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Generalization Performance of Fisher Linear
Discriminant Based on Markov Sampling
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Abstract— Fisher linear discriminant (FLD) is a well-known
method for dimensionality reduction and classification that
projects high-dimensional data onto a low-dimensional space
where the data achieves maximum class separability. The previ-
ous works describing the generalization ability of FLD have usu-
ally been based on the assumption of independent and identically
distributed (i.i.d.) samples. In this paper, we go far beyond this
classical framework by studying the generalization ability of FLD
based on Markov sampling. We first establish the bounds on the
generalization performance of FLD based on uniformly ergodic
Markov chain (u.e.M.c.) samples, and prove that FLD based on
u.e.M.c. samples is consistent. By following the enlightening idea
from Markov chain Monto Carlo methods, we also introduce a
Markov sampling algorithm for FLD to generate u.e.M.c. samples
from a given data of finite size. Through simulation studies
and numerical studies on benchmark repository using FLD, we
find that FLD based on u.e.M.c. samples generated by Markov
sampling can provide smaller misclassification rates compared to
i.i.d. samples.

Index Terms— Fisher linear discriminant (FLD), generalization
performance, Markov sampling, uniformly ergodic Markov
chain.

I. INTRODUCTION

IN THE past, most works describing the generalization abil-
ity of learning algorithms have been based on the assump-

tion of independent and identically distributed (i.i.d.) samples.
However, independence is a very restrictive concept in several
ways (see [1] and [2]). First, it is often an assumption, rather
than a deduction, based on observations. Second, it is an “all-
or-nothing” property in the sense that two random variables
are either independent or they are not—the definition does not
permit an intermediate notion of being nearly independent [2].
As a result, many of the proofs based on the assumption that
the underlying stochastic sequence is i.i.d. are rather “fragile.”
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In addition, this i.i.d. assumption cannot be strictly justified in
real-world problems, and many machine learning applications
such as market prediction, system diagnosis, and speech recog-
nition are inherently temporal in nature and, consequently,
not i.i.d. processes [1]. Therefore, relaxations of such i.i.d.
assumption have been considered for quite a while in both the
machine learning and statistics literature. For example, Yu [3]
established the rates of convergence for empirical processes of
stationary mixing sequences. Modha and Masry [4] studied the
minimum complexity regression estimation with m dependent
observations and strongly mixing observations, respectively.
Lozano et al. [5] proved that regularized boosting based on
β-mixing processes are consistent. Vidyasagar [2] considered
the notions of mixing and proved that most of the desirable
properties (e.g., probably approximately correct, uniform con-
vergence of empirical means uniformly in probability) of i.i.d.
sequences are preserved when the underlying sequence is a
mixing sequence. Kontorovich and Ramanan [6] established
the concentration inequalities for dependent random variables
via the martingale method. Mohri and Rostamizdeh [7] stud-
ied Rademarcher complexity bounds for non-i.i.d. processes.
Steinwart and Christmann [8] considered the fast learning
rates of regularized empirical risk minimizing algorithm for
α-mixing process. Smale and Zhou [9] considered an online
learning algorithm based on Markov sampling. Steinwart et
al. [1] proved that the support vector machine for both
classification and regression are consistent only if the data-
generating process satisfies a certain type of law of large
numbers (e.g., weak law of large numbers for events, strong
law of large numbers for events). Sun and Wu [10] studied the
regularized least-squares regression with dependent samples.
Zou et al. [11] established the bounds on the generalization
performance of the empirical risk minimization (ERM) algo-
rithm with strongly mixing observations.

Fisher linear discriminant (FLD) is a well-known method
for dimensionality reduction and linear classification, which
has been studied for a long time under different cases
(see [12], [16]–[19]). For example, Friedman [13] proposed
regularized discriminant analysis. Hastie et al. [14], [15]
proposed mixture discriminant analysis (MDA) and flexible
discriminant analysis (FDA). More recently, Hou et al. [20]
studied the complexity-reduced scheme for feature extraction
with linear discriminant analysis. Unlike these works, in this
paper, we study the generalization ability of the FLD based
on dependent samples. There have been many dependent
(non-i.i.d.) sampling mechanisms (e.g., α-mixing, β-mixing)
studied in machine learning literature (see [1]–[4], [11]–[22]).
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In this paper, we focus only on an analysis in the case when the
training samples of the FLD are Markov chains, the reasons
for which are as follows. First, in real-world problems,
Markov chain samples appear so often and naturally in
applications such as biological (DNA or protein) sequence
analysis, content-based web search, market prediction, and
so on. See [22] for examples of learning from Markov chain
samples. In addition, when the size of the dataset is very
large, learning is very time consuming, and we usually sample
randomly a part of samples from the dataset of large size
and learn from the part samples. Then a problem is posed:
how to sample a part of samples from the large dataset such
that FLD has good generalization performance. For these
purposes, in this paper we study the generalization ability
of FLD based on uniformly ergodic Markov chain (u.e.M.c.)
samples and introduce a Markov sampling algorithm for
FLD (see Algorithm 1) to generate u.e.M.c. samples from a
given dataset of finite size by following the enlightening idea
from Markov chain Monto Carlo (MCMC) methods [23],
[24]. Through simulation studies and numerical studies on
benchmark repository using the FLD method, we find that the
FLD algorithm based on Markov sampling introduced in this
paper can provide smaller misclassification rates compared
to i.i.d. sampling from the same dataset, in particular for
a large dataset. This implies that Markov sampling from a
given dataset of finite large size can be considered to be a
new method of manipulating the training samples [25] such
that the learning performance of FLD method is improved.

The rest of this paper is organized as follows. In
Section II, we introduce some useful definitions and notations.
In Section III, we present the results on the generalization per-
formance of FLD based on u.e.M.c. samples. In Section IV, we
introduce a Markov sampling algorithm to generate Markov
chain samples and present the simulation and numerical stud-
ies on benchmark repository of the FLD method. Finally, we
conclude this paper in Section V.

II. PRELIMINARIES

In this section we introduce the definitions and notations
used throughout this paper.

A. Uniformly Ergodic Markov Chains

Suppose (Z,S) is a measurable space; a Markov chain is
a sequence of random variables {Zt }t≥1 together with a set
of transition probability measures Pn(zn+i |zi ), zn+i , zi ∈ Z .
It is assumed that

Pn(zn+i |zi )
.= P

{
Zn+i = zn+i |Z j , j < i, Zi = zi

}
.

Then Pn(zn+i |zi ) denotes the probability that the state zn+i ,
after n time steps, starting from the initial state zi at time i .
It is common to denote the one-step transition probability by

P1(zi+1|zi )
.= P

{
Zi+1 = zi+1|Z j , j < i, Zi = zi

}

so that P1(zi+1|zi ) = P(zi+1|zi ). The fact that the transition
probability does not depend on the values of Z j prior to time i
is the Markov property

Pn(zn+i |zi ) = P {Zn+i = zn+i |Zi = zi }.

This is commonly expressed in words as “given the present
state, the future and past states are independent.”

Given two probabilities ν1, ν2 in the space (Z,S), we define
the total variation distance between the two measures ν1, ν2
as ||ν1 − ν2||T V

.= supA∈S |ν1(A) − ν2(A)|. Thus we have the
following definition of u.e.M.c. [21], [26], [27].

Definition 1: A Markov chain {Zt}t≥1 is said to be uni-
formly ergodic if there exist constants γ < ∞ and 0 < ρ1 < 1
such that for any z ∈ Z, and any n ≥ 1

||Pn(·|z) − π(·)||T V ≤ γρn
1

where π(·) is the stationary distribution of {Zt }t≥1.
Remark 1: A weaker condition than uniformly ergodic is

V -geometrically ergodic (see Definition 2 of Appendix A).
The difference between V -geometrically ergodic and uni-
formly ergodic is that here the total variation distance between
the n-step transition probability Pn(·|z) and the invariant
measure π(·) approaches zero at a geometric rate multiplied by
V (z) (see [2], [21]). Thus the rate of geometric convergence
is independent of z, but the multiplicative constant is allowed
to depend on z. Especially, if the space Z is finite, then all
irreducible and aperiodic Markov chains are V -geometrically
(in fact, uniformly) ergodic. And a Markov chain is
V -geometrically ergodic if the condition that V (·) has finite
expectation with respect to the invariant measure π holds.

B. Fisher Linear Discriminant (FLD)

FLD is a well-known method for dimensionality reduction
and classification that projects high-dimensional data onto
a low-dimensional space where the data achieves maximum
class separability (see [28]–[31]). FLD gives a projection
matrix w that reshapes the scatter of a dataset D to max-
imize class separability, which is defined as the ratio of
the between-class scatter matrix to the within-class scatter
matrix. That is, let {xi}N

i=1 be a set of N column vectors
of dimension h. The mean of the data set D is defined as
μ = 1/N

∑N
i=1 xi . There are k classes {C1, C2, . . . , Ck}. The

mean of the i th class (1 ≤ i ≤ k) containing Ni members
is μi = 1/Ni

∑
x∈Ci

x. The between-class scatter matrix is
Sb = ∑k

i=1 Ni (μi − μ)(μi − μ)T . The within-class scatter
matrix is defined as Sw = ∑k

i=1
∑

x∈Ci
(x − μi )(x − μi )

T .
The mixture scatter matrix is the covariance matrix of all
samples, regardless of their class assignments, and it is given
by Sm =∑k

i=1(xi − μ)(xi − μ)T = Sw + Sb. The purpose of
FLD method is to consider maximizing the quantity

J (w) = wT Sbw
wT Sww

. (1)

However, in practice, the small sample size (SSS) problem
is often encountered if Sw in (1) is singular [32]. Therefore, the
maximization problem of (1) can be difficult to solve. In order
to overcome this problem, the term ε I is added, where ε is a
small positive number and I the identity matrix of proper size.
That is, for the case of SSS problem, one is to maximize the
following quantity:

J (w) = wT Sbw
wT (ε I + Sw)w

(2)
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which can be solved without any numerical
problems [33].

III. BOUNDS OF GENERALIZATION ABILITY

In this section, we estimate the bounds on the generalization
performance of FLD based on u.e.M.c. samples by following
the enlightening idea of [32]. In [32], Zhang and Riedel
established the connection between the solution of FLD and
the solution of empirical risk minimization with the least-
squares loss function. Namely, for given a set z = {zi =
(xi , yi )}m

i=1 of m training examples drawn from the probability
space Z = X ×Y . Here, the probability measure ρ is defined
and unknown, and xi are the h-dimensional inputs. In this
paper, we mainly consider two-class problems, that is, k = 2;
then we have Y = {−1, 1}. For simplicity, in this paper we
assume x has zero mean, i.e., for any x ∈ X , E(x) = 0.

We define fρ as the best function that minimizes the least-
squares expected error over all possible measure functions

fρ = arg min
f

E( f ) = arg min
f

∫

Z
(y − f (x))2dρ. (3)

Since the probability measure ρ is unknown and so is fρ ,
the minimizer of the expected error (3) cannot be com-
puted directly. According to the ERM principle [38], we
then consider function fz as an approximation of the target
function fρ

fz = arg min
f ∈H

Em( f ) = arg min
f ∈H

1

m

m∑

i=1

(yi − f (xi ))
2 (4)

where H is a hypothesis space. In this paper, we assume that
H is linear functions set

H =
{

f | f (x) = wT x, ||w||2 ≤ a, ||x||2 ≤ b
}

(5)

where x ∈ X h . Then we can rewrite (4) as

wz = arg min
w

1

m

m∑

i=1

(
yi − wT xi

)2
. (6)

Zhang and Riedel [32] proved that the solution of (6) is the
same as the solution of (1).

Lemma 1: The linear system derived by the least-squares
criterion (6) is equivalent to the one derived by the Fisher’s
criterion (1), up to a constant, in two-class problems.

Remark 2: The relationship between least-squares regres-
sion and FLD has been well known for a long time. There
are good reviews in [33]–[35]. Fisher already pointed out its
connection to the regression solution in [36].

Therefore, the central question of estimating the generaliza-
tion ability of FLD based on u.e.M.c. samples is how well fz
really approximate fρ . In other words, one tries to learn the
function fz that is as close as possible to the optimal function
fρ for the sample set z. For this reason, we are to estimate
the excess error E( fz) − E( fρ). If fρ ∈ H, simplifications
will occur. But in general, we will not even assume that
fρ ∈ C(X ) [37], C(X ) is the Banach space of continuous
functions on X with the norm || f ||∞ = supx∈X | f (x)|. Then
we will have to consider another target function fH in H: fH

is a function minimizing the error E( f ) over f ∈ H. Thus we
have

E( fz) − E( fρ) = {E( fz) − E( fH)
}+ {E( fH) − E( fρ)

}
. (7)

The first term of the right-hand side of (7) depends on the
choice of H and the sample set z. We call it the sample error.
The second term depends on H and ρ but is independent
of sampling. We call it the approximation error [37], which
measures how well the functions in H can approach the target
function fρ . Since ρ is not known, in this paper we focus
only on the sample error. The approximation error for the
least-squares loss function is well understood in [37]. Thus
by Lemma 1 and (7), we establish the bound on the excess
error of FLD (1) based on u.e.M.c. samples.

Theorem 1: Let {zi }m
i=1 be u.e.M.c. samples and AH,ρ( f ) =

E( fH) − E( fρ). Set

m(β) =
⌊

m
⌈{

8m/ ln(1/ρ1)
} 1

2
⌉−1⌋

where �u�(�u	) denotes the greatest (least) integer less
(greater) than or equal to u. Then for any 0 < η < 1, the
inequality

E( fz) − E( fρ) ≤ ε(m, η) + (ab + 1)

2

√
ln(C1/η)

ln(1/ρ1)
1
2 m

1
2

+ AH,ρ( f ) (8)

holds true with probability at least 1 − 2η provided that m ≥
max{m1, m2, m3}, where C0 is a constant independent of m
or η, m1 = {ln(1/ρ1)/8, 128/ln(1/ρ1)

}
, C1 = 1 + γ e−2

m2 = max

⎧
⎨

⎩
1

6(ab + 1)

√
ln(C1/η)

ln(1/ρ1)
1
2

,
1

6

√√
√
√2

3
2 ln(C1/η)

ln(1/ρ1)
1
2

⎫
⎬

⎭

m3 = ab

9(ab + 1)

√√
√
√ 2

3
2 C0

ln(1/ρ1)
1
2

m4 = 2(ab + 1)
[8C0a2b2(ab + 1)2

m(β)

] 1
4

and ε(m, η) ≤ max

⎧
⎨

⎩
2(ab + 1)2

[
2 ln
(

C1/η)

m(β)

] 1
2

, m4

⎫
⎬

⎭
.

Remark 3: To estimate the excess error of FLD (1) based
on u.e.M.c. samples, in Theorem 1 we introduce the quantity
m(β), which is called the “effective number of observations”
for u.e.M.c. samples. By Theorem 1, we can find that m(β)

plays the same role in our analysis as that played by the
number m of observations in the i.i.d. case (see [38]–[40]).
To our knowledge, this result here is the first work of FLD
for u.e.M.c. samples in this topic.

For the proof of Theorem 1, refer to Appendix B. Since
AH,ρ( f ) = 0, if fρ ∈ H, by Theorem 1, and using the fact
that �t	 ≤ 2t for all t ≥ 1 and �t� ≥ t/2 for all t ≥ 2, we have
the following bound on the learning rate of FLD (1) based on
u.e.M.c. samples.
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Corollary 1: Let {zi }m
i=1 be u.e.M.c. samples. If fρ ∈ H;

then for any 0 < η < 1, the inequality

E( fz) − E( fρ) ≤ (ab + 1)

2

√
ln(C1/η)

ln(1/ρ1)
1
2 m

1
2

+ 4(ab + 1)

[
2
√

2C0a2b2(ab + 1)2

m
1
2 (ln(1/ρ1))

1
2

] 1
4

holds true with probability at least 1 − 2η provided that
m ≥ max{m1, m2, m3, m′

4}, where C0, C1, m1, m2, and m3
are defined as in Theorem 1, and

m′
4 = (ln(C1/η))4

132 ln(1/ρ1)C2
0 [ab(ab + 1)]4

.

By Corollary 1, we can conclude that E( fz) − E( fρ) → 0
as m → ∞ and fρ ∈ H. This implies that, in this case, FLD
(1) based on u.e.M.c. samples is consistent.

However, by the statistical learning theory [38], solving
(4) often leads to overfitting data if the complexity of the
hypothesis space is high, and, when the sample size is smaller
than the dimensionality, it is an ill-posed problem and the
solution is not unique. For these reasons, another purpose of
this paper is to estimate the excess error of FLD (2) based on
u.e.M.c. samples as follows.

Zhang and Riedel [32] proved that the solution of (2)
is the same as the solution of the following least-squares
regularization regression (see [41], [42]):

fz,λ = arg min
f ∈H

1

m

m∑

i=1

(yi − f (xi ))
2 + λ|| f ||2H (9)

where λ is a regularization parameter. || f ||H is a norm of the
space H. Since in this paper we assume that the set H is a
linear functions space, then we can rewrite (9) as

wz,λ = arg min
w

1

m

m∑

i=1

(yi − wT xi )
2 + λwT w. (10)

Zhang and Riedel [32] proved that the solution of (2) is the
same as the solution fz,λ of (9). To establish the bound on the
excess error of FLD (2) based on u.e.M.c. samples, we first
introduce a regularizing function f̃λ ∈ H. This is arbitrarily
chosen and depends on λ. A special and standard choice is

fλ = arg min
f ∈H

{
E( f ) − E( fρ) + λ|| f ||2H

}
.

By the definition of fz,λ, for any f̃λ ∈ H, there holds
Em( fz,λ) + λ|| fz,λ||2H ≤ Em( f̃λ) + λ|| f̃λ||2H. Hence we have
that, for any f̃λ ∈ H, and fz,λ be defined as (9)

E( fz,λ) − E( fρ)

≤ E( fz,λ) − E( fρ) + λ|| fz,λ||H
≤
{
E( fz,λ) − Em( fz,λ) + Em( f̃λ) − E( f̃λ)

}

+
{
E( f̃λ) − E( fρ) + λ|| f̃λ||H

}
. (11)

In this way, we decompose the excess error E( fz,λ) − E( fρ)
into two parts: the sample error (the first term), and the

regularization error (the second term) which is dependent on
the choose of the space H. We establish the following bound
on excess error of FLD (2) based on u.e.M.c. samples.

Theorem 2: Let D̃(λ) = E( f̃λ) − E( fρ) + λ|| f̃λ||2H for
any f̃λ ∈ H. Let {zi }m

i=1 be u.e.M.c. samples. Then for any
0 < δ < 1, the inequality

E( fz,λ) − E( fρ) ≤
⎛

⎝a

√
D̃(λ)

λ
+ 1

⎞

⎠

2√
2 ln

[
(1 + γe−2)/δ

]

m(β)

+4(1 + λ)2

λ2 ·
[

C0(1 + λ)2

λ2m(β)

] 1
4

+ D̃(λ)

holds true with probability at least 1−2δ provided that m(β) ≥
max{m̃, m̂}, where m̂ = 44(1 + λ)10/(34λ6)[a

√
D̃(λ) + √

λ]8,
and

m̃ =
{

ln
[(

1 + γe−2
)
/δ
]2

λ2

C0(1 + λ)2 ,
16C0(1 + λ)2

81λ2

}

where C0 and m(β) are defined as in Theorem 1.
For the proof of Theorem 2, refer to Appendix C. In

Theorem 2, we present the bound on the generalization ability
of FLD (2) based on u.e.M.c. samples. In particular, if fρ ∈ H,
by Theorem 2, we can conclude that as m → ∞, E( fz,λ) −
E( fρ) → 0. This implies that in this case FLD (2) based on
u.e.M.c. samples is consistent. Different from the previously
known results in [32], in this paper, we study the bounds on
the excess error of FLD based on u.e.M.c. samples. In other
words, in this paper we generalize this i.i.d. classical results
of FLD to the case of u.e.M.c. samples.

IV. MARKOV SAMPLING AND NUMERICAL STUDIES

In this section, we introduce a Markov sampling algorithm
such that we can generate u.e.M.c. from a given dataset. Then
we give numerical studies on the learning performance of FLD
method based on Markov sampling, and give some useful
discussions.

A. Markov Sampling Algorithm

In this subsection, we introduce a Markov sampling algo-
rithm for FLD to generate u.e.M.c. samples from a given
dataset S1 of finite size. Here m%2 denotes the remainder
of m divided by 2, m is the number of training samples.

We can summarize Algorithm 1 as first computing
the acceptance probability (or transition probability) α =
min{1, e−L( f0,z∗)/e−L( f0,zt )},L( f, z) = ( f (x) − y)2 and then
accepting the candidate sample z∗ with probability α. By
Algorithm 1, we can generate a sequence z1, z2, . . . , z p ,
p ∈ N. Since the size of dataset S1 is finite, and the acceptance
probability α is always positive, by the theory of Markov
chains in [21], we can conclude that {z1, . . . , z p} is a u.e.M.c.
sequence.

Remark 4: To define the transition probability α, we
introduce two technical conditions: the preliminary learning
model f0, and the function L( f, z) = ( f (x) − y)2. This is
because under the two technical conditions, we can compute
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Algorithm 1 Markov Sampling for FLD

Step 1: Draw randomly N1 (N1 ≤ m) samples {zi , i =
1, . . . , N1} from the data S1. Use FLD to train
these samples of size N1, and obtain a pre-
liminary learning model f0. Set m+ = 0 and
m− = 0.

Step 2: Draw randomly a sample from S1 and denote
it the current sample zt . If m%2 = 0, then set
m+ = m+ + 1 if the label of zt is +1. Set
m− = m− + 1 if the label of zt is −1.

Step 3: Draw randomly another sample from S1 and
denote it the candidate sample z∗.

Step 4: Calculate the ratio α of e−L( f0,z) at the sam-
ple z∗ and the current sample zt , α =
e−L( f0,z∗)/e−L( f0,zt ) where L( f, z) = ( f(x) −
y)2.

Step 5: If α ≥ 1, accept the sample z∗ and set zt+1 =
z∗, m+ = m+ + 1 if the label of zt is +1, or
set m− = m− + 1 if the label of zt is −1. If
α < 1, with the probability α accept the sample
z∗ and set zt+1 = z∗, m+ = m+ +1 if the label
of zt is +1, or set m− = m− + 1 if the label of
zt is −1.

Step 6: If m+ < m
2 or m− < m

2 then return to Step 3,
else stop it.

easily the transition probability α and α is always positive.
Different from MCMC algorithms, Algorithm 1 is a method of
generating u.e.M.c. samples from a given data with finite size,
and does not use the information of probability distribution of
training samples (since the probability distribution of training
samples is unknown). In addition, in order to generate the
balance training samples, in Algorithm 1 we introduce the
notations m+ and m−.

B. Simulation Datasets

We first conduct simulation study on the learning perfor-
mance of FLD based on u.e.M.c. samples generated from a
given data S2 by Algorithm 1 and random sampling from the
same data S2, respectively.

The data S2 was generated as follows: the input values
xi , i = 1, 2, . . . , 11 were generated from normal distribution
N(0, 1) such that x11 = x1 + 2x2 + 3x3 + 4x4 + 5x5 + ξ ,
where ξ was generated from normal distribution N(0, σ ),
σ = 1, 2, 3, 4. The outputs were generated by sgn(ξ), where
sgn(ξ) is defined as sgn(ξ) = 1 if ξ ≥ 0 and sgn(ξ) = −1
if ξ < 0. Then, the data S2 of size 10 000 was generated
randomly, and a test samples set S0 of size 300 was also
generated separately according to identical input and output
distributions.

For the case of random sampling, we decompose the exper-
iment into two steps: First, a set ST of m training samples
was generated randomly from the data S2. We use FLD to
train the training samples in ST , and then we test it on the
test samples set S0. Second, after all experiments had been
repeated for 100 times, the misclassification rates of FLD are

TABLE I

MISCLASSIFICATION RATES FOR 300 TRAINING SAMPLES

σ MR (i.i.d.) MR (Markov)

1 0.0664 ± 0.0145 0.0416 ± 0.0128

2 0.0474 ± 0.0130 0.0211 ± 0.0092

3 0.0446 ± 0.0125 0.0295 ± 0.0103

4 0.0418 ± 0.0116 0.0266 ± 0.0096

TABLE II

MISCLASSIFICATION RATES FOR 500 TRAINING SAMPLES

σ MR (i.i.d.) MR (Markov)

1 0.0670 ± 0.0141 0.0358 ± 0.0115
2 0.0464 ± 0.0100 0.0388 ± 0.0074
3 0.0341 ± 0.0104 0.0225 ± 0.0075
4 0.0307 ± 0.0104 0.0234 ± 0.0082

presented in Tables I and II, where “MR (i.i.d.)” denotes the
misclassification rate of FLD based on random sampling.

For the case of Markov sampling, we first generate a set S′
T

of m training samples by Algorithm 1. Then we use again FLD
to train these Markov chain samples in S′

T , and test it on the
same test set S0. After all experiments had been repeated for
100 Markov chain sample sets, the misclassification rates are
presented in Tables I and II, where “MR (Markov)” denotes
the misclassification rate of FLD based on Markov sampling.

Remark 5: Tables I and II show that FLD based on Markov
sampling can present obviously smaller misclassification rates
compared to random sampling for both 300 and 500 training
samples. In addition, the input samples xi , i ≥ 1 of data S2
are generated according to the normal distribution N(0, 1).
For other distributions such as uniform distribution, expo-
nential distribution, and other size of the training samples,
we can also obtain similar results as those presented in
Tables I and II. Since FLD is a well-known method for
dimensionality reduction and classification by projecting high-
dimensional data onto a low-dimensional space where the data
achieves maximum class separability, as the variance or noise
of the training samples is larger, we can easily use the FLD
method to project these samples onto a low-dimensional space
and the samples have maximum class separability. Therefore,
for the simulation dataset, the misclassification rates of FLD
method become smaller as the variance or noise of the training
samples gets bigger.

C. Benchmark Datasets

In this subsection, we give an extensive numerical studies on
the learning performance of FLD based on Markov sampling
for a benchmark repository. The benchmark repository con-
sists of 13 real-world datasets from UCI-abalone, UCI-magic,
UCI-pageblocks, UCI-shuttle, UCI-mushrooms, UCI-adult,
UCI-gisette (see http://archive.ics.uci.edu/ml/datasets.html),
DoubleUSPS(0,2), DoubleUSPS(3,8), DoubleUSPS(0,9) (see
http://www.cs.nyu.edu/roweis/data.html), Waveform, Splice,
and Image (see http://www.fml.tuebingen.mpg.de/Members/ra
etsch/benchmark). We present the information on these
datasets in Table III. All these data in the benchmark repository
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TABLE III

GENERAL INFORMATION ABOUT BENCHMARK DATASETS

Dataset Training Size Test Size Input Dimension

UCI-abalone 2089 2088 8

UCI-magic 12 680 6340 10

UCI-pageblocks 3649 1824 10

UCI-shuttle 43 500 14 500 9

Waveform 4600 400 21

Splice 20 000 43 500 60

Image 26 000 20 200 18

UCI-mushrooms 8124 8124 112

UCI-adult 802 802 123

DoubleUSPS(0,2) 1100 1100 256

DoubleUSPS(3,8) 1100 1100 256

DoubleUSPS(0,9) 1100 1100 256

UCI-gisette 6000 6000 5000

TABLE IV

MISCLASSIFICATION RATES FOR 300 TRAINING SAMPLES

Dataset MR (i.i.d.) MR (Markov)

UCI-abalone 0.2326 ± 0.0050 0.2321 ± 0.0070
UCI-magic 0.2138 ± 0.0064 0.2127 ± 0.0069
UCI-pageblocks 0.0980 ± 0.0077 0.0868 ± 0.0080
UCI-shuttle 0.0692 ± 0.0081 0.0690 ± 0.0109
Waveform 0.1937 ± 0.0112 0.1654 ± 0.0170
Splice 0.1976 ± 0.0112 0.1921 ± 0.0082
Image 0.1759 ± 0.0133 0.1714 ± 0.0108
UCI-mushrooms 0.0060 ± 0.0045 0.0051 ± 0.0035
UCI-adult 0.2257 ± 0.0124 0.2219 ± 0.0115
DoubleUSPS(0,2) 0.1417 ± 0.0247 0.1376 ± 0.0260
DoubleUSPS(3,8) 0.1722 ± 0.0303 0.1694 ± 0.0285
DoubleUSPS(0,9) 0.1230 ± 0.0282 0.1179 ± 0.0249
UCI-gisette 0.0535 ± 0.0051 0.0529 ± 0.0115

are two-class real-world data except UCI-abalone and UCI-
pageblocks. UCI-abalone and UCI-pageblocks are redefined
as two classes as follows: the sample whose label is equal to
or greater than 10 in UCI-abalone is viewed as a group and
other samples are categorized as another group; the sample
whose label is equal to or greater than 1 in UCI-pageblocks
is viewed as a group and other samples are categorized as
another group. After all experiments have been repeated 50
times, the misclassification rates of FLD for i.i.d. sampling
and Markov sampling are presented in Tables IV and V.

Remark 6: Tables IV and V show that, for the same
size of training samples and the same test samples set, the
FLD method based on u.e.M.c. samples also has a smaller
misclassification rate compared to i.i.d. samples.

In order to have a better understanding of learning perfor-
mance of FLD based on Markov sampling, we also present the
following figures on 50 times misclassification rates of FLD
based on Markov sampling and random sampling, respectively.
Here, the red curve denotes the results based on i.i.d. samples
and the blue curve denotes the results based on Markov chain
samples, and m is the number of training samples.

Remark 7: Figures 1–10 show that: 1) FLD based
on Markov sampling will have obviously better learning

TABLE V

MISCLASSIFICATION RATES FOR 500 TRAINING SAMPLES

Dataset MR (i.i.d.) MR (Markov)

UCI-abalone 0.2310 ± 0.0055 0.2255 ± 0.0053

UCI-magic 0.2112 ± 0.0056 0.2108 ± 0.0045

UCI-pageblocks 0.0953 ± 0.0116 0.0760 ± 0.0130

UCI-shuttle 0.0665 ± 0.0074 0.0654 ± 0.0062

Waveform 0.1900 ± 0.0105 0.1447 ± 0.0098

Splice 0.1805 ± 0.0075 0.1787 ± 0.0067

Image 0.1655 ± 0.0098 0.1613 ± 0.0087

UCI-mushrooms 0.0035 ± 0.0027 0.0029 ± 0.0026

UCI-adult 0.2103 ± 0.0101 0.2079 ± 0.0105

DoubleUSPS(0,2) 0.0477 ± 0.0080 0.0471 ± 0.0085

DoubleUSPS(3,8) 0.0248 ± 0.0060 0.0244 ± 0.0060

DoubleUSPS(0,9) 0.0199 ± 0.0064 0.0196 ± 0.0053

UCI-gisette 0.0459 ± 0.0031 0.0444 ± 0.0030
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Fig. 1. UCI-abalone, m = 1200.
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Fig. 2. UCI-pageblocks, m = 700.

performance than that of random sampling as the number of
training samples is large, and 2) the number of samples and
dimensionality of the datasets are important for the effective
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Fig. 3. UCI-shuttle, m = 2500.
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Fig. 4. UCI-magic, m = 7000.
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Fig. 5. Waveform, m = 700.

learning performance of FLD based on Markov sampling. In
the experiments, we find that for most real-world datasets,
the experimental results based on N1 < m are similar to
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Fig. 6. Splice, m = 6000.
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Fig. 7. Image, m = 7000.

those based on N1 = m. For this reason, in order to simplify
the experiments, we take N1 = m in Algorithm 1 for all
of these experiments above. In addition, all the experimental
results above are based on the FLD (2) method. Comparing
the experimental results based on FLD (1) and FLD (2), we
can find that, as the size of training samples is large, the
bounds on the misclassification rates of FLD (2) are often
tighter than those of FLD (1). By the figures and tables above,
we can find that the misclassification rates of FLD based
on Markov sampling will become smaller as the size of the
training samples gets bigger. This proves the consistency of
FLD based on Markov sampling.

D. Discussion

In this subsection, we give some useful discussion on the
results obtained in the last subsections. First, in Algorithm 1, to
generate u.e.M.c. samples, we first introduce the preliminary
learning model f0. Then the u.e.M.c. samples that are gen-
erated according to the preliminary learning model f0 have
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Fig. 8. UCI-mushrooms, m = 2000.
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Fig. 9. DoubleUSPS(0,2), m = 700.

the structure information of the data. Thus, FLD based on
Markov training samples can improve obviously the results of
FLD based on i.i.d. samples.

Second, by the definition of the acceptance probability α, we
can find that, for different Markov chain samples zi and zi+1,
the loss L( f, zi+1) of Markov chain samples zi+1 is almost as
large as that of L( f, zi ), whereas these samples that are drawn
randomly from the same data do not possess this property
since the i.i.d. samples are sampled randomly. In other words,
these Markov chain samples are selective and representative
compared to the i.i.d. samples. Therefore, the misclassification
rates of FLD based on Markov chain samples can be smaller
than those of i.i.d. samples. This implies that generating
u.e.M.c. samples from a given data of finite large size by
Algorithm 1 can be regarded as a strategy for improving
the learning performance of FLD based on i.i.d. training
samples. In other words, Algorithm 1 can be considered to
be a method of manipulating the training samples [25] such
that the learning performance of FLD is improved. Unlike
other methods of manipulating the training samples in [25],
the method presented in this paper generates u.e.M.c. samples
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Fig. 10. UCI-gisette, m = 4500.

TABLE VI

MISCLASSIFICATION RATES FOR DIFFERENT TRAINING SIZES

Data i.i.d. (1000) Markov (600) Markov (800) Markov (1000)

A 0.2274 ± 0.0024 0.2262 ± 0.0047 0.2236 ± 0.0037 0.2215 ± 0.0032

M 0.2079 ± 0.0035 0.2110 ± 0.0050 0.2076 ± 0.0037 0.2071 ± 0.0038

Sh 0.0639 ± 0.0049 0.0679 ± 0.0073 0.0641 ± 0.0060 0.0615 ± 0.0058

W 0.1541 ± 0.0089 0.1127 ± 0.0129 0.1092 ± 0.0110 0.1046 ± 0.0086

Sp 0.1861 ± 0.0063 0.1952 ± 0.0078 0.1859 ± 0.0065 0.1812 ± 0.0052

from a given dataset of finite size. In addition, in order to
have a better understanding of the Markov sampling algorithm,
we also present the following numerical studies results of
FLD based on u.e.M.c. samples for different sample sizes in
Table VI.

Table VI shows that for the datasets of A(UCI-
abalone), M(UCI-magic), Sh(UCI-shuttle), W(Waveform), and
Sp(Splice), FLD based on smaller Markov chain samples (600
for UCI-abalone and waveform, 800 for UCI-magic and splice)
can present smaller misclassification rates compared to more
(1000) i.i.d. samples.

V. CONCLUSION

Previous works on the generalization ability of the FLD
method were usually based on the assumption of i.i.d. samples.
In this paper, we went far beyond this classical framework by
studying the generalization ability of the FLD method based
on u.e.M.c. samples. We first established the bounds on the
generalization performance of FLD based on u.e.M.c. samples,
and proved that FLD with u.e.M.c. samples is consistent. By
following the enlightening idea from MCMC methods, we also
introduced a Markov sampling algorithm to generate u.e.M.c.
samples from a given data of finite size. Through simulation
studies and numerical studies on benchmark repository using
FLD, we found that FLD based on u.e.M.c. samples generated
by Markov sampling could provide smaller misclassification
rates compared to the i.i.d. samples. This implies that, for
a given data of large size, we can improve the learning
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performance of the FLD method by manipulating the training
samples. In other words, generating u.e.M.c. samples from the
given data of large size by Markov sampling can be regarded as
a new method of manipulating the training samples such that
the learning performance of the FLD method can be obviously
improved. To our knowledge, the studies presented here are
the first on this topic.

Along the line of the present work, several open problems
deserve further research. For example, how to establish the
bounds on the fast convergence rate of FLD with u.e.M.c.
samples and how to apply the Markov sampling algorithm
introduced in this paper to other learning algorithms (e.g., the
online learning algorithm) are under current investigation.

APPENDIX A

In this section, we present the main tools used in this paper.
Definition 2 [2]: A Markov chain {Zt}t≥1 is said to be

V -geometrically ergodic with respect to a measurable function
V : Z → [1,∞) if there exist constants γ1 < ∞ and ρ2 < 1
such that ||Pn(·|zi ) − π ||T V ≤ γ1ρ

n
2 V (zi ), zi ∈ Z,∀n ≥ 1,

and in addition E(V , π) = ∫
Z V (z)π(dz) < B < ∞, where

π is the stationary distribution of Markov chain {Zt}t≥1 and
E(V , π) is the expectation of V (z) with respect to π .

Definition 3: Let (M, d) be a pseudo-metric space and S ⊂
M a subset. For every ε > 0, the covering number N (S, ε, d)
of S with respect to ε and d is defined as the minimal number
� ∈ N of balls of radius ε whose union covers S
N (S, ε, d) = min{� : S ⊂ ∪�

j=1 B(s j , ε), {s j }�j=1 ⊂ M}
where B(s j , ε) = {s ∈ M : d(s, s j ) ≤ ε} is a ball in M.

The �2-empirical covering number of a function set is
defined by means of the normalized �2-metric d2 on the
Euclidian space R given by

d2(a, b) =
(

1

m

m∑

i=1

|ai − bi |2
) 1

2

, a = (ai )
m
i=1, b = (bi )

m
i=1.

Definition 4: Let F be a set of functions on X , x =
(xi )

m
i=1 ⊂ Xm , and F |x = {( f (xi ))

m
i=1 : f ∈ F}. Set

N2(F , ε, d2) = sup
x∈Xm

N(F |x, ε, d2), ε > 0.

Zhang established the bound (see Corollary 3.1 of [47]) on
the covering number of linear function class H as follows:

lnN2 (H, ε, m) ≤
⌈a2b2

ε2

⌉
ln(2h + 1), ε > 0.

It follows that there exists a constant C0 such that

N2(H, ε, m) ≤ exp
{

C0
(ab

ε

)2}
, ε > 0 (12)

where C0 is a constant dependent of h.
To test the generalization ability of FLD based on u.e.M.c.

samples, we explore the use of the β-mixing property of
Markov chains. We present the definition of β-mixing and
the others lemmas as follows: let {Xi }∞i=−∞ be a stationary
process defined on a probability space (X∞,S∞, P̃). For
−∞ < i < ∞, let Ak−∞ denote the σ -algebra generated by
the random variables Xi , i ≤ k, and similarly let A∞

k denote

the σ -algebra generated by the random variables Xi , i ≥ k. Let
P̃k−∞ and P̃∞

k denote the corresponding marginal probability
measures. Let P̃0 denote the marginal probability of each
of the Xi . Let Āk−1

1 denote the σ -algebra generated by the
random variables Xi , i ≤ 0 as well as X j , j ≥ k.

Definition 5 [2]: The sequence {Xt } is called geometrically
β-mixing if there exist constants ν and λ1 < 1 such that
β-mixing coefficient β(k) satisfies

sup
C∈Āk−1

1

|P̃(C) − (P̃0−∞ × P̃∞
1 )(C)| = β(k) ≤ νλk

1,∀k ≥ 1.

Lemma 2 [2]: Suppose Xi is a β-mixing process on a
probability space (X∞,S∞, P̃). Suppose g : X∞ → R
is essentially bounded and depends only on the variables
xik, 0 ≤ i ≤ l. Let P̃0 denote the 1-D marginal probability
of each of the Xi . Then |E(g, P̃) − E(g, P̃∞

0 )| ≤ lβ(k)||g||∞
where E(g, P̃) and E(g, P̃∞

0 ) are the expectations of g with
respect to P̃ and P̃∞

0 , respectively.
Lemma 3 [48]: Suppose that ζ is a zero-mean random

variable assuming values in the interval [c1, d1]. Then for any
s1 > 0, we have E[exp(s1ζ )] ≤ exp(s2

1 (d1 − c1)
2/8).

Lemma 4 [2]: Suppose {ξt } is a Markov chain
V -geometrically ergodic. Then the sequence {ξt } is geomet-
rically β-mixing, and the β-mixing coefficient β(n) is given
by

β(n) = E{||Pn(·|ξ) − π(·)||T V }
=
∫

||Pn(·|ξ) − π(·)||T V π(dξ).

Lemma 5 [39]: Let c2, c3 > 0, and p1 > p2 > 0. Then
the Eq. x p1 − c2x p2 − c3 = 0 has a unique positive zero x∗.
In addition x∗ ≤ max{(2c2)

1/(p1−p2), (2c3)
(1/p1)}.

In order to prove the main results obtained in Section III,
we first establish the following two important lemmas.

Lemma 6: Let ξ be a random variable on a probability space
Z with mean E(ξ) = μ, and {zi }m

i=1 be u.e.M.c. samples. If
|ξ(z) − E(ξ)| ≤ B for all z ∈ Z , then for any ε, 0 < ε ≤ 3B

P

{∣∣
∣
∣

1

m

m∑

i=1

ξ(zi ) − μ

∣
∣
∣
∣ ≥ ε

}
≤ 2(1 + γ e−2) exp

{−m(β)ε2

2B2

}

where m(β) is defined as in Theorem 1.
Proof: We decompose the proof into three steps.
Step 1: Since u.e.M.c. is V -geometrically ergodic and by

Lemma 4, we have that u.e.M.c. is geometrically β-mixing. To
exploit the β-mixing property, we then decompose the index
set Î = {1, 2, . . . , m} into different parts by following the idea
of [2], i.e., given an integer m, choose any integer km ≤ m,
and define lm = �m/km� to be the integer part of m/km . For
the time being, km and lm are denoted, Respectively, by k and
l, so as to reduce notational clutter. Let r = m − kl, and

Ii =
{ {i, i + k, . . . , i + lk}, i = 1, 2, . . . , r,

{i, i + k, . . . , i + (l − 1)k}, i = r + 1, . . . , k.

Let pi = |Ii |/m for i = 1, 2, . . . , k, and define

Ti = ξ(zi ) − μ, am(z) = 1

m

m∑

i=1

Ti , bi (z) = 1

|Ii |
∑

j∈Ii

Tj .
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Then we have 1/m
∑m

i=1 ξ(zi ) − μ = am(z) =∑k
i=1 pibi (z).

Since exp(·) is convex, we have that, for any s > 0

exp [sam(z)] = exp

[
k∑

i=1

pisbi (z)

]

≤
m∑

i=1

pi exp [sbi (z)] .

It follows that:

E
(

esam(z), P̃
)

≤
k∑

i=1

piE
(

esbi (z), P̃
)
. (13)

Since

exp[sbi (z)] = exp

⎡

⎣ s

|Ii |
∑

j∈Ii

Tj

⎤

⎦ =
∏

j∈Ii

exp

(
sTj

|Ii |
)

≤
[

exp

(
s B

|Ii |
)]|Ii |

≤ es B

where in the last step we use the assumption |Ti | = |ξ(z1) −
μ| ≤ B . Note that for i = 1, 2, . . . , r, the quantities
E(esbi (z), P̃) are all the same since the stochastic process is
stationary. Moreover, since the components in the index set Ii

are separated by at least k, it follows from Lemma 2 that

E
(

esbi (z), P̃
)

≤ lβ(k)||esbi(z)||∞ + E
(

esbi (z), P̃∞
0

)
.

Similarly, for i = r +1, . . . , k, E(esbi (z), P̃) is the same due to
the stationarity of the stochastic process. Moreover, it follows
from the same lemma as above that

E
(

esbi(z), P̃
)

≤ (l − 1)β(k)||esbi(z)||∞ + E
(

esbi (z), P̃∞
0

)
.

Then we have, for any i = 1, 2, . . . , k

E
(

esbi (z), P̃
)

≤ (|Ii | − 1)β(k)||esbi(z)||∞ + E
(

esbi (z), P̃∞
0

)
.

Since under the measure P̃∞
0 the various zi are independent,

we have

E(esbi (z), P̃∞
0 ) = E

[ ∏

j∈Ii

exp(sTj /|Ii |), P̃∞
0

]

= {
E[exp(sTj /|Ii |), P̃∞

0 ]}|Ii |. (14)

Apply Lemma 3 to the function Tj , we get

E
[
exp(sTj/|Ii |), P̃∞

0

]
≤ exp

(
s2 B2/2|Ii |2

)
.

Then we have, for any s > 0

E(esbi (z), P̃) ≤ exp

(
s2 B2

2|Ii |
)

+ (|Ii | − 1)β(k)es B.

Thus by inequality (13) and the inequality above, we have
for any s > 0

E(esam(z), P̃) ≤
k∑

i=1

pi

[
exp

( s2 B2

2|Ii |
)

+ (|Ii | − 1)β(k)es B
]
.

(15)

Step 2: We now bound the second term on the right-hand
side of inequality (15), which is denoted henceforth by φ. By
Lemma 4 and Definition 1, we have

β(k) = E{||Pk(·|x) − π(·)||T V , π} ≤ E[γρk
1 , π] = γρk

1 .

Then we have, for any 0 < s ≤ 3|Ii |/B

φ = exp

(
s2 B2

2|Ii |
)

+ (|Ii | − 1)β(k)es B

≤ exp

(
s2 B2

2|Ii |
)

+ e|Ii |e−2γρk
1 · es B

≤ exp

(
s2 B2

2|Ii |
)

+ γ e−2 exp
{
k ln(ρ1) + 4|Ii |

}
.

The above inequality follows from the fact that |Ii − 1| ≤
e|Ii |−2 for |Ii | ≥ 2. We require exp{k ln(ρ1) + 4|Ii |} ≤ 1. But
|Ii | ≤ (m/k + 1), thus the bound holds if 4(m/k + 1) ≤
k ln(1/ρ1) or 4(m + k) ≤ k2 ln(1/ρ1). Since m + k ≤
2m, the bound holds if {8m/ln(1/ρ1)} 1

2 ≤ k. Let k =⌈{8m/ln(1/ρ1)} 1
2
⌉
. Since for all i = 1, 2, . . . , k, |Ii | ≥ l,

and l = �m/k�, we have

φ ≤ exp
(
s2 B2/(2l)

)+ γ e−2. (16)

Since inequality (16) is true for all s, 0 < s ≤ 3|Ii |/B . To
make the constraint uniform over all i , we require s to satisfy
0 < s < 3l/B ≤ 3|Ii |/B. Since s2 B2/2l > 0, we have

φ ≤ (1 + γe−2) exp
(
s2 B2/(2l)

)
.

Returning to inequality (15), we have for any 0 < s < 3l/B

E(esam(z), P̃) ≤ (1 + γ e−2) exp
(
s2 B2/(2l)

)
. (17)

Step 3: By Markov’s inequality and inequality (17), we have
for any 0 < s ≤ 3l/B

P

{
1

m

m∑

i=1

ξ(zi ) − μ ≥ ε

}

= P
{

es[ 1
m

∑m
i=1 ξ(zi )−μ] ≥ esε

}

≤
E
{

es[ 1
m

∑m
i=1 ξ(zi )−μ]

}

esε

≤ C1 exp
{−sε + s2 B2/(2l)

}

where C1 = 1 + γ e−2. Substituting s = lε/B2, and noting
that for any ε ≤ 3B , s satisfies s < 3l/B , we obtain

P

{
1

m

m∑

i=1

ξ(zi ) − μ ≥ ε

}

≤ (1 + γ e−2) exp

{−lε2

2B2

}
.

By symmetry, we also have

P

{

μ − 1

m

m∑

i=1

ξ(zi ) ≥ ε

}

≤ (1 + γ e−2) exp

{−lε2

2B2

}
.

Combining the two inequalities above and replacing l by m(β),
we complete the proof of Lemma 6.

Lemma 7: Let L( f ) = E( f ) − Em( f ). If {zi }m
i=1 is

u.e.M.c., then for any ε, 0 < ε ≤ 6(ab + 1)2, and m ≥
max{ln(1/ρ1)/8, 128/ln(1/ρ1)}

P

{

sup
f ∈H

|L( f )| ≥ ε

}

≤ 2C1N2(H, L ′, m) exp

{
−2

1
2 m

1
2 ε2

K

}

where H is defined as (5) K = [ln(1/ρ1)] 1
2 (ab + 1)4, C1 =

1 + γe−2 and L ′ = ε/8(ab + 1).
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Proof: First we need to slightly modify the inequality in
Lemma 6. We observe that �t	 ≤ 2t for any t ≥ 1 and �t� ≥
t/2 for any t ≥ 2 (see [8]). Then it is easy to conclude that
for m satisfying m ≥ m0 := max{ln(1/ρ1)/8, 128/ln(1/ρ1)},
we have m(β) ≥ 8(ln(1/ρ1)/2)1/2m1/2. Then by Lemma 6
and replacing m(β) by 8(ln(1/ρ1)/2)1/2m1/2, we have, for any
ε, 0 < ε ≤ 3B

P

{
∣
∣ 1

m

m∑

i=1

ξ(zi ) − μ
∣
∣ ≥ ε

}

≤ 2C1 exp

{
−2

5
2 m

1
2 ε2

[ln(1/ρ1)] 1
2 B2

}

.

Since for any f ∈ H, y ∈ Y , we have �( f, z)
.= ( f (x)− y)2 ≤

(ab+1)2. It follows that |�( f, z)−E[�( f, z)]| ≤ (ab+1)2. By
the above inequality, we have that for any 0 < ε ≤ 3(ab+1)2,
and m ≥ max{ln(1/ρ1)/8128/ln(1/ρ1)}

P
{|L( f )| ≥ ε

} ≤ 2C1 exp

{
−2

5
2 m

1
2 ε2

[ln(1/ρ1)] 1
2 (ab + 1)2

}

. (18)

In addition, for any f1, f2 ∈ H, we have

|�( f1, z) − �( f2, z)| := |( f1(x) − y)2 − ( f2(x) − y)2|
≤ 2(ab + 1) · | f1(x) − f2(x)|.

The final inequality follows as | f (x)| ≤ ab. Thus by inequal-
ity (18) and with a similar argument as Theorem B in [37],
we can finish the proof of Lemma 7.

Proof of Theorem 1: By inequality (12) and Lemma 7, we
have that for any ε, 0 < ε ≤ 6(ab + 1)2

P

{

sup
f ∈H

|L( f )| ≥ ε

}

≤ 2C1 exp

{

C0

(
ab

L ′

)2

− −2
1
2 m

1
2 ε2

K

}

.

Let us rewrite the above inequality in the equivalent form.
We equate the right-hand side of the above inequality to a
positive value η (0 < η < 1)

C1 exp

{

C0

(
8ab(ab + 1)

ε

)2

− ln(1/ρ1)
1
2 m

1
2 ε2

21/2(ab + 1)4

}

= η.

It follows that:

ε4 − 21/2(ab + 1)4 ln(C1/η)

m
1
2 ln(1/ρ1)

1
2

ε2 − 2
9
2 C0a2b2(ab + 1)6

m
1
2 ln(1/ρ1)

1
2

= 0.

By Lemma 5, we can solve this equation with respect to ε.
The solution is given by

ε
.= ε(m, η) ≤ max

{

(ab + 1)2
[ 2

3
2 ln(C1/η)

m
1
2 ln(1/ρ1)

1
2

] 1
2

2(ab + 1)
[2

3
2 C0a2b2(ab + 1)2

m
1
2 ln(1/ρ1)

1
2

] 1
4

}

.

Then we can deduce that, with probability at least 1 − η
simultaneously for all functions in the function set H, inequal-
ity E( f ) ≤ Em( f )+ε(m, η) holds true. Since with probability
at least 1 − η this inequality holds for all functions of the
function set H, it holds in particular for the function fz that
minimizes the empirical error Em( f ) over H. For this function
with probability at least 1 − η, the following inequality then
holds true:

E( fz) ≤ Em( fz) + ε(m, η). (19)

In addition, by inequality (18), we conclude that for the
same η as above, and for the function fH that minimizes the
expected error E( f ) over f ∈ H, the inequality

E( fH) > Em( fH) − (ab + 1)

2

√
ln(C1/η)

ln(1/ρ1)
1
2 m

1
2

(20)

holds with probability 1 − η. Note that

Em( fH) ≥ Em( fz). (21)

From (7), (19), (20), and (21), we deduce that with
probability at least 1 − 2η, the inequality

E( fz) − E( fρ) ≤ ε(m, η) + (ab + 1)

2

√
ln(C1/η)

ln(1/ρ1)
1
2 m

1
2

+ E( fH) − E( fρ)

is valid. In addition, if

m ≥ max

⎧
⎨

⎩
1

6(ab + 1)

√
ln(C1/η)

ln(1/ρ1)
1
2

,
1

6

√√
√
√2

3
2 ln(C1/η)

ln(1/ρ1)
1
2

,

ab

9(ab + 1)

√√
√
√ 2

3
2 C0

ln(1/ρ1)
1
2

⎫
⎬

⎭

then we have ε ≤ min{3(ab + 1), 6(ab + 1)2}. This leads to
Theorem 1.

Proof of Theorem 2: By the definition of D̃(λ), we have

λ|| f̃λ||22 ≤ E( f̃λ) − E( fρ) + λ|| f̃λ||22 = D̃(λ).

It follows that || f̃λ||2 ≤
√

D̃(λ)/λ, and �( f̃λ, z) ≤
(

a
√

D̃(λ)/λ + 1

)2
.= C2. The final inequality follows from

the fact that ||x||2 ≤ a < ∞.
By Lemma 6, we have, for any ε, 0 < ε ≤ 3C2

P
{Em( f̃λ) − E( f̃λ) ≥ ε

} ≤ (1 + γe−2) exp

{−m(β)ε2

2C2
2

}
.

It follows that for any δ ∈ (0, 1), there exists a subset V2 of
Zm such that for any f̃λ ∈ H and for any z ∈ V2, inequality

Em( f̃λ) − E( f̃λ) ≤ C2

√
2 ln[(1 + γe−2)/δ]

m(β)
(22)

is valid with probability at least 1−δ. In addition, by Lemma 7
we deduce that for the same δ above, there exists a subset
V ′(R) of Zm such that for any z ∈ V ′(R), the inequality

E( fz,λ) − Em( fz,λ) ≤ ε(m, δ) (23)

is valid with probability at least 1 − δ, where

ε
.= ε(m, δ) ≤ max

{
2(ab + 1)2

[2 ln
(
(1 + γ e−2)/δ)

m(β)

] 1
2
,

×2(ab + 1)
[8C0a2b2(ab + 1)2

m(β)

] 1
4
}
.
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Let W ′(R) = {z ∈ V2 : fz,λ ∈ H}. By inequalities (22)
and (23), we deduce that for any z ∈ V ′(R) ∩ W ′(R), with
probability at least 1 − 2δ

E( fz,λ) − Em( fz,λ) + Em( f̃λ) − E( f̃λ)

≤ ε(m, δ) + C2

√
2 ln[(1 + γe−2)/δ]

m(β)
.

Combine the above inequality with inequality (11), we have

E( fz,λ) − E( fρ) ≤ C2

√
2 ln[(1 + γe−2)/δ]

m(β)

+ε(m, δ) + D̃(λ). (24)

Since for all λ > 0, and almost all z ∈ Zm , and the
definition of fz,λ, we have

λ|| fz,λ||22 ≤ Em( fz,λ) + λ|| fz,λ||22 ≤ Em(0) + 0 ≤ 1.

It follows that || fz,λ||2 ≤ 1/
√

λ for almost all z ∈ Zm .
This implies that W (1/

√
λ) = Zm . Replacing ab by 1/

√
λ in

inequality (24), we complete the proof of Theorem 2.
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