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In this paper, we focus on the research of fast deconvolution algorithm based on the non-convex
Lqðq ¼ 1

2 ;
2
3Þ sparse regularization. Recently, we have deduced the closed-form thresholding formula for

L1
2

regularization model (Xu (2010) [1]). In this work, we further deduce the closed-form thresholding for-
mula for the L2

3
non-convex regularization problem. Based on the closed-form formulas for Lqðq ¼ 1

2 ;
2
3Þ

regularization, we propose a fast algorithm to solve the image deconvolution problem using half-qua-
dratic splitting method. Extensive experiments for image deconvolution demonstrate that our algorithm
has a significant acceleration over Krishnan et al.’s algorithm (Krishnan et al. (2009) [3]). Moreover, the
simulated experiments further indicate that L2

3
regularization is more effective than L0; L1

2
or L1 regulari-

zation in image deconvolution, andL1
2

regularization is competitive to L1 regularization and better than L0

regularization.
� 2012 Elsevier Inc. All rights reserved.
1. Introduction inverse problem, such as the total variation [7], nonlocal self-sim-
Image blur is a common artifact in digital photography caused
by camera shake or object movement. Recovering the un-blurred
sharp image from the blurry image, which is generally called image
deconvolution, has been a fundamental research problem in image
processing and computational photography. Image deconvolution
algorithms [4–6] can be categorized to blind deconvolution and
non-blind deblurring, in which the blur kernel is unknown and
known respectively. Tremendous methods have been proposed to
estimate the blur kernel. In this work, we focus on the non-blind
deblurring problem, i.e., recovering the sharp image from a blurry
image given the blur kernel.

Mathematically, blurry image can be modeled as the convolution
of an ideal sharp image with a blur kernel and then adding zero mean
Gaussian white noise. The degraded process can be modeled as

Y ¼ X � kþ n ð1:1Þ

where X is the sharp image, k is a blur kernel and n is the noise. Im-
age deconvolution aims to recover a high quality image X, given a
blurry image Y.

The ill-posed nature of this problem implies that additional
assumption on X should be introduced. Recently, many kinds of
image priors are discovered and utilized to regularize this ill-posed
ll rights reserved.
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ilarity [8–10], sparse prior [11–13] and so on. Especially, the spar-
sity induced by nonconvex non-convex regularization or the
hyper-Laplacian distribution from probabilistic point of view at-
tracts a lot of attention in the community of computer vision
[14], machining learning and compressive sensing [15–17]. These
prior models give rise to surprising results. For example, Chartrand
[17,18] applies non-convex regularization to the Magnetic Reso-
nance Imaging (MRI) reconstruction task, bringing about promis-
ing results that only few samples in K-data space can effectively
reconstruct the MRI image.

In this paper, we work on the fast image deconvolution algorithm
with non-convex regularization to suppress ringing artifacts and
noises. The idea is motivated by Krishnan’s work in [3], in which
hyper-Laplacian prior of natural image is imposed on the image
non-blind deconvolution algorithm, which is equivalent to solving
an inverse linear optimization problem with Lq-norm (0 < q < 1)
non-convex regularization. Using quadratic splitting framework, one
sub-problem is to optimize the non-convex regularization problem:

x� ¼ argmin
x
fðx� aÞ2 þ kjxjqg: ð1:2Þ

This sub-problem actually is a very special case of the problem pro-
posed by Elad [25] in the context of sparse representation and by
Chartrand [15–17] in the setting of compressive sensing. According
to their work, from the geometric point of view, this solution is just
the intersection point between a hyperplane and a Lqð0 < q < 1Þ
ball, and when q goes closer to zero, the solution of this problem
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becomes more sparse. However, from the algebraic point of view,
how to fast solve this optimization problem is a challenge due to
the non-convexity and the non-smoothness of this problem. In this
work, our efforts will focus on two special values, 1

2 and 2
3, over the

interval ð0;1Þ. Traditionally, closed-form hard thresholding [19]
and soft-thresholding formulas [20,21] have been proposed to solve
this regularization problem when q ¼ 0 and q ¼ 1. In [3], when q ¼ 1

2
or 2

3, Krishnan et al. [3] proposed to solve the above problem by pre-
senting some clever discriminate conditions to compare and select
optimal solution from the multiple roots of the first-order deriva-
tive equation of the cost function. Although this method makes this
problem undertake a major breakthrough, multiple roots should be
computed and compared to produce the final solution. A natural
question is whether we could derive the closed-form thresholding
formulas for non-convex regularization with q ¼ 1

2 or 2
3 in

0 < q < 1, in parallel to the well-known hard/soft thresholding for-
mulas for q ¼ 0 or 1.

In this work, we will present the closed-form thresholding for-
mulas for non-convex regularization problem in Eq. (1.2) with
q ¼ 2

3 or 1
2, and apply them to solve the image deconvolution prob-

lem. It has been found that the gradients of natural images are dis-
tributed as heavy-tailed hyper-Laplacian distribution pðxÞ / e�kjxjq

with 0:5 6 q 6 0:8. In the Bayesian framework, this prior will
impose the Lq norm non-convex regularization for the inverse
problem with the formulation in Eq. (1.2). Therefore, developing
a fast algorithm for L1

2
or L2

3
regularization problem in the

range of 0:5 6 q 6 0:8 can be expected to be promising in image
deconvolution task. The contribution of this work can be
summarized as:

� We deduce the closed-form thresholding formula for linear
inverse model with L2

3
regularization by deeply analyzing the

distribution of roots of the first-order derivative equation of
the cost function. Together with our previous work on the
close-form thresholding formula for L1

2
regularization in [1,2],

these thresholding formulas enable fast and efficient image
deconvolution algorithm in the framework of half-quadratic
splitting strategy.
� We conduct extensive experiments over a set natural images

blurred by eight real blur kernels. The results demonstrate that
our algorithm enables a significantly faster speed over Krishnan
et al.’s method; Moreover, L2

3
regularization is more effective

over L0; L1
2

or L1 regularization for image deconvolution, and L1
2

regularization is competitive to L1 regularization and better
than L0 regularization.

We believe that the closed-form thresholding formulas for L2
3

or L1
2

non-convex regularization are important to machine learning and
computer vision communities beyond the application of image
deconvolution. That is because this linear inverse problem with
non-convex regularization is a general model with wide applica-
tions for compressive sensing [16,17], image demosaicing [14], im-
age super-resolution [14], etc. Moreover, theoretically, the closed-
form formulas make the theoretical analysis of the non-convex reg-
ularization problem possible or easier, which deserves to be inves-
tigated in our future work.

The remainder of this paper can be organized as follows. Sec-
tion 2 will describe the image deconvolution model based on
non-convex regularization and its optimization using half-qua-
dratic splitting scheme; In Section 3, we will deduce the threshold-
ing formula for Lq q ¼ 2

3

� �
regularization problem and also introduce

our previously proposed thresholding formula for Lq q ¼ 1
2

� �
regu-

larization problem. Then we will present our deconvolution algo-
rithm with Lqðq ¼ 1

2 ;
2
3Þ regularization; In Section 4, we will report

the experimental results in both speed and quality; Finally, this
paper is concluded in Section 5.
Please cite this article in press as: W. Cao et al., Fast image deconvolution us
Commun. (2012), http://dx.doi.org/10.1016/j.jvcir.2012.10.006
2. Image deconvolution based on non-convex regularization

2.1. Formulation

Assuming that X is the original uncorrupted grayscale image
with N pixels; Y is an image degraded by blur kernel k and noise n:

Y ¼ X � kþ n ð2:1Þ

Non-blind deconvolution aims to restore the real image X given the
known or estimated blur kernel k. Due to the ill-posedness of this
task, prior information of natural images should be utilized to reg-
ularize the inverse problem [13,3]. In this work, we utilize the
sparse hyper-Laplacian distribution prior of nature image in the
gradient domain [3], i.e.,

pðXÞ / e
�s
X2

j¼1

jjX�fj jj
q
q

; ð2:2Þ

where jjzjjq ¼ ð
P

iðzÞ
q
i Þ

1
q;� denotes convolution, f1 ¼ ½1;�1� and

f2 ¼ ½1;�1�T are two first-order derivative filters and 0 < q < 1.
From the probabilistic perspective, we seek the MAP (maximum-a
posteriori) estimate of X in Bayesian framework: pðXjY; kÞ /
pðYjX; kÞPðXÞ, the first term is the Gaussian likelihood and the
second term is the hyper-Laplacian image prior. Maximizing
pðXjY; kÞ is equivalent to minimizing

X� ¼ argmin
X

k
2
jjX � k� Yjj2F þ

X2

j¼1

jjX � fjjjqq

( )
ð2:3Þ

where jjAjjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

i¼1

PN
j¼1a2

ij

q
indicates the Frobenious norm. If as-

sume that x and y are vectors stretched from X and Y column by col-
umn, and K; F1 and F2 are the matrix form of the filters k; f1 and f2

for image convolution, then problem (2.3)can be equivalently repre-
sented as

x� ¼ argmin
x

k
2
jjKx� yjj22 þ jjF1xjjqq þ jjF2xjjqq

� �
ð2:4Þ

where k makes a trade-off between the fidelity term and the regu-
larization term. When 0 6 q < 1; jjFxjjq ¼

P
iðFxÞqi

� �1
q imposes non-

convex regularization on the image gradients.

2.2. Half-quadratic splitting algorithm

Using the half-quadratic splitting method, Krishnan et al., [3]
introduced two auxiliary variables u1 and u2 and the problem
(2.4) can be converted to the following optimization problem

x� ¼ argmin
x

k
2
jjKx� yjj22 þ

b
2
jjF1x� u1jj22 þ

b
2
jjF2x� u2jj22

�

þ jju1jjqq þ jju2jjqq
o

ð2:5Þ

where b is a control parameter. As b!1, the solution of prob-
lem(2.5) converges to that of Eq. (2.4). Minimizing Eqn. (2.5) for a
fixed b can be performed by alternating two steps: one sub-problem
is to solve x, given u1 and u2, which is called x-subproblem; the
other sub-problem is to solve u1;u2, given x, which is called
u-subproblem.

2.2.1. x-Subproblem
Given u1 and u2, the x-subproblem aims to obtain the optimal x

by optimizing the energy function Eq. (2.5), which is to optimize:

x� ¼ argmin
x
fkjjKx� yjj22 þ bjjF1x� u1jj22 þ bjjF2x� u2jj22g

The subproblem can be optimized by setting the first derivative of
the cost function to zero:
ing closed-form thresholding formulas of Lqðq ¼ 1
2 ;
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Fig. 1. The plots of the different threshold formulas.
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FT
1F1 þ FT

2F2þ k
b

KT K
� �

x ¼ FT
1u1 þ FT

2u2 þ
k
b

KT y ð2:6Þ

where Kx ¼ X � k. Assuming circular boundary conditions, we can
apply 2D FFT to efficiently obtain the optimal solution x as:

IFFT
FFTðF1Þ� � FFTðu1Þ þ FFTðF2Þ� � FFTðu2Þ þ k

b FFTðKÞ� � FFTðyÞ
FFTðF1Þ� � FFTðF1Þ þ FFTðF2Þ� � FFTðF2Þ þ k

b FFTðKÞ� � FFTðKÞ

 !

ð2:7Þ

where � denotes the complex conjugate, � denotes the component-
wise multiplication, and the division is also performed in compo-
nent-wise fashion. The fast fourier transform of F1; F2;K can be
pre-computed, therefore solving Eq. (2.7) only requires 3 FFTs at
each iteration, i.e., FFTðu1Þ, FFTðu2Þ; IFFTð�Þ.

2.2.2. u-Subproblem
Given a fixed x, finding the optimal u1;u2 can be achieved by

optimizing

u�i ¼ argmin
ui

b
2
jjFix� uijj22 þ jjuijjqq

� �

where i ¼ 1;2. This optimization problem can be decomposed into
2N independent one-dimension Lq regularization problems:

ðu�i Þj ¼ argmin
u

jujq þ b
2
ðu� ðFixÞjÞ

2
� �

ð2:8Þ

where ð�Þj (j ¼ 1; . . . ;N) denotes the j-th component of a vector. It
has been derived that the formulation of the closed-form solutions
of the above problem are hard thresholding and soft-thresholding
when q ¼ 0 and 1 respectively.

For 0 < q < 1, it is challenging to derive the closed-form solu-
tion of this optimization problem. Krishnan et al. [3] utilized New-
ton–Raphson method to optimize this problem for 0 < q < 1.
Especially for q ¼ 1

2 or 2
3 cases, some discriminant rules are proposed

to find global optimal solution by comparing and selecting from
roots of the first order derivative of the cost function in Eq. (2.8).
Although it accelerated the optimization procedure without the
need of numerous iterations as done by Newton–Raphson method,
it still needs to compute and compare multiple roots using some
discriminant rules.

In the next section, we will present the closed-form
thresholding formulas for the global optimal solution of Eq. (2.8)
with q ¼ 1

2 ;
2
3. These formulas not only further speed up the

deconvolution algorithm, but also can be easily extended to other
applications in signal/image processing, e.g., denoising or super-
resolution, since Eq. (2.8) is a general non-convex regularization
model in these applications.

3. Image deconvolution based on closed-form thresholding
formulas of L1

2
; L2

3
regularization

In this section, we will firstly present the thresholding formulas
for L1

2
; L2

3
regularization problems. And then, by combining the

thresholding formulas and half-quadratic splitting strategy, we
propose a fast algorithm for image deconvolution.

We first review our previous work on the closed-form
thresholding formula for L1

2
regularization problem [1,2], i.e., to

solve:

x� ¼ argmin
x
fðx� aÞ2 þ kjxj

1
2g ð3:1Þ

where the variables is scalar values instead of vectors. This optimi-
zation problem has the closed-form thresholding formula:
Please cite this article in press as: W. Cao et al., Fast image deconvolution us
Commun. (2012), http://dx.doi.org/10.1016/j.jvcir.2012.10.006
x� ¼

2
3 jaj 1þ cos 2p

3 �
2ukðaÞ

3

	 
	 

if a > pðkÞ

0 if jaj 6 pðkÞ
� 2

3 jaj 1þ cos 2p
3 �

2ukðaÞ
3

	 
	 

if a < �pðkÞ

8>>><
>>>:

ð3:2Þ

where

ukðaÞ ¼ arccos
k
8
jaj
3

� ��3
2

 !
; pðkÞ ¼

ffiffiffiffiffiffi
543
p

4
ðkÞ

2
3:

Next, we will derive the closed-form thresholding formula for the L2
3

regularization problem.

3.1. The thresholding formula for L2
3

regularization

The L2
3

regularization model is

x� ¼ argmin
x

f ðxÞ ¼ ðx� aÞ2 þ kjxj
2
3

n o
ð3:3Þ

Our aim is to seek the minimum point of f ðxÞ, denoted as x�. In the
following, we will first present two lemmas, Lemma 3.1 and Lemma
3.2; And then, based on the two lemmas, we derive the minimum
point of f ðxÞ when x – 0 in Lemma 3.3; Finally, by the Lemma 3.1
and Lemma 3.3, we derive the minimum point of f ðxÞ when x 2 R

in Theorem 3.4.

Lemma 3.1. The minimum point x� of f ðxÞ in Eq. (3.3) satisfies the
following properties:

1. If a P0, then x�2 [0, a];
2. If a < 0, then x�2 [a, 0).
Proof. We only prove the case (1), and case (2) can be proved in
the same way. If assuming x� < 0, without the loss of generality,
let x� ¼ �MðM > 0Þ, then we have f ðx�Þ ¼ f ð�MÞ ¼ ð�M � aÞ2þ
kðj �Mj

2
3Þ ¼ ðM þ aÞ2 þ kjMj

2
3 > a2 ¼ f ð0Þ. This obviously contra-

dicts the fact that x� is a minimum point. On the other hand, if
assuming x� > a and let x� ¼ a+4 (4>0), then we have

f ðx�Þ ¼ f ðaþ4Þ ¼ 42 þ kjaþ4j
2
3 > kjaj

2
3 ¼ f ðaÞ:
ing closed-form thresholding formulas of Lqðq ¼ 1
2 ;
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Fig. 2. Test images.
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This also leads to contradiction with the fact that x� is a minimum
point. Hence, x�2 [0, a] for case (1). h
Lemma 3.2. Assume that d1 ¼ � A2 þ 2 a
A

	 

and d2 ¼ � A2 � 2 a

A

	 

,

where
Please cite this article in press as: W. Cao et al., Fast image deconvolution us
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jAj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4

4
� 43

272 k3

s0
@

1
A

1
3

þ a2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4

4
� 43

272 k3

s0
@

1
A

1
3

vuuut

and jaj > 4ffiffiffiffi
27
p k

3
4, then d1 � d2 < 0.
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Fig. 3. Test blur kernels.

Table 1
Comparison for running time with kernel 4(19 	 19).

Size DL1
2
(Ave./Std.) OurL1

2
(Ave./Std.) Ratio DL2

3
(Ave./Std.) OurL2

3
(Ave./Std.) Ratio

256 	 256 0.7269/0.0340 0.1452/0.0134 5.0062 0.9009/0.0464 0.2278/0.0192 3.9548
512 	 512 3.5615/0.0084 0.6923/0.0061 5.1444 4.2966/0.0048 1.1865/0.0077 3.6212
1024 	 1024 14.1109/0.0168 2.5477/0.0166 5.5387 17.0178/0.0085 4.4434/0.0110 3.8299
2048 	 2048 55.0141/0.0503 9.6791/0.0284 5.6838 66.9524/0.0730 17.0195/0.0485 3.9339
3000 	 3000 109.8524/0.1082 18.7584/0.0948 5.8562 126.5699/0.2687 34.4123/0.1194 3.6766
3500 	 3500 150.1106/0.3826 25.9526/0.2777 5.7840 172.3184/0.3806 46.8686/0.0987 3.9304
4000 	 4000 196.3966/0.3407 33.5712/0.1605 5.8502 225.7459/1.0865 60.7211/0.1459 3.7178
Ave. 75.6819/0.1344 13.0495/0.0854 5:5519 87.6860/0.2669 23.5542/0.0643 3:7732

Note: Bold value indicates a ratio for the average consuming time of different methods.
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Proof. The proof of d1 � d2 <0 is equivalent to the proof of A6
< 4a2.

We now prove that A6
< 4a2. Let sðtÞ ¼ t1=3ðt P 0Þ. It is easy to ver-

ify that sðtÞ is concave, then we can obtain the inequality

sðt1þt2
2 Þ >

sðt1Þþsðt2Þ
2 . By setting t1 ¼ a2

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4

4 � 43

272 k3
q

, t2 ¼ a2

2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4

4 � 43

272 k3
q

(obviously, t1 – t2 and t1; t2 P 0), we can easily prove

that A6
< 4a2, i.e., d1 � d2 < 0. h
Lemma 3.3. For f ðxÞ in Eq. (3.3) where k >0 and a2 R, if x – 0, then
the minimum point of f ðxÞ can be represented as:

x̂ ¼

jAjþ
ffiffiffiffiffiffiffiffiffiffiffiffi
2jaj
jAj �jAj

2
q

2

0
@

1
A

3

if a > sðkÞ

�
jAjþ

ffiffiffiffiffiffiffiffiffiffiffiffi
2jaj
jAj �jAj

2
q

2

0
@

1
A

3

if a < �sðkÞ

8>>>>>>>><
>>>>>>>>:

where

jAj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4

4
� 43

272 k3

s0
@

1
A

1
3

þ a2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4

4
� 43

272 k3

s0
@

1
A

1
3

vuuut ; sðkÞ

¼ 4ffiffiffiffiffiffi
27
p k

3
4:
Proof. Please refer to Appendix A for the proof. h
Theorem 3.4. The minimum point of f ðxÞ in Eq. (3.3) has the follow-
ing closed-form thresholding formula when x 2 R:
Please cite this article in press as: W. Cao et al., Fast image deconvolution us
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x� ¼

jAjþ
ffiffiffiffiffiffiffiffiffiffiffiffi
2jaj
jAj �jAj

2
q

2

0
@

1
A

3

if a > pðkÞ

0 if jaj 6 pðkÞ

�
jAjþ

ffiffiffiffiffiffiffiffiffiffiffiffi
2jaj
jAj �jAj

2
q

2

0
@

1
A

3

if a < �pðkÞ

8>>>>>>>>>><
>>>>>>>>>>:

ð3:4Þ

where

jAj ¼ 2ffiffiffi
3
p k

1
4 cosh

/
3

� �� �1
2

; /¼ arccosh
27a2

16
k�

3
2

� �
; pðkÞ¼2

3
ð3k3Þ

1
4:
Proof. Please refer to Appendix B for the proof. h

In Fig. 1, we plot the closed-form thresholding formulas for the
optimal solutions of Lq regularization problem x� ¼ argmin

x
fðx�

aÞ2 þ kjxjqg when q ¼ 0; 1
2 ;

2
3 ;1 respectively. The x-coordinate and

y-coordinate in these sub-figures correspond to a and x� respec-
tively. We can observe that the thresholding curves of L1

2
; L2

3

regularization problems lie between the curves of the traditional
soft thresholding (L1 regularization) and hard thresholding (L0

regularization).

3.2. Image deconvolution algorithm

Given the closed-form thresholding formulas for L1
2
; L2

3
regulari-

zation problems, the optimal solutions of Eq. (2.8) with q ¼ 1
2 ;

2
3 in

u-subproblem can be efficiently computed by the thresholding for-
mulas in Eqs. (3.2) and (3.4) with x ¼ u; k ¼ 2

b ; a ¼ ðFixÞj.
Now both the x-subproblem and u-subproblem in the quadratic

splitting algorithm in Section 2.2 can be efficiently computed in
ing closed-form thresholding formulas of Lqðq ¼ 1
2 ;

2
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Table 2
Comparison for running time with kernel 8(27 	 27).

Size DL1
2
(Ave./Std.) OurL1

2
(Ave./Std.) Ratio DL2

3
(Ave./Std.) OurL2

3
(Ave./Std.) Ratio

256 	 256 0.7264/0.0389 0.1365/0.0118 5.3216 0.9096/0.0369 0.2350/0.0233 3.8706
512 	 512 3.5751/0.0033 0.6935/0.0043 5.1552 4.3552/0.0551 1.1877/0.0024 3.6669
1024 	 1024 14.1563/0.0165 2.5433/0.0124 5.5661 17.0849/0.0377 4.4553/0.0134 3.8347
2048 	 2048 55.2309/0.0637 9.6818/0.0253 5.7046 67.1039/0.0482 17.0219/0.0325 3.9422
3000 	 3000 110.3661/0.1105 18.7466/0.0501 5.8873 126.8374/0.1049 34.5268/0.1721 3.6736
3500 	 3500 150.4214/0.2632 25.8423/0.0951 5.8207 172.8680/0.2739 47.0590/0.0900 3.6734
4000 	 4000 196.7216/0.3144 33.5025/0.1168 5.8718 225.7242/0.7428 61.1651/0.1594 3.6904
Ave. 75.8854/0.0704 13.0209/0.0451 5:6182 87.8405/0.1856 23.6644/0.0704 3:7646

Note: Bold value indicates a ratio for the average consuming time of different methods.

Table 3
Comparison for different images with kernel 7.

Images Blurry L1 L2
3

L1
2

L0

a(512 	 512) 20.68 26.88 26:90 26.77 25.38
b(512 	 512) 20.47 30.54 30:63 30.44 28.96
c(512 	 512) 20.43 29.56 29:70 29.57 27.81
d(512 	 512) 22.87 32.41 32:42 32.19 30.54
e(512 	 512) 22.40 30:55 30.51 30.34 29.56
f(512 	 512) 21.79 30.37 30:45 30.31 28.94
g(1608 	 1624) 13.67 25.39 25:45 25.27 21.90
h(1554 	 1383) 26.93 34.58 34:59 34.50 33.80
i(1362 	 1263) 23.67 32.64 33:14 33.09 30.31
j(1024 	 1341) 15.39 26.12 26:43 26.35 22.14
k(1308 	 1197) 18.47 26.03 26:24 26.21 24.14
l(1000 	 667) 18.34 27.28 27:66 27.67 25.08
m(886 	 886) 22.80 30.35 30:70 30.64 28.69
n(1246 	 1119) 17.57 26.36 26:48 26.35 23.89
o(1413 	 1413) 20.38 30.82 31:13 30.98 28.31
p(1284 	 1380) 18.94 31.62 31:89 31.63 28.23
q(1600 	 1200) 14.16 23.54 23:75 23.67 20.18
r(1693 	 1084) 17.77 27.91 28:14 28.02 25.36
s(1024 	 675) 17.36 27.16 27:63 27.65 24.50
t(1600 	 1200) 18.89 25.98 26:07 25.97 24.45

Note: Bold values indicate the highest PSNR value.

Table 4
Comparison for different images with kernel 8.

Images Blurry L1 L2
3

L1
2

L0

a(512 	 512) 19.05 26.39 26:42 26.33 25.18
b(512 	 512) 19.39 29.29 29:47 29.38 27.78
c(512 	 512) 19.23 28.69 28:89 28.83 27.05
d(512 	 512) 20.33 30.83 30:94 30.84 29.25
e(512 	 512) 20.93 29.55 29:59 29.47 28.60
f(512 	 512) 20.08 29.44 29:59 29.49 28.05
g(1608 	 1624) 12.75 24.43 24:64 24.58 21.00
h(1554 	 1383) 25.65 33:81 33.73 33.54 33.04
i(1362 	 1263) 21.86 32.35 33.05 33:07 30.01
j(1024 	 1341) 14.46 25.97 26.43 26:44 21.65
k(1308 	 1197) 17.43 26.17 26:46 26:46 23.92
l(1000 	 667) 17.64 27.58 28.10 28:15 24.69
m(886 	 886) 22.20 30.12 30:52 30.46 28.34
n(1246 	 1119) 17.05 26.09 26:31 26.25 23.44
o(1413 	 1413) 19.54 29.61 30:12 30.10 27.08
p(1284 	 1380) 17.59 30.12 30:71 30.68 26.95
q(1600 	 1200) 13.58 23.55 23:82 23.80 19.93
r(1693 	 1084) 17.23 27.30 27.72 27:73 24.49
s(1024 	 675) 16.50 27.45 28.14 28:26 23.97
t(1600 	 1200) 18.54 26.15 26:29 26.22 24.23

Note: Bold values indicate the highest PSNR value.
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closed-form formulation, then the final algorithm for image decon-
volution is shown in Algorithm 1.

4. Experiments

In this section, we will conduct several groups of experiments to
demonstrate that the proposed deconvolution algorithm enables
significantly faster speed over Krishnan et al’s algorithm [3]. More-
over, by extensive experiments, we will show that L2

3
regularization

is more effective for image deconvolution than L0; L1
2

or L1 regular-
ization, and L1

2
regularization is competitive to L1 regularization

and better than L0 regularization.

4.1. Experiment setting

Our test natural images are collected from two sources: (1) the
standard test images for image processing with size of 521 	 512;
(2) the high-resolution images from web site of http://www.flickr.-
com/. The images from the second source are commonly with lar-
ger resolutions to test the ability for our algorithm to handle large
images. We list all the test images in Fig. 2. All the test images are
blurred by real-world camera shake kernels from [22], and the blur
kernels are shown in Fig. 3 (the images are scaled for better illus-
tration). To better simulate the real-captured blurry image, we also
add Gaussian noises with standard deviation of 0.01 to the blurry
image and followed by quantization to 255 discrete values. The
PSNR defined as 10log10

2552

MSEðxÞ is employed to evaluate the deconvo-
lution performance, where x is the deconvolution result and
MSEðxÞ denotes the mean square error between x and the
Please cite this article in press as: W. Cao et al., Fast image deconvolution us
Commun. (2012), http://dx.doi.org/10.1016/j.jvcir.2012.10.006
ground-truth high quality image. In our implementation, edge
tapering operation is utilized to reduce the possible boundary arti-
facts. To compare the best potential performance of different regu-
larization algorithms, we set binc ¼

ffiffiffi
2
p

and k ¼ 2
b to the optimal

value in a range of values with best PSNR performance as in [3].
Our experiments are executed using Matlab software on desk-
top computer with 2.51 GHz AMD CPU (dual core) and 1.87 GB
RAM.

Algorithm 1. Fast Image Deconvolution Using Closed-Form
Thresholding Formulas of Lqðq ¼ 1

2 ;
2
3Þ Regularization

Input: Blurred image y; blur kernel k; regularization weight
k; q=1

2 or 2
3;b0; bInc; bM;

maximal number of outer iterations T;
number of inner iterations J.
Step 1: Initialize iter = 0, x ¼ y and b ¼ b0, pre-compute

constant terms in Eq. (2.7).
Step 2: repeat

iter = iter + 1.
for i = 1 to J do

x-subproblem: optimize x according to Eq. (2.7).
u-subproblem: optimize u1;u2 according to Eq. (3.2)

or (3.4) when q=1
2 or 2

3.
endfor
b ¼ binc � b.
until b > bM or iter > T.

Output: x.
ing closed-form thresholding formulas of Lqðq ¼ 1
2 ;

2
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Table 5
Average results for different regularization.

Ave. Blurry L1 L2
3

L1
2

L0

ker1(13 	 13) 22.5621 30.5138 30:5250 30.3146 28.2054
ker2(15 	 15) 22.2905 29.1895 29:3143 29.1567 26.9743
ker3(17 	 17) 21.7455 29.0075 29:2680 29.1865 26.6380
ker4(19 	 19) 22.2555 29.3000 29:6125 29.5735 26.7215
ker5(21 	 21) 18.8620 30.6030 30:7085 30.5335 28.0740
ker6(23 	 23) 19.7125 29.4790 29:5740 29.4305 27.4645
ker7(23 	 23) 19.6490 28.8050 28:9955 28.8810 26.6085
ker8(27 	 27) 18.5515 28.2445 28:5470 28.5040 25.9325

Note: Bold values indicate the highest PSNR value.

Table 6
Comparison for 8 kernels with image o.

Image o Blurry L1 L2
3

L1
2

L0

ker1(13 	 13) 23.97 33.38 33:41 33.10 30.47
ker2(15 	 15) 23.39 31.57 31:83 31.62 28.96
ker3(17 	 17) 22.26 30.87 31:21 31.08 28.34
ker4(19 	 19) 23.34 30.87 31:37 31.34 28.03
ker5(21 	 21) 19.57 33.14 33:31 33.04 30.12
ker6(23 	 23) 20.51 31.21 31:51 31.38 28.86
ker7(23 	 23) 20.38 30.82 31:13 30.98 28.31
ker8(27 	 27) 19.54 29.59 30:10 30.08 27.08

Note: Bold values indicate the highest PSNR value.

Table 7
Comparison for 8 kernels with image p.

Image p Blurry L1 L2
3

L1
2

L0

ker1(13 	 13) 23.64 34:23 34.09 33.66 30.76
ker2(15 	 15) 22.87 32.19 32:36 32.07 28.94
ker3(17 	 17) 21.63 30.97 31:44 31.33 27.84
ker4(19 	 19) 22.60 31.23 31:81 31.78 27.73
ker5(21 	 21) 17.91 33.56 33:71 33.38 29.91
ker6(23 	 23) 19.07 32.39 32:56 32.29 29.38
ker7(23 	 23) 18.94 31.62 31:89 31.63 28.23
ker8(27 	 27) 17.59 30.14 30:72 30.66 26.96

Note: Bold values indicate the highest PSNR value.
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recovery
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 recovery
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Fig. 4. The deconvolution results by differen
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4.2. Comparison for speed

In this experiment, we will evaluate the speed of our algorithm
compared to the Krishnan’s algorithm (without the look-up table
technique) [3]. It has been shown in [3] that the speed of other
methods such as re-weighted method is slower than Krishnan’s
algorithm. We test the algorithms on images with varying resolu-
tions. Our proposed deconvolution algorithms using L1

2
and L2

3
reg-

ularization are denoted as OurL1
2

and OurL2
3

respectively whereas
the corresponding algorithms proposed in [3] are denoted
DL1

2
(without the look-up table technique) and DL2

3
(without the

look-up table technique) respectively. Table 1 exhibits for kernel
4 the average result and the standard deviation of ten times exper-
iment with different resolutions, and Table 2 for kernel 8. From Ta-
ble 1 and Table 2, we find that our L1

2
algorithm is roughly 5.5 times

faster than Krishnan’s L1
2

algorithm, and our L2
3

algorithm is roughly
3.7 times faster than Krishnan’s L2

3
algorithm in average, indicating

that the closed-form thresholding formula significantly speed up
the deconvolution algorithm in the framework of splitting qua-
dratic algorithm. Of course, we can further exploit other engineer-
ing technologies like look-up table or high performance computing
platform like GPU (Graphic Processing Units) to further accelerate
our algorithm. Moreover, from Table 1 and Table 2, the small stan-
dard deviations and the similar acceleration results for two differ-
ent sizes of kernels manifest that the acceleration speed is stable.

4.3. Evaluation for different regularization

To compare the performance of different regularization algo-
rithms, we conduct eight groups of experiments for different ker-
nels. For each kernel, we evaluate the deconvolution performance
over the 20 test images shown in Fig. 2. Because of the space
restriction, we only list two groups of recovery results, as showed
in Table 3 and Table 4. From Table 3 and Table 4, we find that, first,
the deconvolution results using L2

3
regularization outperform over

those by L0; L1
2

or L1 regularization in terms of PSNR values; Second,
 recovery

PSNR=29.59

recovery

PSNR=27.08

t regularization algorithms for image o.
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 recovery
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Fig. 5. The deconvolution results by different regularization algorithms for image p.

Table 8
The triangle and hyperbolic expression for the roots of cubic equation

x3 þ 3pxþ 2q ¼ 0; p – 0. let r ¼ sgnðqÞ
ffiffiffiffiffiffi
jpj

p
p < 0 p > 0

q2 þ p3 < 0 q2 þ p3 > 0

cos u ¼ q
r3 cosh u ¼ q

r3 sinh u ¼ q
r3

x1 ¼ �2r cos u
3 x1 ¼ �2r cosh u

3 x1 ¼ �2r sinh u
3

x2 ¼ 2r cosðp3 �
u
3Þ x2 ¼ r cosh u

3 þ i
ffiffiffi
3
p

r sinh u
3 x2 ¼ r sinh u

3 þ i
ffiffiffi
3
p

r cosh u
3

x3 ¼ 2r cosðp3 þ
u
3Þ x3 ¼ r cosh u

3 � i
ffiffiffi
3
p

r sinh u
3 x3 ¼ r sinh u

3 � i
ffiffiffi
3
p

r cosh u
3
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the L1
2

regularization is competitive to L1 regularization and better
than L0 regularization for image deconvolution. We also present
the average PSNR results over all the test images for each kernel
in Table 5. From Table 5, we can also draw the consistent conclu-
sions though the blur kernels are different in both shape and
resolution.

To further test the performance of our algorithm, we evaluate
the deconvolution results for each image over eight different ker-
nels. Similarly, we only list two groups of experiment over two test
images o and p, the results are shown in Table 6 and Table 7. From
Table 6 and Table 7, we can derive the same conclusions. We show
two of the deconvolution results in Fig. 4 and Fig. 5, it is shown that
the deblurred images using Lqðq ¼ 1

2 ;
2
3Þ regularization algorithm is

clearly with higher visual quality with less noises/ringing artifacts
compared to L0 or L1 regularization algorithm.

In summary, extensive experiments demonstrate that our
deconvolution algorithm with Lqðq ¼ 1

2 ;
2
3Þ regularization enables

significantly faster speed over Krishnan’s algorithm [3], while L2
3

regularization outperforms over L0; L1
2

or L1 regularization and L1
2

regularization is competitive to L1 regularization and better than
L1

2
regularization.
Please cite this article in press as: W. Cao et al., Fast image deconvolution us
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5. Conclusion and future work

In this paper, we derived the closed-form thresholding formula
for L2

3
regularization problem. Based on this thresholding formula

together with our previously derived thresholding formula for L1
2

regularization problem, we proposed a fast deconvolution algorithm
using half quadratic splitting strategy. Extensive experiments dem-
onstrate that our algorithm significantly speeds up the previous
deconvolution algorithm in the same framework. And we also justi-
fied that L2

3
regularization is more powerful than L1; L1

2
or L0 regular-

ization, and L1
2

regularization is competitive to L1 regularization and
better than L0 regularization for image deconvolution.

The derived thresholding formula in this work provides an
effective way to optimize the non-convex regularization problem
using closed-form formulation. The L2

3
regularization problem has

wide applications beyond the image deconvolution, e.g., compres-
sive sensing, super-resolution, denoising, etc. On the other hand,
the derived thresholding formula can be extended to solve more
complex regularization problem

~x� ¼ argmin
~x
fjjA~x�~yjj2 þ kjj~xjjqqg ð5:1Þ

where A is a matrix commonly composed of a set of basis in its col-
umns, and ~x and ~y are vectors of variables. This optimization prob-
lem is different to the problem in Eq. (1.2) that matrix A is
introduced which makes vector of variables in~x dependent on each
other. This optimization problem has wide applications in image/sig-
nal processing such as dictionary learning [23], image restoration
[12], etc. It can be fast optimized by iterative thresholding algorithm:
~xkþ1 ¼ Tktð~xk � 2tATðA~xk �~yÞÞ; t is an appropriate stepsize, T is the
hard, soft and half thresolding operator when q ¼ 0;1; 1

2 respectively
[19,21,1,2]. Obviously, the proposed thresholding formula for L2

3
reg-

ularization can be incorporated to the iterative threholding algo-
rithm as the threholding operator to solve the Eq. (5.1) when q ¼ 2

3.
ing closed-form thresholding formulas of Lqðq ¼ 1
2 ;
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In the future work, we are interested in the analysis of the con-
vergence of our deconvolution algorithm and plan to extend the
applications of the thresholding formulas of L1

2
and L2

3
regulariza-

tion to other related problems in image processing and machine
learning.
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Appendix A. The proof of Lemma 3.3

Proof. We will find the minimum point of f ðxÞ on x – 0 by seeking
and analyzing the roots of equation f 0ðxÞ ¼ 0 on x – 0. Since

f 0ðxÞ ¼ 2ðx� aÞ þ 2
3 k signðxÞ

jxj
1
3

, we obtain that:

xjxj
1
3 � ajxj

1
3 þ k

3
signðxÞ ¼ 0 ðx – 0Þ ðA:1Þ

Assuming that jxj ¼ y3, (A.1) can be reduced as the following two
cases:

case1: for x > 0; y4 � ayþ k
3 ¼ 0;

case2: for x < 0;�y4 � ay� k
3 ¼ 0.

Let gðxÞ ¼ xjxj
1
3 � ajxj

1
3 þ k

3 signðxÞ;h1ðyÞ ¼ y4 � ayþ k
3 and

h2ðyÞ ¼ y4 þ ayþ k
3. In the following, for case 1, we seek the

positive minimum point of f ðxÞ by exploring the zero point
distribution of h1ðyÞ. And for case 2, we seek the negative
minimum point of f ðxÞ by the symmetry relationship of h2ðyÞ and
h1ðyÞ, i.e., h2ðyÞ ¼ h1ð�yÞ.

I. We first analyze case 1. By Lemma 3.1, in order to seek the
minimum point of f ðxÞ on x > 0, it suffices to consider the case of
a P 0. Since for x > 0; gðxÞ ¼ gðy3Þ ¼ h1ðyÞ, we just need to seek the
positive root ŷ of h1ðyÞ satisfying:

h1ðŷÞ ¼ 0; h1ðyÞ < 0 when y < ŷ; h1ðyÞ > 0 when y > ŷ:

ðA:2Þ

where y is near to ŷ. We next investigate the root distribution of
h1ðyÞ by analyzing its derivative. Since h01ðyÞ ¼ 4y3 � a, it is easy to
verify that when y <

ffiffi
a
4

3
p

; h1ðyÞ monotonically decreases and when

y >
ffiffi
a
4

3
p

;h1ðyÞ monotonically increases, which means that y ¼
ffiffi
a
4

3
p

is

the unique minimum point of h1ðyÞ. Since h001ðyÞ ¼ 12y2 P 0;h1ðyÞ
is a convex function. The root distribution for h1ðyÞ has three cases:

caseðaÞ: h1ðyÞ ¼ 0 has no root. This means that h1ð
ffiffi
a
4

3
p
Þ > 0, then

we can get ð
ffiffi
a
4

3
p
Þ4 � að

ffiffi
a
4

3
p
Þ þ k

3 > 0, i.e., a < 4ffiffiffiffi
27
p k

3
4;

caseðbÞ: h1ðyÞ ¼ 0 has one unique real root. This means that

h1ð
ffiffi
a
4

3
p
Þ ¼ 0, therefore a ¼ 4ffiffiffiffi

27
p k

3
4. In this case, however, ŷ ¼

ffiffi
a
4

3
p

does

not satisfy Eq. (A.2), so ŷ ¼
ffiffi
a
4

3
p

is a saddle point rather than a
minimum point;

caseðcÞ: h1ðyÞ ¼ 0 has two real roots. This means that

h1ð
ffiffi
a
4

3
p
Þ < 0, therefore a > 4ffiffiffiffi

27
p k

3
4. In this case, h1ðyÞ has two different

roots y1; y2(y1 < y2), and only y2 satisfies Eq. (A.2) that corresponds
to minimum point of f ðxÞ. In the following, we will seek y2 by
method of undetermined coefficients. Assume that

h1ðyÞ ¼ y4 � ayþ k
3

¼ ðy2 þ Ayþ BÞðy2 þ Cyþ DÞ where A;B;C;D 2 R: ðA:3Þ

By expansion and comparison, we get
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Aþ C ¼ 0 ðA:4Þ
Bþ Dþ AC ¼ 0 ðA:5Þ
ADþ BC ¼ �a ðA:6Þ

BD ¼ k
3

ðA:7Þ

From (A.4), we get C ¼ �A. By substituting C ¼ �A into (A.5), (A.6),
we get

Bþ D� A2 ¼ 0 ðA:8Þ
AD� AB ¼ �a ðA:9Þ
(i) when A ¼ 0, from (A.4) and (A.6), we get C ¼ A ¼ a ¼ 0. a ¼ 0

obviously contradicts a > 4ffiffiffiffi
27
p k

3
4, so ðiÞ never occurs.

(ii) when A – 0,
ing clos
Bþ D ¼ A2 ðA:10Þ

� Bþ D ¼ � a
A

ðA:11Þ
we can further obtain that,
B ¼
ðA2 þ a

AÞ
2

ðA:12Þ

D ¼
ðA2 � a

AÞ
2

ðA:13Þ
By substituting (A.12), (A.13) to (A.7), we get ðA
2þa

AÞ
2 � ðA

2�a
AÞ

2 ¼ k
3. And

still, by reduction and rearrangement, we obtain A6 � 4
3 kA2 � a2 ¼

0. Let M ¼ A2, we get

M3 � 4
3

kM � a2 ¼ 0 ðA:14Þ

From the root discriminant formula of the triple equation, we get

D ¼ q
2

	 
2
þ p

3

	 
3
¼ � a2

2

� �2

þ �4
9

k

� �3

¼ a4

4
� 43

93 k3

 !

where q ¼ �a2;p ¼ � 4
3 k. Since a > 4ffiffiffiffi

27
p k

3
4; D > 0. Hence, Eq. (A.14)

only have one real root. According to the Cardan formula for cubic
equation, we get the root of Eq. (A.14) as M ¼ A2 ¼

a2

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4

4 � 43

272 k3
q	 
1

3
þ a2

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4

4 � 43

272 k3
q	 
1

3
. Right now, by (A.3), (A.4),

(A.12), (A.13) and h1ðyÞ ¼ 0, we get

y2 þ Ayþ
ðA2 þ a

AÞ
2

¼ 0 ðA:15Þ

y2 � Ayþ
ðA2 � a

AÞ
2

¼ 0 ðA:16Þ

From the root discriminant formula of the quadratic equation, we
get

d1 ¼ �ðA2 þ 2
a
A
Þ ðA:17Þ

d2 ¼ �ðA2 � 2
a
A
Þ ðA:18Þ

The following is to seek the real root of equation (A.15), (A.16) by
Lemma 3.2.

When A > 0, due to a > 4ffiffiffiffi
27
p k

3
4, we can obtain d1 < 0. By Lemma

3.2, d1 � d2 < 0, hence, d2 > 0. Therefore, (A.15) has no real roots,

and (A.16) has two different real roots: y1 ¼
A�

ffiffiffiffiffiffiffiffiffi
2a
A�A2

p
2 , y2 ¼

Aþ
ffiffiffiffiffiffiffiffiffi
2a
A�A2

p
2 . Because we need the root of h1ðyÞ that satisfies Eq.

(A.2), y2 is the root what we seek and y1 is discarded.
When A < 0, due to a > 4ffiffiffiffi

27
p k

3
4, we can obtain d2 < 0. since

d1 � d2 < 0, hence d1 > 0. In this case, (A.16) has no real roots, and

(A.15) has two different real roots, y3 ¼
�A�

ffiffiffiffiffiffiffiffiffiffiffiffi
�2a

A�A2
p

2 , y4 ¼
�Aþ

ffiffiffiffiffiffiffiffiffiffiffiffi
�2a

A�A2
p

2 . What we need is the maximal root, so y4 is kept and
y3 is discarded.
ed-form thresholding formulas of Lqðq ¼ 1
2 ;
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In both cases, the obtained roots y2 and y4 can be unified as:

ŷ ¼ jAjþ
ffiffiffiffiffiffiffiffiffiffi
2a
jAj�A2

p
2 (a > 4ffiffiffiffi

27
p k

3
4). Hence, the minimum point of f ðxÞ on

x > 0 is x̂ ¼ ŷ3 (a > 4ffiffiffiffi
27
p k

3
4).

II. For case 2, we give a simple argumentation by symmetry. Our
goal is to seek the minimum point of f ðxÞ on x < 0. Due to
gðxÞ ¼ gð�y3Þ ¼ �h2ðyÞ for x < 0, we need to seek the root ŷ of
h2ðyÞ satisfying:

h2ðŷÞ ¼ 0; h2ðyÞ > 0 when y < ŷ; h2ðyÞ < 0 when y > ŷ: ðA:19Þ

where y is near to ŷ. Actually we can seek the required root of h2ðyÞ
in the similar way as case 1. However, the deductions in case 2 can
be simplified by the symmetry between h2ðyÞ and h1ðyÞ. Since
h2ðyÞ ¼ h1ð�yÞ, therefore h2ðyÞ and h1ðyÞ are symmetric with
respect to the vertical axis. Thus the minimal root of h2ðyÞ corre-

sponds to the minus of the maximal root of h1ðyÞ : ŷ ¼
jAjþ

ffiffiffiffiffiffiffiffiffi
2a
jAj�A2

p
2 .

Hence the minimum root of h2ðyÞ, i.e., the minimum point of f ðxÞ
on x < 0 is x̂ ¼ �ŷ3 (a < � 4ffiffiffiffi

27
p k

3
4).

In summary, the minimal point of f ðxÞ for x – 0 is:

x̂ ¼

jAjþ
ffiffiffiffiffiffiffiffiffiffiffiffi
2jaj
jAj �jAj

2
q

2

0
@

1
A

3

if a > sðkÞ

�
jAjþ

ffiffiffiffiffiffiffiffiffiffiffiffi
2jaj
jAj �jAj

2
q

2

0
@

1
A

3

if a < �sðkÞ

8>>>>>>>><
>>>>>>>>:

where

jAj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4

4
� 43

272 k3

s0
@

1
A

1
3

þ a2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4

4
� 43

272 k3

s0
@

1
A

1
3

vuuut ; sðkÞ

¼ 4ffiffiffiffiffiffi
27
p k

3
4: �
Appendix B. The proof of Theorem 3.4

Proof. Note that we have already derived the minimum point x̂ of
f ðxÞ when x – 0 in Lemma 3.3. We now derive the minimum point
x� of f ðxÞwhen x 2 R. From the previous analysis, we can easily get

x� ¼ x̂ f ðx̂Þ < f ð0Þ ¼ a2

0 f ðx̂ÞP f ð0Þ ¼ a2

(

However, our aim is not to seek x� by comparison between f ðx̂Þ and
f ð0Þ, but to seek x� in a closed-form thresholding formula, i.e.,

x� ¼
x̂ jaj > t�ðkÞ
0 jaj 6 t�ðkÞ

�

Next our task is to explicitly compute the expression of t�ðkÞ. When
f ðx̂Þ 6 a2, we get ðx̂� aÞ2 þ kjx̂j

2
3 6 a2. By reducing the equation, we

further get

2ax̂ P x̂2 þ kjx̂j
2
3 ðB:1Þ

When a > 0, by Lemma 3.1, x̂ 2 ð0; aÞ; a P x̂2þkjx̂j
2
3

2x̂ ; when a < 0, by

Lemma 3.1, x̂ 2 ða;0Þ, (B.1) can be reduced as �a P x̂2þkjx̂j
2
3

�2x̂ . Hence
we unify these two cases as follows

jajP x̂2 þ kjx̂j
2
3

2jx̂j or jajP mkðaÞ2 þ kjmkðaÞj
2
3

2jmkðaÞj
ðjaj

>
4ffiffiffiffiffiffi
27
p k

3
4Þ ðB:2Þ
Please cite this article in press as: W. Cao et al., Fast image deconvolution us
Commun. (2012), http://dx.doi.org/10.1016/j.jvcir.2012.10.006
where x̂ ¼ mkðaÞ :¼ ð
jAjþ

ffiffiffiffiffiffiffiffiffiffiffiffi
2jaj
jAj �jAj

2

q
2 Þ3signðaÞ. Let uðaÞ ¼ jaj�

mkðaÞ2þkjmkðaÞj
2
3

2jmkðaÞj
. Obviously, the threshold t�ðkÞ can be computed from

the roots of uðaÞ. Since mkðaÞ is the minimum point of the equation

f ðxÞ ¼ ðx� aÞ2 þ kjxj
2
3ðx – 0Þ;mk satisfies: jmkðaÞj � aþ k

3
signðjmkðaÞjÞ
jmkðaÞj1=3 ¼

0. According to the equation, we can obtain

jmkðaÞj2 ¼ ajjmkðaÞj �
k
3

����
����mkðaÞj

2
3 ðB:3Þ

we substitute (B.3) into uðaÞ;uðaÞ can be further reduced as

uðaÞ ¼ jaj
2
� k

3jmkðaÞj1=3 ðB:4Þ

From (B.4), we can learn that uðaÞ ¼ uð�aÞ, so uðaÞ is symmetric with
respect to the vertical axis. In a 2 ½ 4ffiffiffiffi

27
p k3=4;1Þ; uðaÞ is monotonically

increasing. Moreover, lima! 4ffiffiffi
27
p k3=4 uðaÞ ¼ 8ffiffiffiffi

27
p k3=4 � 2

3
k

mkð 4ffiffiffi
27
p k3=4Þ < 0 and

lima!þ1uðaÞ ¼ þ1. Therefore, uðaÞ on ½ 4ffiffiffiffi
27
p k

3
4;1Þ has a unique root

t�ðkÞ. By the symmetry of uðaÞ, it has another unique root �t�ðkÞ
on ð�1;� 4ffiffiffiffi

27
p k3=4�. Thus, we have

f ðx̂Þ < a2 ¼ f ð0Þ () jaj > t�ðkÞ

And still, from inequality (B.2), we obtain

jajP jmkðaÞj
2

þ k

2jmkðaÞj1=3

¼ jmkðaÞj
2

þ k

2 � 3 � jmkðaÞj1=3 þ
k

2 � 3 � jmkðaÞj1=3 þ
k

2 �3 � jmkðaÞj1=3

P 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmkðaÞj

2
� k3

2333jmkðaÞj
4

s
¼ 2

3

ffiffiffiffiffiffiffiffi
3k34

p

From above inequality, we can learn that when jmkðaÞj
2 ¼ k

2�3�jmkðaÞj1=3,

i.e., jmkðaÞj ¼ ðk3 Þ
3
4, the equality holds, i.e., jaj ¼ 2

3

ffiffiffiffiffiffiffiffi
3k34

p
. By substitut-

ing jmkðaÞj ¼ ðk3 Þ
3
4 and jaj ¼ 2

3

ffiffiffiffiffiffiffiffi
3k34

p
into Eq. (B.4), we can get

uð23
ffiffiffiffiffiffiffiffi
3k34

p
Þ ¼ 0. Hence t�ðkÞ ¼ 2

3

ffiffiffiffiffiffiffiffi
3k34

p
.

In summary, the minimum point of f ðxÞ ¼ ðx� aÞ2 þ kjxj
2
3; x 2 R,

satisfies

x� ¼

jAjþ
ffiffiffiffiffiffiffiffiffiffiffiffi
2jaj
jAj �jAj

2
q

2

0
@

1
A

3

if a > 2
3

ffiffiffiffiffiffiffiffi
3k34

p

0 if jaj 6 2
3

ffiffiffiffiffiffiffiffi
3k34

p

�
jAjþ

ffiffiffiffiffiffiffiffiffiffiffiffi
2jaj
jAj �jAj

2
q

2

0
@

1
A

3

if a < � 2
3

ffiffiffiffiffiffiffiffi
3k34

p

8>>>>>>>>>>><
>>>>>>>>>>>:

By utilizing the triangle and hyperbolic expression for the roots of
cubic equation, jAj can be reduced as

jAj ¼ 2ffiffiffi
3
p k

1
4 cosh

/
3

� �� �1
2

where / ¼ arccosh
27a2

16
k�

3
2

� �
:

Thus, the proof of Theorem 3.4 is complete. h
Appendix C. The triangle and hyperbolic expression for the
roots of cubic equation

The triangle and hyperbolic expressions for the roots of cubic
equation are presented in Table 8 [24]. According to the second
column of Table 8, we can derive the hyperbolic expression for
the unique real root of our cubic Eq. (A.14), i.e.,
ing closed-form thresholding formulas of Lqðq ¼ 1
2 ;

2
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jAj ¼ 2ffiffiffi
3
p k

1
4 cosh

/
3

� �� �1
2

where / ¼ arccosh
27a2

16
k�

3
2

� �
:
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