
Learning Dictionary From Signals under Global

Sparsity Constraint

Deyu Menga, Qian Zhaoa, Yee Leungb, Zongben Xua

aInstitute for Information and System Sciences and Ministry of Education Key Lab for

Intelligent Networks and Network Security, Xi’an Jiaotong University, Xi’an 710049,

P.R. China
bDepartment of Geography & Resource Management, The Chinese University of Hong

Kong, Hong Kong, P.R. China.

Abstract

A new method is proposed in this paper to learn overcomplete dictionary

from signals. Differing from the current methods that enforce uniform spar-

sity constraint on the coefficients of each input signal, the proposed method

attempts to impose global sparsity constraint on the coefficient matrix of the

entire signal set. This enables the proposed method to fittingly assign the

atoms of the dictionary to represent various signals and optimally adapt to

the complicated structures underlying the entire signal set. By virtue of the

sparse coding and sparse PCA techniques, a simple algorithm is designed

for the implementation of the method. The efficiency and the convergence

of the proposed algorithm are also theoretically analyzed. Based on the ex-

perimental results implemented on a series of signal and image data sets,

the capability of the proposed method is substantiated in original dictionary

recovering, signal reconstructing and salient signal structure revealing.
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1. Introduction

In recent years, there has been a significant interest in using sparse rep-

resentation over a redundant dictionary as a driving force for various signal

processing tasks. All of these applications capitalize on the fact that salient

features in signals can always be captured by their sparse representations over

an appropriate dictionary. As such, the pre-specified dictionary is crucial to

the success of the sparse representation model in practical applications. Most

conventional studies use the “off-the-shelf” dictionaries, such as the wavelet

[1] and DCT bases [2], to build a sparsifying dictionary based on a mathe-

matical model of the data. Current studies, however, have demonstrated the

advantages of learning an often overcomplete dictionary matched to signals

of interest [3]-[6].

The dictionary learning task is mathematically described as follows: For

a collection of signals X = [x1,x2, · · · ,xn] ∈ Rd×n, it is expected to find the

dictionary D = [d1,d2, · · · ,dm] ∈ Rd×m, composed by a collection of atoms

di (the atom number m is set larger than d, implying that the dictionary is

redundant), through the following optimization model [7][8]:

min
D,A

1

n

∑n

i=1

(
1

2
‖xi −Dai‖

2

2
+ λP(ai)

)
, (Pλ)

where the vector ai contains the representation coefficients of xi. We denote

the coefficient matrix asA = [a1, a2, · · · , an] ∈ Rm×n. The objective function

of (Pλ) involves two elements in the dictionary learning task: the expression
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error term, 1

2
‖xi − Dai‖

2

2
, and the sparsity controlling term, P(ai), with

respect to each input signal xi. The most widely utilized functions of P(ai)

include the l0 penalty ‖ai‖0 and the l1 penalty ‖ai‖1. The other two generally

utilized models for the dictionary task are [3][4]:

min
D,A

‖X−DA‖2F s.t. P(ai) ≤ k, ∀ 1 ≤ i ≤ n, (Pk)

and

min
D,A

∑n

i=1

P(ai) s.t. ‖xi −Dai‖2 ≤ ǫ, ∀ 1 ≤ i ≤ n, (Pǫ)

where the notion ‖ · ‖F stands for the Frobenius norm. The tunable param-

eters λ, k and ε in the models (Pλ), (Pk) and (Pǫ) play an important role in

the model performance. They intrinsically control the compromise between

the expression error and the sparsity of the representation coefficients.

It should be noted that a uniform parameter λ, k or ε formulated for the

entire signal set is specified in the current model (Pλ), (Pk) or (Pǫ), respec-

tively. Such formulation facilitates the parameter selection and algorithm

construction of the model. The signals in applications, however, are always

of varying interior structures. On one hand, some signals may be composed

of complicated features and need to be very densely represented under the

dictionary; while some might be of very simple structure and can be precisely

represented with very sparse coefficient vectors. On the other hand, some

signals may seriously deviate from the original due to the analog-to-digital

conversion errors or transmission through noisy channels, while some may be

totally clean samples. This means that it is better to vary the parameter λ,

k or ε with respect to different signals to make the dictionary learning model

adaptive to the intrinsic structures underlying the entire signal set. The
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uniform specification of the sparsity penalty λ, the maximal representation

sparsity k, or the minimal representational error ε of the conventional model

(Pλ), (Pk) or (Pǫ), respectively, thus possibly conducts unstable performance

of the model in applications.

The purpose of this paper is to formulate a new dictionary learning model,

which is with simple form while will not impose uniform penalty or constraint

on each signal like the conventional methods. Instead, the model will specify

a global sparsity constraint on the coefficients of the entire signal set, so

that it will adaptively tune the representation sparsity of diverse signals

and properly reveal the intrinsic structures underlying the entire signal set.

An efficient algorithm is specifically designed for the proposed model. It is

efficient, convergent and easy to be implemented. By a series of experiments,

it is verified that the proposed algorithm, in comparison with the current

dictionary learning methods, can not only deliver more faithful dictionary

underlying the input signals, but also can more precisely recover the original

signals. Besides, the intrinsic structure underneath the entire signal set can

be impressively depicted via the different representation sparsities of the

signals under the learned dictionary.

In what follows, related work in the literature is first reviewed in Section

II. Details of our algorithm and its basic model are then presented in Section

III. The experimental results are given in Section IV for substantiation and

verification. The paper is then concluded with a summary and outlook for

future research. Throughout the paper, we denote matrices, vectors and

scalars by the upper-case bold-faced letters, lower case bold-faced letters and

lower-case letters, respectively.
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2. Related work

Using sparse representations of signals under an appropriately specified

redundant dictionary has advanced multiple signal processing tasks, and has

drawn much attention recently. In the conventional studies, the “off-the-

shelf” dictionaries have always been employed in various applications. The

typical ones include the Fourier [9], the wavelet [10]-[11] and the DCT bases

[2]. These bases have been successfully applied to many practical problems.

Recent research, however, has demonstrated the significance of learning

an overcomplete dictionary, instead of a fixed one, matched to the signals of

interest. Various algorithms along this line have been formulated in recent

years. For example, the algorithm proposed by Olshausen and Field [12]

can find sparse linear codes for natural scenes. The dictionary composed

by these codes complies with the intrinsic features of the localized, oriented,

bandpass receptive fields of the neurons of the primary visual cortex. The

method of optimal directions (MOD), proposed by Engan et al. [13], is also

an appealing dictionary training algorithm. It improves the efficiency of the

work by Olshausen and Field [12] both in the sparse coding and dictionary

updating stages. Through generalizing the K-means clustering process to

alternate between sparse coding and dictionary updating, Aharon et al. [3,

4] designed the K-SVD method. There are two versions of the method:

one achieves sparse signal representations under strict sparsity constraint

(corresponding to the model (Pk), and is thus denoted as K-SVDPk
) [3],

and the other calculates the dictionary by allowing a bounded representation

error for each signal (corresponding to the model (Pε), and is thus denoted

as K-SVDPε
) [4]. The method has empirically shown the state-of-the-art
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performance in some image processing applications. Some methods have

further been constructed to improve the efficiency of the dictionary learning

problem: Mairal et al. [14] proposed an online model to efficiently solve

the dictionary learning problem; Jenatton et al. [15] used a tree structured

sparse representation to give a linear-time computation of the problem; and

Lee et al. [7] designed an algorithm to speedup the sparse coding stage of

the problem, allowing it to learn larger sparse codes than other algorithms.

Recently, some algorithms have also been developed to extend the capability

of dictionary learning based on some specific motivations. For instance, Shi

et al. [8] developed an algorithm for dictionary learning with non-convex

while continuous minimax concave penalty; Mairal et al. [16] established

a discriminative approach, instead of the purely reconstructive methods, to

build a dictionary. All of the aforementioned methods are addressed to the

models (Pλ), (Pk) and (Pǫ) introduced in Section I.

For many real signal processing applications, however, these models can-

not fully tally with the practical signals possessing intrinsic complicated

structures, such as those with different content of features, or with spatial

and/or spectral non-uniform noises. Along this line of research, Mairal et al.

[17] addressed the case of removing nonhomogeneous white Gaussian noise

of images, while apriori knowledge of the noise deviation at each pixel of the

objective images has to be pre-assumed. Such elaborate information about

noise, however, generally cannot be attained in practice. Spielman et al.

[18] proposed a method called ERSuD, which is also based on the global l0

sparsity of a matrix. However, this method is applicable only when the dic-

tionary matrix is square and invertible, which generally does not hold in real
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dictionary learning applications. Very recently, Zhou et al. [5, 6] designed

a nonparametric Bayesian method, called the beta process factor analysis

(BPFA) method, for dictionary learning. The method can learn a sparse dic-

tionary in situ for signals with spatially non-uniform noises, without having

to know the apriori noise information. The method is thus used as one of

the methods for comparison in our experiments.

In this paper, we propose a new dictionary learning method to enhance

the capability of dictionary learning by imposing a global sparsity constraint

on the coefficients of all training signals to enable adaptive atom assignment

to individual signals based on their intrinsic structures. It should be noted

that the concept of global-sparsity-constraint has also been involved in some

other problems, such as image decomposition [19] and magnetic resonance

imaging [20], where this idea was verified to be beneficial to achieve a global

consistency of data structures. In machine learning area, there are also some

literatures modeling the matrix with l1-norm global sparsity [21]-[23]. Here

we first introduce the l0-norm global sparsity in dictionary learning problem.

3. Dictionary learning under global sparsity constraint: model and

algorithm

3.1. Model: From local to global constraint on sparse representation

The current dictionary learning models, namely (Pλ), (Pk) and (Pǫ), en-

force uniform sparsity control parameter, including sparsity penalty λ, spar-

sity constraint k or representation error bound ǫ, for each involved signal.

However, there are often counterexamples to such formulation in real appli-

cations, especially for signals embedded with intrinsic heterogeneous sparsity
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The ‘house’ image
The ‘house’ image with

nonhomogeneous gaussian noise

=   (−47.98)× +(40.477)× +(90.007)× +(219.23)× +(−51.76)× +(66.646)×

+(−75.51)× +(−41.61)× +(−67.39)× +(−56.13)× +(326.79)×

=

= +

= +

= (−100.44)×
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Figure 1: The left figure is the “house” image, and the right figure is the same image

mixed with nonhomogeneous Gaussian noise. A,B,C,D are four patches cut from the two

images. The upper two expressions at the bottom of the figure show the atoms and the

coefficients utilized to sparsely represent the patches A and B over the dictionary learned

from the algorithm proposed in Section 3.2, respectively. The lower two ones demonstrate

the groundtruth of the noise separated from the patches C and D, respectively.

structures. We take the image case as an instance, in which the input sig-

nal set corresponds to the small local patches of the image in consideration.

On one hand, the local parts of a real image may contain very different

capacities of meaningful features, e.g., the region full of patterns with abun-

dant textures, as compared to the area located at the background with small

grayscale variations. In such case, smaller sparsity penalty λ of the opti-

mization model (Pλ) or larger representation sparsity k of the optimization

model (Pk), should be preset for the local patches located at the former re-

gion so that more atoms of the dictionary can be assigned to them. This

phenomenon can be easily understood via the representations of the patches

A and B located at the house eave and the background parts of the “house”

image, respectively, as shown in Figure 1. On the other hand, the real noise

mixed in the image is often of significant statistical heteroscedasticity. This

means that the extents of noise corruption in various parts of the image,
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such as the patches C and D in Figure 1, may be significantly different. It is

easy to see that the patch C is highly corrupted by noise while D is almost

clean and contains essentially no noise. Larger representation error bound ǫ

of the optimization model (Pǫ) should then be set for the former patches so

that the model can properly capture the variation of noise corruption across

the image. It is thus foreseeable that the performance of the current dictio-

nary learning models can be substantially enhanced by adaptively regulating

the sparsity control parameter(s) with respect to the underlying structural

characteristics of the entire signals.

Based on the above rationale, we reformulate the model for dictionary

learning into the following global-sparsity-constraint form:

min
D,A

‖X−DA‖2
F

s.t. ‖A‖
0
≤ K, (PK)

where K is the maximal size of the non-zero entries of the coefficient matrix

A (i.e., the combination of the l0 sparsities of all signals), and ‖A‖0 counts

the nonzero entries of the matrix A. Differing from the current models

in which uniform sparsity constraint is imposed on the coefficient vector

for each input signal, our proposed model capitalizes on the global sparsity

constraint superimposed upon the coefficient matrix for the entire signal set.

This formulation enables the model to adaptively assign different number

of atoms, ki, of the dictionary to represent each signal xi according to its

intrinsic structure. This can be easily understood through the following

equivalent reformulation of (PK):

min
D,A,{ki}ni=1

‖X−DA‖2F s.t. ‖ai‖0 ≤ ki, 1 ≤ i ≤ n,
∑n

i=1

ki = K. (1)

In specific, for signals containing different capacities of features, more non-
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zero atoms will be assigned to represent more complex signals by the proposed

model; and for signals corrupted by the heterogeneous noises, the distribu-

tion of the non-zero entries of the coefficient matrix tends to be optimally

balanced among the entire signal set, and the sparse representations of the

signals over the dictionary attained by the proposed model will possibly re-

veal the major information (the original signals) while eliminate the minor

(the mixed noises) at the global scale. The dictionary learning model (PK)

is thus expected to outperform the current models.

We now construct an efficient algorithm for solving (PK).

3.2. Algorithm: Iteratively updating columns and rows of coefficient matrix

The main idea of our algorithm is to iteratively update the column and

row vectors of the coefficient matrix A to approach the solution to (PK).

Denote the column and row vectors of the coefficient matrix A (∈ Rm×n) as

[ac
1
, ac

2
, · · · , ac

n] and [ar
1
, ar

2
, · · · , ar

m], respectively. The column updating step

is to update each column vector ac
i (i = 1, 2, · · · , n) of A, with the number of

its non-zero entries, kc
i , fixed, while optimally relocate the column positions

of these non-zero elements in an adaptive way (i.e., kr
i s will be varied after

this step), as graphically depicted in the upper of Figure 2. By decoupling

the model (PK), the corresponding task is to solve the following optimization

model for each ac
i (i = 1, · · · , n):

min
ac
i

‖xi −Dac
i‖

2

2
s.t. ‖ac

i‖0 ≤ kc
i . (2)

The row updating step is to update each row vector ar
i (i = 1, 2, · · · , m)

of A, with the sparsity kr
i of ar

i fixed, while optimally adapt its kr
i non-zero

elements to the proper row positions (i.e., kc
i s will be changed after this step),
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Figure 2: Graphical presentation of the iteration process between the column updating

step and the row updating step in the proposed algorithm. The upper panel shows that in

the column updating step, each column vector ac
i
of A is updated, with the number of its

non-zero entries fixed while the column positions of these non-zero elements are optimally

relocated in an adaptive way. The lower panel demonstrates that in the row updating step,

each row vector ar
i
of A is updated, with its sparsity fixed while its non-zero elements are

optimally adapted to the proper row positions.

as shown in the lower of Figure 2. Since the atom di of the dictionary D

one-to-one corresponds to ar
i in the sense that DA =

∑m

i=1
di (a

r
i )

T , it is also

simultaneously updated in this step together with ar
i . The corresponding

optimization model is of the following form for each ar
i (i = 1, · · · , m):

min
ar
i
,di

∥∥Ei − di(a
r
i )

T
∥∥2

F
s.t. ‖ar

i‖0 ≤ kr
i , dT

i di = 1, (3)

where Ei = X −
∑

j 6=idj

(
ar
j

)T
stands for the representation error of all

considered signals with the effect of the i-th atom di removed. It should be

noted that the sparsity kc
i of each ac

i and kr
i of each ar

i are dynamically and

adaptively adjusted during the iterations between the column updating and

the row updating steps of the proposed algorithm.

The algorithm can then be summarized as Algorithm 1.

Now the question is how to efficiently solve the optimization models (2)

and (3). For (2), it is actually the well known l0-norm model of sparse coding
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Algorithm 1 Algorithm for dictionary learning under global sparsity constraint (GDL)

Given: The input data X = [x1, · · · ,xn] ∈ Rd×n, the global sparsity K

Execute:

1. Initialize the dictionary D ∈ Rd×m and the coefficient matrix A ∈ Rm×n

with sparsity K, respectively.

2. Repeat

2.1 (Column updating). Update the column vector aci of A by solving (2)

for each i = 1, · · · , n.

2.2 (Row updating). Update the row vector ari of A and the atom di of

D by solving (3) for each i = 1, · · · ,m.

Until the termination condition is satisfied

Return: the solution D, A of (PK).

and multiple effective algorithms have been investigated to solve this model.

The typical ones include the thresholding methods, e.g., the hard algorithm

[24], and the greedy methods, e.g., the OMP algorithm [25].

For (3), we give the following theorem:

Theorem 1. The optimum of the optimization model (3) can be attained by

solving the optimization model:

max
w

w
T
E

T
i Eiw s.t. w

T
w = 1, ‖w‖

0
≤ kr

i , (4)

in the sense of

d̂i =
Eiŵ

‖Eiŵ‖
2

, â
r
i = ‖Eiŵ‖

2
ŵ, (5)

where d̂i, â
r
i are the optimum of (3), and ŵ is the optimum of (4).
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The proof of Theorem 1 is given in the appendix.

It is very interesting that (4) is just the sparse principal component anal-

ysis (sparse PCA) model [26], which has been thoroughly investigated in the

last decade [26]-[30]. Many efficient algorithms have been constructed for

solving the model, including SPCA [26], GPower [27], sPCA-rSVD [28] etc..

Thus, both models (2) and (3) can be efficiently solved, i.e., both of the

column and row updating steps of the proposed algorithm can be effectively

implemented, by employing the existing methods in sparse coding and sparse

PCA, respectively.

The remaining issues are then how to appropriately specify the initial

dictionary D and the coefficient matrix A in step 1, and when to terminate

the iterative process in step 2 of the proposed algorithm. In our experiments,

D and A were simply initialized with data signals and sparse matrix with

K non-zero elements, whose positions are randomly generated in the matrix,

respectively. By counting the nonzero element numbers of each column vector

ac
i and each row vector ar

i of the initialized A, the sparsity kc
i and kr

i are

simultaneously specified. As for the termination of the algorithm, since the

entire representation error of signals, i.e., the objective function of (PK),

decreases monotonically under the fixed global sparsity constraint throughout

the iterative process, the algorithm can be reasonably terminated when the

decrease in value of the objective function is smaller than some preset small

threshold, or the process has reached the pre-specified number of iterations.

As for the convergence of the proposed algorithm, under the assumption

that the models (3) and (4) can be precisely solved, each of the updating

iterations in step 2 monotonically decreases the objective function of (2),
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i.e., the total representation error ‖DA−X‖2F , under the guarantee that

the constraint ‖A‖
0
≤ K is consistently held. Since this objective function

is also lower bounded (≥ 0), the algorithm is guaranteed to be convergent.

Although the above claim depends on the success of the sparse coding and

sparse PCA techniques used to approximate the solutions to (3) and (4),

respectively, the algorithms employed on the tasks always performed well in

our experiments and can empirically generate a rational solution of (5) after

multiple iterations, as demonstrated in the next section.

4. Experimental results

To test the effectiveness of the proposed algorithm on dictionary learning,

it was applied to a series of synthetic signals and real images for substanti-

ation. The results are summarized in the following discussion. All programs

were implemented on the Matlab 7.0 platform.

4.1. Synthetic signal experiments with homogeneous noise

We first apply the proposed algorithm to synthetic signal data to test

whether the algorithm can recover the generating dictionary and reconstruct

the original signals. Two series of experiments were implemented, each in-

volving 11 sets of signals. Each signal set contained 1500 20-dimensional

signals, denoted as X = [x1,x2, · · · ,x1500] ∈ R20×1500, which were created

by a linear combination of a pre-specified dictionary D = [d1,d2, · · · ,d50] ∈

R20×50 and representation coefficients A = [a1, a2, · · · , a1500] ∈ R50×1500, and

mixed with different extents of homogeneous Gaussian white noise. The en-

tries of each dictionary D were first generated by random sampling, and each

column (atom) di of D was then divided by its l2-norm for normalization.
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For the first series of experiments, each column ai of A contained 3 non-zero

elements with randomly chosen values and locations. For the second series

of experiments, each coefficient matrix A consisted of 4500 randomly valued

and located non-zero entries. Added to the 11 signal sets in both series of

experiments were homogeneous Gaussian noises with standard deviations σ

varying from 0 to 0.1 with interval 0.01. The corresponding SNR values of

these signal sets ranged from infinity to around 101. It should be indicated

that for the first experimental series, the signals in each experiment were

of similar representation sparsity over the preset dictionary, which complies

with the preassumption of the model (Pk); and for both series of experiments,

the signals were corrupted with homogeneous noises, which tallies with the

preassumption underlying the model (Pε).

Five of the current dictionary learning methods, including the MOD [13],

K-SVDPk
[3], K-SVDPε

[4], Efficient [7] and BPFA [5] methods were ap-

plied to these signal sets for comparison. The dictionaries of the first four

methods, as well as the proposed GDL method, were initialized as the ran-

domly selected signals from the input set, and the initialization of the BPFA

method was based on the singular value decomposition technique [5]. Since

both MOD and K-SVDPε
need the apriori deviation of the noise mixed in

the signals to preset the representation error parameter, we directly used the

groundtruth information to optimally specify the parameter value [4]. For

the K-SVDPk
and Efficient methods, the sparsity constraint parameters k

and λ were specified by running the method 5 times on each signal set under

1The signal set mixed with Gaussian noise with deviation 0 means that the set is clean

and contains no noise. The corresponding value of SNR is infinite.
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different parameter values, and selecting the best one as the final output.

All parameters involved in the BPFA were automatically inferred by using

a full posterior on the model [5]. For the proposed GDL method, the global

sparsity K was set as 4500 in all experiments. The results of K-SVDPk
,

K-SVDPε
, MOD, Efficient and GDL were attained after 100 iterations, and

those of BPFA were obtained after 1000 iterations of Gibbs sampling.

Two criteria are utilized to assess the performance of the employed meth-

ods for dictionary learning. The first is computed by sweeping through each

atom of the generating dictionary and checking whether it is recovered by

the dictionary attained by a utilized method via the following formula [3]:

1− |dT
i d̂i|, (6)

where di is the atom of the original dictionary and d̂i is its corresponding

closest atom in the recovered dictionary. If the value of (6) was less than

0.01, then it was considered as a success. The rate of the successfully re-

covered atoms in the generating dictionary (called the dictionary recovery

rate, or DR in brief) is then taken as the first criterion, which evaluates the

capability of the method in delivering the original dictionary beneath the

input signals. The second criterion is the mean of the standard deviations of

the reconstructed signals from the original signals (called the representation

error, or RE briefly). This value assesses the performance of the method in

recovering the input signals.

In all of the implemented experiments, the DR and RE values in the

iterative processes of the five current methods and the proposed GDL method

were recorded. The upper and lower panels of Figure 3 depict the RE and

DR curves of the six methods in the iterative processes of three of the first
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Figure 3: The upper panels: The RE curves of the K-SVDPk
, K-SVDPε

, MOD, BPFA,

Efficient and the proposed GDL methods in the iterative processes of three of the first

series of experiments. The lower panels: the corresponding DR curves. It should be

noted that the BPFA method implements 1000 iterations of Gibbs sampling, while other

methods run 100 iterations.

series of experiments, respectively. Figure 4 shows the corresponding results

in three cases of the second series of experiments. Panels (a) and (c) of Figure

5 show the final RE and DR values of the six methods in 11 experiments of

the first series, respectively. For easy comparison, panels (b) and (d) of the

figure display the mean values of RE and DR of the six methods as vertical

bars. Figure 6 depicts the cases of the second series of experiments.

It can be easily observed from the upper panels of Figures 3 and 4 that the

RE values obtained by the proposed method tend to decrease monotonically

throughout the iterative process. Besides, after around 20 iterations, the

GDL method attains the smallest or the second smallest RE values among

the six methods. In the final output, the GDL method also achieves the com-

paratively small RE values in all of the experiments, as shown in Figure 5(a)

and Figure 6(a). On the average, the proposed algorithm outperforms the

other five methods in both series of experiments, as shown in 5(b) and Figure

6(b). This demonstrates the excellent capability of the proposed algorithm

in reconstructing the input signals.
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Figure 4: The upper panels: The RE curves of the six utilized methods in the iterative

processes of three of the second series of experiments. The lower panels: the corresponding

DR curves.

Furthermore, from the lower panels of Figures 3 and 4, it can be observed

that the DR curves of the proposed method tend to increase monotonically

in all experiments, and the method obtains the largest or the second largest

values among the six methods after 60 iterations. Moreover, by observing

Figure 5(c) and Figure 6(c), the proposed algorithm apparently yields the

most stable DR values among the six methods, especially the second series of

experiments, where the input signals are with heterogeneous sparsity struc-

tures. The proposed method successfully detects more than 85% atoms of

the original dictionary in each of the experiments, and achieves the second

largest average DR value in the first experimental series (only unsubstan-

tially smaller than the Efficient method), and the largest in the second, as

shown in Figure 5(d) and Figure 6(d), respectively. This substantiates the

good capability of the GDL algorithm in recovering the original dictionary.

In the next section, we further verify the effectiveness of the proposed

method on image reconstruction from data with more complex intrinsic struc-

tures and more complicated nonhomogeneous noises.
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Figure 5: (a)(c): the final RE and DR values obtained by the six utilized methods in 11

experiments of the first series. (b)(d): The mean RE and DR values obtained by the six

methods in the first series of experiments. The numbers 1-6 in the horizonal axis stand

for the K-SVDPk
, K-SVDPε

, MOD, BPFA, Efficient and GDL methods, respectively.
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Figure 6: (a)(c): the final RE and DR values obtained by the six utilized methods in 11

experiments of the second series. (b)(d): The mean RE and DR values obtained by the

six methods in the second experimental series.

4.2. Real image experiments with nonhomogeneous noise

A series of test images of 512 × 512 or 256 × 256 pixels were utilized

for the image reconstruction problems. These images were generated by

combining 6 gray-scale images, all of which are widely used in the image

processing literature [31], with different levels of nonhomogeneous noise. In

our experiments, four types of nonhomogeneous noise were employed for each

image, constituting four series of experiments listed as follows.

Experiment 1 (E1): Nonhomogeneous Gaussian noise with extent δ. The

standard deviation of Gaussian noise increasing uniformly from 0 for lower-

right pixels to δ for upper-left pixels across the image. For each of the original

6 images, 8 noisy images of this type were generated, with noise extents

δ = 10.22, 30.66, 51.10, 61.32, 81.76, 102.20, 127.75, 153.30, respectively.

Experiment 2 (E2): Salt-pepper noise with extent p. Corrupting the image
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with p percentage of dead pixels with either maximum or minimum intensity

values. For each image, 6 noisy images of this type were utilized, with noise

extents p = 2, 6, 10, 12, 16, 20, respectively.

Experiment 3 (E3): Mixture of homogeneous Gaussian and salt-pepper

noise with extent (σ, p). Mixing the image with the combination of homoge-

neous Gaussian noise with deviation σ and salt-pepper noise with extent p.

For each image, 4 corrupted images of this type were used, with noise extents

(σ, p) = (20, 5), (20, 10), (40, 5), (40, 10), respectively.

Experiment 4 (E4): Mixture of nonhomogeneous Gaussian and salt-pepper

noise with extent (δ, p). Corrupting the image with the mixture of nonho-

mogeneous Gaussian noise with extent δ and salt-pepper noise with extent

p. For each image, 5 noisy images of this type were used, with noise extents

(δ, p) = (20.44, 4), (20.44, 10), (51.10, 4), (51.10, 10), (76.65, 10), respectively.

In each experiment, the dictionary was trained on the overlapping patches,

of 8 × 8 pixels (i.e., the input signals are with dimension d = 64), of input

images, and thus each experiment includes n = (256− 7)2 = 62, 001 patches

(all available patches from the 256×256 images, and every second patch from

every second row in the 512 × 512 images). In each of the experiments, the

dictionary D contains m = 256 atoms. For each utilized dictionary learning

method, the images were rebuilt by averaging the overlapping reconstructed

patches over the dictionary attained by the method.

Three of the current methods, DCT [2], K-SVDPε
[4] and BPFA [6], were

also applied to these images for comparison. The dictionary utilized by the

DCT method is the overcomplete DCT bases, while dictionaries of K-SVDPε
,

BPFA and GDL, were trained from the images. The randomly selected image
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Table 1: Summary of the PSNR results of the image experiments. The best result in each

experiment is highlighted. The last row is the average results of the four utilized methods

over all noise cases for each image.

Lena Barbara Boat

DCT K-SVD BPFA GDL DCT K-SVD BPFA GDL DCT K-SVD BPFA GDL

E1 26.77 26.99 22.96 27.55 24.44 24.69 23.73 24.02 25.10 25.28 20.07 25.54

E2 25.49 25.33 15.95 25.73 23.06 22.56 15.85 23.12 24.15 23.78 16.06 24.58

E3 25.59 25.69 18.87 26.33 23.26 23.15 18.02 23.52 24.18 24.10 19.72 24.94

E4 25.70 25.62 17.34 26.35 22.98 22.90 17.17 23.49 24.19 24.03 18.41 24.85

Average 25.89 25.91 18.78 26.49 23.44 23.32 18.69 23.54 24.41 24.30 18.57 24.98

Figureprint House Peppers

DCT K-SVD BPFA GDL DCT K-SVD BPFA GDL DCT K-SVD BPFA GDL

E1 21.79 22.14 23.12 22.67 26.45 27.03 23.83 28.79 24.62 25.10 23.48 25.93

E2 21.09 20.70 15.91 22.10 25.51 25.22 16.02 27.06 23.61 23.44 15.84 24.65

E3 21.18 21.12 18.71 22.40 25.73 25.67 19.60 27.37 23.72 23.84 18.39 24.89

E4 21.07 20.96 17.55 22.54 25.48 25.51 18.47 27.64 23.61 23.88 17.18 24.81

Average 21.28 21.23 18.82 22.43 25.80 25.86 19.48 27.72 23.89 24.06 18.72 25.07

patches were used as the initialization of the K-SVDPε
and GDL methods,

and the SVD-based initialization was used for BPFA. The K-SVDPε
and

GDL results were obtained by 10 iterations, and that of BPFA was achieved

by 30 iterations of Gibbs sampling. Since both DCT and K-SVDPε
need to

preset the parameter that evaluates the mean noise deviation of the entire

image pixels, we implemented both methods 10 times on each test image

under different initializations of this parameter and only recorded the best

one as the final result. The global sparsity parameter K of the proposed

GDL method was set as 15000 for all experiments.

The performance of each utilized method is quantitatively measured by

the average PSNR value of the reconstructed images in each series of E1,

E2, E3, E4 experiments for each of the 6 images, respectively. The results

are listed in Table 1. Besides, by looking through the numbers of atoms re-
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DCT, 23.4791dB KSVD, 23.966dB BPFA, 23.8128dB GDL,25.4063dB

Figure 7: Results on the Barbara image mixed with nonhomogeneous Gaussian noise with

extent 61.32. The panels from top to bottom: the reconstructed images, the dictionaries

and the atom-using-frequency figures obtained by the DCT, K-SVD, BPFA and GDL

methods, respectively.

quired for representing the image patches (i.e., the numbers of the non-zero

elements in the corresponding representation coefficients) and averaging the

results over the entire image, an atom-using-frequency figure, of the same res-

olution as the original image, can be achieved. For the atom-using-frequency

figures so constructed, the brighter is a pixel, the more atoms are assigned

to represent the image patches containing the pixel, and thus the more em-

phasis is placed on the region around the pixel by the corresponding method,

and vice versa. Therefore, such an atom-using-frequency figure qualitatively

reflects the intrinsic image structure explored by the utilized method.

For easy evaluation, Figures 7 and 8 depict the recovered images, along

with their PSNR values obtained by applying the DCT, K-SVD, BPFA and

GDL methods to two typical test images mixed with different types of noises,

respectively. The corresponding dictionaries and atom-using-frequency fig-

ures attained by these methods are also displayed in these figures. The
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DCT, 26.0907dB KSVD, 26.3176dB BPFA, 19.0266dB GDL,29.1157dB

Figure 8: Results on the House image corrupted by mixture of nonhomogeneous Gaussian

noise and salt-pepper noise with extents δ = 51.10 and p = 4. The panels from top to

bottom: the reconstructed images, the dictionaries and the atom-using-frequency figures

obtained by the DCT, K-SVD, BPFA and GDL methods, respectively.

advantage of the proposed method can be easily observed from these results

mainly in the following three-fold aspects. First, our algorithm best rebuilds

the original images among all employed methods. Specifically, as compared

with the DCT, K-SVD and BPFA methods, our method achieves the largest

PSNR values among all competing methods for each experiment. This ad-

vantage can also be visualized in the first rows of Figures 7 and 8. It can be

seen that by our method, the noise is most prominently removed from the

noisy images, e.g. the bookshelf of the Barbara image in Figure 7, and the

details of the original image are mostly recovered, e.g. the windows of the

House image in Figure 8 (the details can be better seen by zooming in onto

the images in the computer). These results show the excellent capability of

our algorithm in reconstructing the original images.

Second, the proposed GDL method more robustly attains the proper dic-

tionary underlying the images as compared with the other dictionary learning
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methods. This can be easily observed in the second rows of Figures 7 and 8.

The dictionaries attained by our method evidently capture more meaningful

features underlying the images and are least affected by the noise in all cases.

These results validate the capability of the proposed algorithm in properly

generating the dictionary for images corrupted by nonhomogeneous noises.

Third, the atom-using-frequency figures obtained by our method faith-

fully reflect the intrinsic structures underlying the images. From the third

rows of Figures 7 and 8, it can be observed that the atom-using-frequency

figures obtained by our method clearly depict the basic edge information un-

derlying the images. This is due to the fact that the patches around the image

edges are of relatively complicated structures, and our method thus adap-

tively assigns more atoms to represent these image patches. In comparison,

such meaningful structures are not so noticeably detected by the atom-using-

frequency figures of the other utilized methods in the experiments. These

results demonstrate the capability of the GDL method in detecting mean-

ingful structure information underlying the images at the global scale.

4.3. Stability testing experiments

In this section, we want to further evaluate the stability of the proposed

algorithm on different settings of global sparsity K and the initial coefficient

matrix A. Also, we want to demonstrate the details of how the sparsity in

the coefficient matrix changes in the iterative process of the column-updating

and row-updating of our algorithm, to further clarify its intrinsic mechanism.

Like Section 4.1, we also constructed a series of signals, each having 1500

20-dimensional signals, denoted as X = [x1,x2, · · · ,x1500] ∈ R20×1500, re-

spectively. The signals were generated by a linear combination of a dictio-
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nary D = [d1,d2, · · · ,d50] ∈ R20×50 and representation coefficients A =

[a1, a2, · · · , a1500] ∈ R50×1500, and mixed with Gaussian white noise with

standard deviation 0.02. Different from Section 4.1, however, the coefficient

matrix A has a more complicated sparsity structure: the number of nonzero

elements in each column ai of A is rounding from the Gaussian distribution

N(3, 3), and their positions are just randomly located. This means that the

groundtruth sparsity of the coefficient matrix is not known in prior.

We employed the following two series of initializations of our algorithm

for experiments: (1) The first 60 columns a1, a2, · · · , a60 of A are randomly

valued, and the rest 1440 columns are simply set as zero vectors (the corre-

sponding global sparsity parameter K is thus 60×50 = 3000). (2) A series of

coefficient matrixes, with sparsities varying from 3000 to 6000 with interval

100, are specified, respectively. The nonzero entries of each coefficient matrix

is randomly located. By (1) initialization, we want to depict the capability

of our algorithm on adaptively and dynamically adjusting the sparsity (i.e.,

ki in Eqn. (1)) of coefficients to appropriately represent signals, even on such

singular specification; and by (2) initializations, we aim to show the stability

of our algorithm with respect to different settings of the global sparsity K

and the initial coefficient matrix A.

The left upper row of Figure 9 compares the sparsity diversity of the

representation coefficients for all 1500 input signals in the 1, 3, 8, 50 iter-

ations of our algorithm under (1) initialization, respectively; and the left

lower row of the figure shows the standard deviations of the reconstructed

signals from the original ones in these steps, correspondingly. It can be eas-

ily observed from this figure that although only the first 60 columns of A
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Figure 9: The left upper row: the sparsity diversity of the representation coefficients for

all 1500 input signals in the 1, 3, 8, 50 iterations of the proposed algorithm under (1)

initialization. The left lower row: the standard deviations of the reconstructed signals

from the original ones in the 1, 3, 8, 50 iterations, respectively. The right upper and lower

rows: the corresponding performance of the Efficient method.

are pre-specified as nonzeros, the nonzero elements is to be automatically

scattered to all columns of A only after several iterations of the proposed al-

gorithm. The representational errors for the signals are evidently decreasing

during the implementation process of our algorithm, implying the nonzero

elements of A tend to be gradually rearranged to the proper positions based

on the various structures of the entire signal set. As comparison, we also

implemented the Efficient method [7], which is constructed on the l1-norm

model Pλ, on this signal set (we have tried 10 different λs and selected the

best one as final result). The right upper and lower rows of Figure 9 depict

the diversity of the coefficient sparsity and standard deviations of signals in

the 1, 3, 8, 50 iterations of this method. Since this l1 minimization method

pre-specifies the penalty λ on Pλ while not the sparsity k on Pk, the spar-

sities of signals can also be tuned in the iterations to a certain extent. It,

however, always needs more nonzero elements (3.56 versus 2 in average) to

achieve the comparable deviation (0.343 versus 0.338 in average) with the

proposed method, as clearly depicted in the figure. This substantiates that
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Figure 10: The RE and DR curves of the proposed algorithm with global sparsity param-

eter K varying from 3000 to 6000 with interval 100.

the introduced global sparsity constraint in Eqn. (1) does bring a flexible

sparsity control mechanism to dictionary learning, and the GDL algorithm

tends to adaptively represent different signals with proper sparsities and fit-

tingly recover the original signals.

Figure 10 depicts the performance of the proposed GDL algorithm, in

terms of RE and DR values, respectively, under (2) initializations. It can be

observed that the DR values of all experiments are stabilized at the interval

between 88 and 98. Besides, the RE values tend to be decreasing with K

increasing since more nonzero elements are involved in the coefficient matrix,

while after around K = 5000, the performance also becomes not sensitive to

the preset values of K. This verifies that the proposed algorithm can perform

stably well under different settings of the global sparsity K.

5. Conclusion and discussion

In this paper we have proposed a novel dictionary learning method for

signals. Instead of enforcing uniform sparsity constraint on the coefficient

vector of each input signal like the previous methods, the new method im-

poses global sparsity constraint on the coefficient matrix of all training sig-

nals, which makes the new method capable of adaptively assigning atoms for

representing the various signals and fitting to the intrinsic signal structures
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at the global scale. An efficient algorithm has also been correspondingly de-

veloped, which is easy to be implemented based on the sparse coding and

sparse PCA techniques, and is guaranteed to be convergent. Based on the

experimental results on a series of signal and image data sets, it has been

substantiated that as compared with the current dictionary learning meth-

ods, the proposed method can more faithfully deliver the ordinary dictionary

and properly reconstruct the input signals. Besides, it has been theoretically

analyzed and empirically verified that by utilizing the proposed method, the

atoms of the dictionary can be appropriately adapted to represent signals

with various intrinsic complexities, and the frequency of atom-using can fa-

cilitate revealing the intrinsic structure underlying the input signals.

5.1. On computational complexity of GDL

Here we want to briefly discuss the complexity of the proposed method.

The computational complexity of the proposed algorithm is essentially deter-

mined by the iterative process between the column and row updating steps.

By employing the recent sparse coding and sparse PCA technologies, e.g.,

OMP [25] and sPCA-rSVD algorithms [28], respectively, both steps can be

efficiently performed, requiring around O(dnmk̂) × T computational cost,

where k̂ is the maximal value of kc
i s, and T is the iteration number of the

algorithm2. That is, the computational time of the proposed algorithm in-

2In each iteration of the proposed algorithm, the optimization model (2) needs to be

solved for i = 1, · · · , n, each requiring O(dmkc
i
) cost from utilizing the OMP algorithm [4,

25], and the model (3) needs to be solved for i = 1, · · · ,m, each costing O(dn) computation

from employing the sPCA-rSVD algorithm [28]. Thus, the total computational complexity

of the proposed algorithm is around O(dnmk̂)× T .
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creases linearly with the dimensionality and the size of the input signals, as

well as the number of atoms in the dictionary. The computational complex-

ity of the proposed algorithm is comparable to that of the current dictionary

learning algorithms [4, 5, 12].

It should be noted that both the OMP and sPCA-rSVD methods em-

ployed in steps 2.1 and 2.2 of the proposed algorithm contain only simple

computations. No complicated operations like matrix inverse calculation,

eigenvalue decomposition and equation set solving are involved. The pro-

posed method thus can always be efficiently implemented. For example, as

compared with the Efficient method [7] constructed on the l1 minimization

problem, which costed 200.25s and 283.97s in average in two series of signal

experiments, the proposed method only spent 82.87s and 85.48s.

5.2. On potential applications of GDL

In the paper, we demonstrate the applications of the proposed method

to image denoising and edge detection. There are actually many other prac-

tical tasks the dictionary learning techniques can handle, including image

deblurring, image impainting, image super-resolution, image classification,

and etc. [32, 33]. Here we want to list some of the potential applications of

the proposed method based on its specific adaptive-sparsity-arranging capa-

bility: (1) Image content assessment: Through adjusting the global sparsity

K of the proposed method on a certain image such that the reconstruction

error is smaller than some pre-specified small threshold, the magnitude of

K so attained can then be used to measure the complexity of the content

contained in the image. For example, the cartoon image generally contains

only simple strokes and is thus expected to be perfectly reconstructed under
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a small global sparsity K by our method, while a real image is always con-

tains more complicated contexts, and has to be finely reconstructed under a

comparatively large sparsity K by our method. Thus by comparing the value

of the sparsity K so attained, we can then make a quantitative image content

assessment, which is potentially useful for image categorization and taxon-

omy. (2) Object location: First learn a dictionary from images containing

specific objective, e.g., faces, and then represent a new image under a small

sparsity K by the proposed method under this dictionary. Since our method

can adaptively arrange the K nonzero elements into the right positions of the

coefficient matrix to make the representation error of the entire signals possi-

bly small, these nonzero entries are expected to be adapted to the face area of

the image since this area is more hopeful to be exactly reconstructed by the

dictionary learned from faces. By detecting the atom-using-frequency image,

the face can then be located in the image. (3) Virtual attention simulation:

It should be noted that when the global sparsity K is set small, only small

area of the image can be emphasized by virtue of the atom-using-frequency

image obtained by our method. Such area reflects the most noticeable part

in the image by humans, e.g., edges and peaks of the objects. When K is

gradually specified larger, the atom-using-frequency image attained by our

method tends to highlight more and more parts of the input image. This

process complies with the real virtual phenomenon of human being. That is

to say, it is hopeful to employ the proposed method to simulate the virtual

attention mechanism of human by performing the proposed method under

varying sparsities K. We thus expect to extract the physiological explanation

of our method in our future research.
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5.3. On future investigations of GDL

Other problems required to be further investigated include: (1) the ef-

fectiveness of the proposed algorithm requires to be further testified in real

signals with complicated noise types, e.g., the poisson noise; (2) Qualita-

tively speaking, the more complex is the entire structure or the less noise

is contained in an image, the larger the global sparsity parameter K should

be properly preset. Investigation, however, still needs to be made to design

an automatic quantitative parameter selection strategy to further improve

the quality of the proposed method; (3) Research is needed to further im-

prove the efficiency of the proposed algorithm by virtue of the online [14] or

convexification [7] techniques.
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