local measure?(x,y) corresponds to the simple summation of the geographicala#tribute distances
betweernx andy with a scale parameter and yields a relatively small value.

For situations in which the attribute distand®&x,y) is large whiled9(x,y) is small,d?(x,y) imposes
an exponential penalty upon abrupt changes in attributeegabetweernx andy. Due to the well-known
property of the exponential functiceei® ), a larger difference in attribute valudd(x,y) leads to a much

greatere-spatial-distancal®(x,y); i.e., the penalty is more severe. In this case, the locakorea®(x,y)
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imposes a substantial penalty on attribute variation betwendy, and thus gives a much larger value.
According to the preceding analysidé(x,y) is a reasonable measure of a local spatial relationship
along the connection path between poixtendy. The smaller the value af(x,y), the stronger the spatial
relatedness between two locally neighboring points, aoe versa.
Based on the local measure given by equation (1), we canrochst measure of a global spatial

relationship between any two locations along a path in space

The global measure of a spatial relationship

A natural way of evaluating the global measure along a pasim@oth curve) connecting two locations is to
partition the curve into local connections between neiginlgopoints residing on the path before integrating
all local measures between such neighboring points to fospagal relationship measure of the entire path.
Because each local measure reflects the extent of deviationlfasic spatial relationship properties along
the corresponding local path, as explained in the previeasa, the global measure so obtained naturally
represents the extent to which the entire path deviates therbasic spatial relationship properties.

To facilitate construction of a global measure of a spagkdtionship, we first define a specific path. A
sequencéXg,--- ,Xn) is called are-spatial-pathbetweerx andy in Qif o =X, X, =y, % € Q(i=1,--- ,n—
1) andd9(x,x_1) < &(i = 1,---,n) are satisfied. Ale-spatial-paths betweenandy in Q constitute the
e-spatial-path-sef ¢ (X, y).

A global spatial relationship measure for a path - - - ,X,) € [¢(X,y) can be constructed as
n
(%, Xi—1)-
2

With respect to the two cases referred to in the discussidhexd-spatial-distance, we justify this global
measure as follows. When variations in attribute valuesgtbee-spatial-path(Xo, - - - ,X,) are gradual, we

have
n

_ZlC(da(m,m_l) +d9(%,%-1)). (2

n
d® (X, Xi—1) =
2,

n
In this case, Equation (2) shows thiitd®(x;,x_1) is the sum (with a scale transformation) of all variations
i=1

in both the geographical and attribute space alongethgatial-path. If the global measure of a path is a
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large value, then either the degree of attribute variasdarge or the path is physically long. This means the
path deviates from property A(ii) or A(iii), and the globalatial relationship should be weak. In contrast, if
the global measure is a small value, then both the degreéribiud¢ variation and the physical length of the
path are small. That is, the path satisfies properties A(i)) And A(iii), and the global spatial relationship
should be strong.

For some spatial point§x; }ic; along thee-spatial-path(xo,--- ,%,) with attribute values that differ
greatly in theire neighborhoods, if we denote the variation in attribute ealatg (i € 1) asf; = d?(x;,%-1),

then we have
n

n n
d¥(xi,xi—1) ~ S cd9(xi,Xi—1) +
2, 2,

cd?(%,%-1) + Z(e‘ﬂi -1)). 3)
i= i=i(1) IS

Equation (3) shows thaﬁ dé(x,x_1) corresponds to the sum of the curve length of the spatial, pla¢h
variations of the attributlzlvalues along the path, and tleeifp exponential penalty for each abrupt change
in attribute values along the path. Specifically, as the rtada of this change increases, the severity of
the penalty increases. This case seriously violates théakpalationship property A(i). Because there
is an exponential penalty t(—:‘n%(e“Ai —1)) in the global measure, it always has a large value. Gradual
attribute variation (i.e., E cd?(x;,x—1)) and curve length (i.e._g cd9(x;,%_1)) still play a smaller but
non-negligible role in {;ilélzll)obal measure. That is, thisamee aI\I:slo reflects the extent to which the path
deviates from properties A(ii) and A(iii). Therefore, theepented global measure still faithfully reflects the
extent to which a path deviates from the three spatial malatiip properties.

Based on the aforementioned properties_%ﬁs(xi,xi,l), Equation (3) gives a reasonable spatial
relationship measure of the-spatial-path (xo,-l-z-l,xn) € lg(x,y) betweenx andy. Given that the

e-spatial-path is not unique, our final task is to choose a fiathreflects the maximum spatial relatedness

betweernx andy. We propose the concept of intrinsic spatial distance téeaelthis goal.

Intrinsic spatial distance

Based on the preceding formulation of a global spatialim@iahip measure of a path in geographical space,
the path along which a pair of spatial points is intrinsigaksociated naturally should be the one with

the smallest global measure; i.e., the smallest deviatimm the three basic spatial relationship properties.
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Mathematically, the spatial relationship of any two poirtg € Q can be quantitatively measured by the

following concept of “intrinsic spatial distance” (ISD):

n
d'SP(x,y) = min d&(xi,%i_1). 4
() (Xo7~~~,xn)ere(x,y)i; ( ) )

We call the path along whiat'SP(x, y) is attained the shortest spatial path (SSP) betweerly. The terms
involved in equation (4) are graphically depicted in Fig8réor ease of interpretation. Here, the attribute
value of a point in the figure is indicated by its grey lev€k, o, '3 and 4 are foure-spatial-paths in

n
Fe(A,B). 4 represents the SSP along which the minimal valueyaf®(x;,x—1) is attained. The value
i=1

of _§ld8(>q,>q_1) corresponds to the spatial relationship intrinsic to theggaphical and attribute distances
belt;veen A and B; i.e.d'SP(A B). Correspondingly, the SSP betwerrandy intrinsically reveals the
underlying path along which the two data points are spgti@lated through a series of interconnected
relationships.

The smaller the ISD, the stronger the relationship betwaenpoints, and vice versa. Interestingly,
by virtue of the ISD, Tobler’s well-known law can be more psety restated as: “Everything is related to
everything else by the inter-point ISD, but things with a BerdSD value are more strongly related than
things with a larger ISD value.” This, however, should notiieunderstood to mean “near things are more
related to each other than distant things,” because thiegsaach other in geographical space might differ
significantly in attribute space, resulting in large valdied5°(x,y). The case depicted in Figure 2(b) is
a typical example of this. Conceptually, we call the ISD astaihce.” However, does the ISD satisfy the
classical concept of distance in metric space? The answesitve, with the corresponding theorem being

as follows:
Theorem 1 The ISD function FP(x,y) is a distance metric on the spatial data spage

(The proof is given in the Appendix.)
To make the concept operational, we need a method to cadhiatiSD given a limited number of data

points. The ISD calibration algorithm is formulated in thexhsection.
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Thealgorithm for calculating the | SD

Given a spatial data s&t = {x = (x’,X®)}!_;, our aim is to obtain the ISEI'SP(x,x;) (L <i,j <) as
defined by equation (4). By specifying the spatial data sgaas the data se¢, the ISD between arny and

Xj (1 <1, j <) can be calculated directly with equation (4). Graph th¢oo}s may be employed to achieve
this task. In particular, by connecting teeNN neighbor$ of all verticesX, a graph superimposed on the
spatial data seX can be constructed. Thus, each path on this graph correspormohe-spatial-path of the
data. By weighing each-NN edge between; andx; as thee-spatial-distanca®® X)) — 1+ cd9(x;, x;)
previously defined, the length of aaspatial-path corresponds to the global spatial relatignseasure
for the path. By virtue of some standard shortest-path dalgos employed in graph theory, such as the
well-known ones by Dijkstra (Dijkstra 1959) and Floyd (Rb$962; Silva and Tenenbaum 2003), the ISD

can be computed efficiently.
ThelSD algorithm

Step | (Initialization): Preset the constant> 0; the neighborhood size(a positive real number).

Step |1 (Data normalization) Normalize the geographical and attribute vector¥jimespectively as:

X =x'/(max|ixfil). = ¢/ (max|il), i =1,2,--- 1.
Step 111 (Neighborhood graph construction) Constructe-NN graphG = (V, E) superimposed on the
spatial data seX, where the vertex s&t corresponds to all data X and the edge sé contains the-NN
edges of all vertices. The weight for each edgg ibetweenx; andx; is set a®™® %) — 1+ cd9(x;,x;).
Step 1V (Shortest path calculation) Calculate the SSP; ; between any data pak andx; in the
graphG, and record the length of the calculated patldgs
Step V (Exportation). Output the ISD matridD = {d; j }; 1, whered, j is the estimated ISD between

andx; and the shortest spatial path set {I'; j }1<i j<-

In the algorithm, data normalization in Step Il puts the gapbical and attribute feature vectors on a
similar scale so the same paramatean be employed to measure both geographical and attribaterés.
Step Il approximates the-spatial-distancei®(x;,X;), as defined by equation (1), for &iNN data pairs.
Step IV calculates the ISD valukSP(x;,x;) as defined by equation (4).

The output of the ISD algorithm includes the estimated ISOrixd and the SSP sek between

all spatial data pairs itX. The results so obtained are of specific significance in tladysis of spatial
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relationships. First, the ISD can be employed to descriljgatiad relationship between any pair of spatial
data in a much more elaborate way than currently availal@gadpelationship measures do, and, second, the
path[ j tends to reveal intrinsically the transition of relatednbstween any two data points, and explicitly
depicts how they are associated in both geographical aridusét space. We substantiate our theoretical

arguments in the next section with simulation experimesilis and real-life applications.

Simulation experiment resultsand real-life applications

To verify the effectiveness of the ISD method, and to denratesthe ability of the ISD measure to evaluate
spatial relationships (in the single variable cases), wpleyrfour sets of spatial data: a synthetic data set,
two climatic data sets (mean daily cloud coverage, and maiy ltimidity), and a gross domestic product
(GDP) data set. We utilize three classical measures ofaitocorrelation for comparison: Moran’s |
(Moran 1950), a widely adopted global measure of spatialautelation; local Moran’s | (Anselin 1995),

a widely used local measure of spatial autocorrelation;thagemivariogram (Cressie 1993; Wackernagel
2003), a common distance-based measure of spatial awttat@n. All programs are implemented in

Matlab 7.0.

Simulation results based on synthetic spatial data

The synthetic spatial data set consists @D spatial points(x¥,x?)119%° wherex? andx¢ denote the
location and attribute of thieth point, respectively. Specifically, the two-dimensib(D) Iocationx,g =
(x1,X%2) of each point is randomly generated within the rectangla aré.4,1.4] x [—1.4,1.4], and the value
of its attribute is obtained witk? = e(~20¢%-1% as portrayed by Figure 4(b). The distribution manifold
of the data set with respect to location and attribute valudgpicted by Figure 4(a).

The spatial autocorrelation information obtained by lokdran’s I, Moran’s |, and semivariogram
measures are portrayed by Figures 4(d), (c) and (e), reégglgctThe ISD outputs corresponding to two
randomly selected data points are depicted in Figures 5(t)(e), respectively (the background spatial
distribution is obtained by the kernel interpolation mettibladaraya 1964) for all experiments). For each
data point, we can obtain the corresponding ISD exhibitiaglégree of intrinsic spatial relatedness to all

other points of its parent data set. The transitional pa¢ihsden four pairs of randomly selected data points
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also are shown in Figure 5(a). The transitional path matigsly reveals how the two points are intrinsically
related in both geographical and attribute space.

Figure 4 shows that Moran’s | only gives a unique positivaugdbr the spatial autocorrelation of the
entire data set, indicating a strong degree of spatiale®hess among neighbors on a global scale. This
measure is too coarse to reflect the fine details of spatiatioakhips within a data set. Local Moran’s
I, in contrast, better reveals the spatial autocorrelaioound each point on a local scale. Neighboring
points located on the ridge and at the bottom of the attrilmdeifold tend to be positively autocorrelated,
whereas those on the inclines of the manifold tend to be ivefjatautocorrelated. Although this local
measure is clearly a more detailed gauge of a spatial refdtip, it only reveals relatedness isotropically
in the neighborhood within a specific radius around eachtpdaiinis spatial relationship yardstick again
is predisposed to the first law, and does not measure spal#bdness between any two points of the
entire data set elaborately and globally, particularhysththat defy the maxim “Near things are more related
than distant things.” To a certain extent, the semivariogracasure is also a global spatial autocorrelation
measure. It measures spatial autocorrelation as a funofitme distances between all known points (see
Figure 4(e)). The limitation of the semivariogram measgréhat its computation generally hinges on the
assumptions of stationarity (mean and variance are notdaifumof location) and isotropy (no directional
trends in the data) among spatial observations. Furthesnibidoes not describe in detail the spatial
relationship between any two locations.

The ISD measure capitalizes on two main aspects. FirstSthaerieasure can be quantitatively evaluated
between each point and any other point. Thus the ISD refldotsagspatial relationship information
between all data points in an extremely elaborate way, aadettaluation it provides not only is not
predisposed to the first law, but also does not require aryasplata assumptions such as stationarity and
isotropy. This advantage of the ISD measure can easily benadxs in Figures 5(b) and (c). In particular, a
point located on the ridge of the underlying distributionnifiald of the attribute (Figure 5(b)) is more related
to points along the ridge according to the ISD measure, Basgsrelated to points at the bottom of the ridge
in terms of the ISD measure, although it is nearer in geogeeggace to many of the latter. Furthermore, the
point located at the bottom of the inner part surrounded byridige of the manifold (Figure 5(c)) is more
related to points located at the bottom part according td$iie measure, while it is less related to those

outside this part. The results agree completely with owitine understanding of a spatial relationship. The
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proposed ISD measure quantitatively addresses the givaisiatement of the first law that “Everything is
related to everything else,” and precisely evaluates thenexo which two points are related with varying
combinations of nearness in space and attributes.

The second advantage of the ISD measure is that for any pabiofs, it can be used to construct a
transitional path along which the points are intrinsicajated in space. Such a path reveals the intrinsic
spatial relationship between the two points, and metichoueflects how they are spatially related to
each other. Figure 5(a) depicts such transitional patheegponding to the four situations described
in the Introduction, respectively. Specifically, the teplof attribute distancel?, physical distancel9,
and ISDd'SP for the four pairs of points (connecting the curves 1 to 4peesively) in Figures 5(a)
are(0.0007,0.0397,0.8079 (near in both geographical and attribute distancg®24380.0297,17.1990
(near in geographical distance but far in attribute digtan®.01260.6918 36.6081) (far in geographical
distance and near in attribute distance), Em@01Q 0.443252.2622) (far in both geographical and attribute
distances), respectively. Although both point pairs cating the curves 1 and 2 are near in geographic
space, the latter pair has a much larger ISD value becaudee dfignificant difference in their attribute
values. Despite the spatial distance between the pointsecting the curve 3 being longer than that
connecting the curve 4, the ISD for the former pair is smalles to its smoother attribute variation along
the corresponding ISD path, as can be observed in the figleepdints lying on the ridge of the manifold
(residing on the curve 3) are spatially related along the f&h on the ridge, but are not related along
the shortest connection in space. These results provided lgeel of agreement between reality and our

intuition, and thus verify the validity supporting the ceptual arguments of the ISD evaluation method.

Climate data applications

To further demonstrate the appropriateness of the ISaatitin algorithm, we also apply it to study spatial
relationships in terms of daily cloud coverage and daily ity data recorded at 641 stations in China
from 1990 to 1999. The two attribute data sets are derivenh filee data files of the Key Laboratory
of Regional Climate-Environment Research for Temperat&t Baia, Institute of Atmospheric Physics,
Chinese Academy of Sciences. Each station is identifiedsigtitude and longitude as depicted in Figures

6(a) and 7(a), respectively, and each attribute is meadarastms of its mean value. As a comparison,
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Moran’s I, local Moran’s |, and the semivariogram also arewated for both data sets to measure spatial
autocorrelation.

Figures 6(b) and 7(b) show the distributions of local Mosahwith respect to cloud coverage and
humidity, respectively. The gray lines across the bars guigs 6(c) and 7(c) indicate the global Moran’s |
of the two respective data sets, indicating strong globatialautocorrelation of the two phenomena. Local
Moran’s |, however, gives further information concerningal variations of cloud coverage and humidity.
Daily cloud coverage tends to be more autocorrelated in ¢ththeast and southeast regions than in other
areas of China, and daily humidity tends to be more autoleded in the northwest and southeast parts
of China than in other places. Figures 6(d) and 7(d) dep&tstimivariogram curves, showing the global
tendency of inter-point spatial relatedness for diffetistances.

By applying the ISD measure, we can obtain more completerrimddon concerning a spatial
relationship between any two locations. By way of illustiat we show the spatial relationship of a chosen
point and all other points obtained by the ISD measure in baes. The Mianyang station located west
of the Sichuan Basin is chosen as the reference stationhen@&D results are shown in Figures 8(a), (b)
and (c). These figures show that Mianyang is strongly relatguaces within the same basin, despite some
being far away, but is weakly related to those to its west, (iftee Tibetan Plateau), even though some are
very near geographically. This result is as expected, lscagions in the Sichuan Basin have a subtropical
climate, and hence tend to have greater cloud cover, whéneas on the Tibetan Plateau have a high
altitude climate, and hence lack cloud cover. These intiegeselationships are fully reflected by the ISD
results, but are not revealed by the other spatial autdatioe methods. With respect to daily humidity,
Figure 9(a) depicts spatial associations between the Hstadion in Qinghai province in the northeastern
part of the Tibetan Plateau and other stations. Figure @)@ indicate that this station has stronger spatial
relationships with places on the plateau, and weaker $paliionships with places at lower elevations to
its east. This outcome is due to the different climatic ragiwithin which the stations are located. Places
at higher elevations around the Henan station are in theragidn of northern China, whereas those at
lower elevations east of the station are in the monsoon megfieast China. These two regions have distinct
humidity conditions, meaning places within the same redard to be more closely related. The ISD
outputs in both experiments reveal a high degree of spattatbgeneity in the data sets and their embedded

spatial autocorrelation.
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Our ISD-evaluation algorithm also was applied to both data & obtain inter-station transitional paths
with respect to daily cloud coverage and humidity. In termhg€loud coverage, two stations (Huili and
Yuanping) are randomly selected from the entire data sebtairo the transitional path connecting them,
as shown in Figure 10(a). The path passes though the tworstadi comparatively high elevations, while
it just bypasses those at relatively low elevations. Thic@me agrees with the tendency for stations at
high elevations to be more closely related with each otheatge of their similarity in cloud coverage
caused by topographical conditions. Thus, the transitipath reveals how the two stations are intrinsically
related in attribute and geographical space. We also Tgethi transitional path between two arbitrarily
chosen stations (Huaiyin and Shipu) in terms of humidity iguFe 10(b). This figure shows that the path
connects the two stations along the East China seashoriufoesly circumventing the inland stations.
This outcome matches the general pattern of humidity albegseashore being higher than that inland.
These results further demonstrate the discriminating paf¢he ISD evaluation method in the study of

complex spatial relationship.

Application to the study of spatial relationships for gross domestic product

The data set for this case study is drawn from the 2009 Statisfearbook of Chinese cities, and contains
figures for the per capita gross domestic product (GDP) of@8nese cities. Each city is identified by its
latitude and longitude (Figure 11(a)). The ISD measure,aarl, local Moran’s I, and the semivariogram
are employed to measure spatial autocorrelation/rekstiips in terms of GDP.

Figure 11 depicts results obtained by applying the threéadpalationship measures currently in use.
Moran’s | detects positive global spatial autocorrelatiomong the cities (Figure 11(c)). Local Moran’s |
gives more local information, especially by revealing styer autocorrelation in the Yangtze River Delta
and the Pearl River Delta (Figure 11(b)). The semivariogpéoh(Figure 11(d)) depicts the range of spatial
autocorrelation.

In comparison, our ISD measure provides the spatial relshipp and transitional path between any two
cities, giving more detailed spatial association infoliorathan the other measures. For example, Figure
12(b) depicts spatial relationships between Xiamen andthdr cities with respect to GDP. The per capita

GDP of Xiamen tends to be more closely related to that of glateng the seashore, from the Taiwan Strait
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to the South China Sea. It reveals that GDP figures are mareghyr related among coastal cities than
among inland cities because of their economic linkagesureid2(a) depicts the transitional path between
Baoshan and Jinzhou. This path closely bypasses lesssgedeareas at higher altitude with a lower GDP,
but passes though cities at comparatively low altitudesravf&DP is higher.

The preceding empirical results establish that the 1SDredion algorithm precisely measures spatial
relationships in terms of attribute and physical distanckssubstantially extends our ability to analyze

spatial relationships in general.

Conclusion and discussion

In this paper, we develop the concept of intrinsic spatiatastice (ISD) and present an associated ISD
algorithm for the analysis of a spatial relationship betmvany two points in geographic space. The ISD is
a distance measure that accounts for the nearness of twis path respect to their physical and attribute
distances. We argue conceptually that the ISD measure aft@bkpelationship naturally reflects how two
points are related locally and globally. The transitionathplinking two points vividly depicts how they
are related in space. Unlike conventional spatial autetation measures with respect to a single variable,
the ISD is not predisposed in favor of the first law of geogsaphut directly accounts for the varying
physical and attribute distances to measure the extent ichwivo points are spatially autocorrelated. We
also point out that the information provided by ISD is morabelrate than that revealed by Moran’s I, local
Moran’s I, and the semivariogram. Because ISD measuresethgonship between any two points, the
spatial relatedness of any single point with all other mower space can be evaluated. The distance matrix
thus derived shows the intrinsic spatial relations betwsents. Our conceptual arguments are substantiated
and validated by a series of experiments based on syntheticeal-world data sets.

As a point of interest, we now discuss the relationship betwe ISD path — the shortest path in both
physical and attribute space — and the least/minimum gfiitt. The ISD path accounts for both nearness in
space and nearness in attribute distance. The shortestgratlcting two spatial data points is constructed
in either the physical or attribute space. This can be gtezbterved in all of our experiments (e.g., the ISD
paths in the cloud coverage experiment shown in Figure 1l@3.1&ast effort path is defined as the physical

or metaphorical pathway among a set of alternatives thatinexjthe least effort (potential energy) for a
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given object or entity to make forward motion. Given that I8® path guarantees a smooth gradation of
attribute values and is likely to be physically short, thadient, with respect to either physical or attribute
values, is always shallow along the ISD path. Because arpabhange in attribute values along a physical
path always implies a significant increase in potential gnéor effort), as can be seen in differential human
behaviors in adjacent administrative areas under diffgpehtical regimes, the ISD path is related to the
least effort path in this sense. Thus, the proposed ISD measight provide a new way of gauging the

potential energy discussed by Warntz (1961). This poteapalication of the proposed ISD measure is
worthy of investigation in further research.

In the present analysis, we employ the ISD to study spafi@ioaships with respect to a single variable.
However, the definition in equation (4) is a general definifior the relatedness of two points by reference
to a profile of variables. That is, it is also suitable for timalgsis of multivariate spatial relationships. This
conceptualization represents a natural extension wangghirther examination.

Another line of research with potential is an extension efftamework proposed here to 3-dimensional
(3-D) space. Such an extension would be very useful whemitégssary to evaluate a spatial relationship
over a topographical profile in geographical research iregdrand in 3-D GIS research in particular. In
addition to its application to spatial points, the propot&d method should be further extended to other
spatial data types, such as curves, surfaces, and polygons.

To make the notion of spatial relationship a complete contke approach suggested here also could be
extended to the temporal domain. Extending the proposeditifefi would allow us to construct a distance
measure of relationship in space and time. The framework neeige posits that two points are related
through a space-time transitional path that simultangoastounts for the variation of attribute values.
This is perhaps both an important issue in space-time iatiegr and a building block for the study of
spatio-temporal relationships.

The cartographic transformation method (Tobler 1979) shight on the evaluation of spatial
relationships. By taking attribute values as elevationghsfervations, geographical-attribute characteristics
can be viewed as an imaginary earth surface and relevargcaphic transformation techniques might
be employed to measure spatial relationships. Furthernfgtigre investigations need to make a thorough
comparison between the proposed method and other flexialiabpreight-matrix-specification approaches,

such as the generalized-moments estimation approachaiBtBockstael 2000).
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The methodological and practical importance of the propd$® measure in solving problems and
advancing theory in multiple knowledge domains suggestaraber of promising research directions in
addition to those highlighted here: (1) Instead of usinglilean distance, the ISD can be employed to
extend any distance-based aspatial data mining methocaktepidtial context; (2) Using the ISD measure
in place of a Euclidean-distance-based weight matrix gavesore reliable and informative weight matrix
for the analysis of many geographical problems involving tlearness of spatial entities in physical and
attribute space, such as in geographically weighted regmes(3) Because the ISD path is the intrinsic least
effort path between spatial data points, it can be used raebntrinsic relations in data and explore the
progression of feature relatedness from one place to anaihd, (4) Give the status of image data as a
specific type of spatial data, the ISD method can be appligshage processing, such as in evaluating the

weights of intensity values under the well-known bilatdiléér method.

Appendix: Proof of Theorem 1

Theorem 1 The ISD function (tP(x,y)) is a distance metric on the spatial data spa2e
Proof: The ISD function satisfies the conditions of a distance metri
(i) Positive definitenessd'SP(x,y) > 0 for anyx,y € Q, andd'SP(x,y) = 0 if and only ifx =y.
Because
XY —14edd(xy) ,if dI(xy) <E,

d*(x,y) =
0 , otherwise,

and

n
d|SD X,y) = min d® i»N—1),
( y) (m._..’xn)erg(x,y)i; (Xl % 1)

it is evident thad'SP(x,y) > 0 for anyx,y € Q.

If d'SP(x,y) = 0, then for each along the shortest spatial path betweeandy, d&(x,x_1) = O.
Therefore,d®(x;,x—1) = d9(x;,%i—1) = 0 holds. We then have = x_1 for anyi =1,2,--- ,n. Thus, itis
apparent thak = Xp = X; = --- = X,_1 = X, = . The positive definiteness property @P(x,y) is then

verified.
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(i) Symmetry d'SP(x,y) = d'SP(y,x) for anyx,y € Q.

Becauséxg, - ,X,) € (X, y) implies that(x,, - - - ,X0) € ['¢(Y,X), it is easy to obtain this property based
on the definition of the ISD.

(iii) Triangle inequality. d'SP(x,z) < d'SP(x,y) + d'SP(y, z) for anyx,y,z€ Q.

Let the shortest spatial paths betweesndy andy andz be (X, - ,%,) and(Xo, - ,X7), respectively.
Based on the definitions of the SSP and the 1§D+ X, X, = X9 =V, X, = Z, and along the two paths, the
respective ISD valued'SP(x,y) andd'SP(y, z) can be calculated precisely.

Construct a new path ag, - - - , X, X1, - , X7 connecting pointx andz. The value of the global measure
along this path is: B

5 0 (xa) + 5 A ) = ) + 2,

Thus,

n
d'*P(x2) = min Zlds(m,ml)Sd'SD(X,y)er'SD(y,Z)-
(X0, %n)ET e (X2){&

Therefore, the triangle inequality property of the ISD meass satisfied.

This completes the proof of the theorem.

Acknowledgement

This research was supported by the Geographical Modelinh Geocomputation Program under the

Focused Investment Scheme of The Chinese University of Hamg.

Notes

1In this paper, we mainly focus on single attribute casesletthroughout the paper, all our analysis can be easily
generalized to multiple attribute cases by settifig RY, whered is the number of variables involved in a problem.
2e-NN defines the neighbors of a vertex as those with distamogsthe vertex smaller than the threshel@Roweis

and Saul 2000; Tenenbaum et al. 2000).
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Figure 1. Sandstorm maps downloaded from “http://www.opascn/ZLG/shachenbao/img”. In
each sub-figure, the curve depicts the path between poistepsing the properties A(i), A(ii) and

Alii).

(b)

Figure 2. Two sandstorm maps downloaded from “http://mvpwscgov.cn/ZLG/shachenbao/img”.
(a) Neighboring locations with highly similar attributeluas; (b) Neighboring locations with

significantly different attribute values.

Figure 3. An example of the ISD concept defined by equationRé}l lines indicate-spatial-paths
between A and B, and the yellow line corresponds to the ISB patween the two points.
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-05 0.5 1 15 2
Figure 4. (a) The distribution manifold (function) of anradtite. (b) Distribution of 1000
synthetic points. The circles are locations of the pointshim coordinated space. Each point
is represented by a circle with a radius drawn in proportiorihie value of its attribute. (c)
Distribution of local Moran’s | (LISA) with radii drawn in mportion to LISA values. The
background gray values are obtained by applying the kentedpolation method to LISA values.
Larger LISA values are indicated by a lighter gray value. @dbal Moran’s I, the gray line
across the bar, for the entire data set. (e) The semivanogfahe data with respect to different

neighborhood distances.
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Figure 5. (a): The transitional paths (denoted as 1, 2, 34abhatween four pairs of points of the
synthetic data set obtained by the ISD estimation algorittonresponding to the four situations
described in the Introduction, respectively. The circles lacations of data points, with each
point being represented by a circle with a radius drawn ip@rtion to its attribute value. (b)(c):
The I1SD outputs of two randomly selected spatial points §tlaes) in the synthetic data set. The
background gray scale is obtained by applying the kernetpaiation method to the ISD values
of these points. The brighter the spatial location, the melaged the corresponding point is to the
selected point.
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Figure 6. (a) The spatial distribution of mean daily clouster@age observations from 641 stations
with the circle radius of each point scaled to its attribuakre. (b) The spatial distribution of local
Moran’s | (LISA) for each of the 641 stations. The circlesresent the locations of the points and
the circle radius of each point is scaled to its LISA valuee Background gray scale is obtained
by applying the kernel interpolation method to the LISA \edwof these points. (c) The gray line
across the bar is the global Moran’s | measure of the entit2 skt. (d) The semivariogram plot
for the data.
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Figure 7. (a) The spatial distribution of mean daily hunmydibservations from 641 stations with
the circle radius of each point scaled to its attribute val(® The spatial distribution of local

Moran’s | (LISA) for each of the 641 stations. The circlesregent the locations of the points, and
the circle radius of each point is scaled to its LISA valuee Blackground gray scale is obtained
by applying the kernel interpolation method to the LISA \edwof these points. (c) The gray line
across the bar is the global Moran’s | measure of the entit skt. (d) The semivariogram plot

for the data.
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Figure 8. (a) Spatial relatedness as measured by the ISDBebetthie Mianyang station (denoted
by the star) and 640 other stations with respect to dailycctmyverage. The background gray scale
is obtained by applying the kernel interpolation methoch ISD values of these stations. (b)(c)
The demarcated area of (a) on a larger scale. In (c), theecidius of each station is scaled to its
elevation.
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Figure 9. (a) Spatial relatedness as measured by the 1SDebetihe Henan station (denoted
by the star) and 640 other stations with respect to daily Hiyni The background gray scale is
obtained by applying the kernel interpolation method tol®e values of these stations. (b)(c)
The demarcated area of (a) on a larger scale. In (c), theecmdius of each station is scaled to its
elevation.
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Figure 10. (a) The ISD transitional path, with respect taudicoverage, between the Huili and
Yuanping stations. The stations on the path include Huginyitan, Muli, Daocheng, Batang,
Xinlong, Daofu, Ganzi, Dege, Shiqu, Maduo, Xinghai, Dul@mabugia, Gangcha, Qilian, Gansu,
Yongchang, Mingin, Wuwei, Jingdai, Zhongning, Yinchuanydkeqi, Hengshan, Yulin, Hequ,

Wusai and Yuanping. The background gray scale indicateatiba: the brighter the location, the

lower the elevation. (b) The ISD transitional path betwdenHuaiyin and Shipu stations (denoted
by the squares) with respect to humidity. The stations opé#tle include Huanyin, Xuyi, Gaoyou,

Dongtai, Lvsi, Chengsi, Dinghai and Shipu.
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Figure 11. (a) The spatial distribution of per capita GDP 87 Zhinese cities, with the circle
radius of each point scaled to its GDP value. (b) The spaistildution of the local Moran’s |
(LISA) for each of the 287 cities. The circles represent tiwations of the cities, and the circle
radius of each pointis scaled to its LISA value. The backgdogray scale is obtained by applying
the kernel interpolation method to the LISA values of thesex (c) The gray line across the bar
indicates the global Moran’s | of the entire data set. (d) $&mivariogram plot for the data.
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Figure 12. (a) The transitional path, with respect to pertaapDP, between Baoding and Jinzhou
(denoted by the squares) obtained by applying the ISD estimalgorithm. The cities along
the path include Baoshan, Linchuang, Simao, Kunming, @ujldupanshui, Anshui, Zunyi,
Chongging, Guangan, Nanchong, Bazhong, Guangyuan, Lang@ranshui, Pingliang, Qingyang,
Tongchuan, Xianyang, Hanzhong, Ankang, Shiyan, Nanyamgdihgshan, Xuchang, Kaifeng,
Xinxiang, Hebi, Anyang, Puyang, Heze, Shangqiu, Huaibeizhbu Zaozhuang, Jining, Taian,
Liaocheng, Dezhou, Cangzhou, Langfang, Tangshan, Qimgjuaan Huludao and Jinzhou. The
gray scale in the background corresponds to the elevatiyrnSgatial relationships measured by
ISD between Xiamen and all other cities. The circles repretes locations of the cities, with the
radius of each point being scaled to its GDP value. The gralesn the background is obtained
by applying the kernel interpolation method to the ISD valagthese cities.
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