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Abstract

Sparse synthetic aperture radar (SAR) imaging has been highlighted in recent studies. As

an important sparsity constraint, L1/2 regularizer has been substantiated effectively when

applied to SAR imaging. However, L1/2-SAR imaging suffers from a common challenge

with other sparse SAR imaging methods: the computational complexity is costly, espe-

cially for high dimensional applications. This challenge is mainly due to that L1/2-SAR

imaging is a gradient descent based method, of which the convergence is at most linear.

Thus, a lot of iterations are often necessary to yield a satisfactory result. In this paper,

we propose an accelerated L1/2-SAR imaging method by applying the block coordinate

relaxation (BCR) scheme combined with the reduced Newton skill for acceleration. It is

numerically shown that the proposed method keeps fast convergence within a very few

iterations, and also maintains high reconstruction precision. We provide a series of sim-

ulations and two real SAR applications to demonstrate the superiority of the proposed

method. Particularly, much faster convergence and higher reconstruction precision in
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imaging, of the proposed method over the other sparse SAR imaging methods.

Keywords: Synthetic aperture radar; L1/2 regularization; L1/2-SAR imaging; block

coordinate relaxation; reduced Newton acceleration.

1. Introduction

Synthetic Aperture Radar (SAR) can obtain high resolution images of illuminated

scenes under all weather and day-night circumstances. It plays an important role in remote

sensing, and has been widely used in many military and civilian applications, including

topographic mapping, target recognition, environmental monitoring, and surveillance, etc.

SAR imaging is an inverse scattering problem, more precisely, a problem of seeking for

a spatial map of reflectivity from measurements of scattered electric fields, which can be

normally modeled as an ill-posed linear inverse problem. For conventional SAR imaging,

the high resolution of range direction is obtained by the pulse compression of transmitted

signal, and the high resolution of azimuth direction is achieved through the synthetic

aperture [1]. Moreover, the data acquired for the conventional SAR imaging is sampled

at the Nyquist rate. According to the Shannon-Nyquist sampling theorem, the Nyquist

rate is no less than two times of the signal bandwidth.

Most of traditional SAR imaging methods are based on matched filtering (MF) [2],

such as Range Doppler algorithm [3], Chirp Scaling algorithm [4], etc. These algorithms

can be fast implemented by the use of Fourier transformation or time-frequency interpola-

tion. However, there are some disadvantages of these traditional MF based SAR imaging

methods: First, the range and azimuth resolutions of a SAR image are directly propor-

tional to the bandwidth of the transmitted signal and the doppler bandwidth respectively.
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In order to obtain a high resolution image, therefore, a wide transmitted signal bandwidth

in range and a wide synthetic doppler bandwidth in azimuth are required. Second, ac-

cording to the Nyquist rate, the sampling rates in both range and azimuth must be very

high for high resolution SAR imaging. This leads to much more onboard memory and

downlink throughput required for the platform. Third, traditional SAR images suffer

from serious sidelobe interference problem, which degenerates the quality of SAR images.

In recent years, as the fast development of compressed sensing (CS) [12, 13], sparse

SAR imaging has been attracted a great deal of attention [5, 6, 7, 8, 9, 10, 11]. Compressed

sensing theory suggests that it is possible to recover a sparse or compressible scene from

a small number of random measurements with an appropriate nonlinear reconstruction

scheme. Therefore, sparsity plays a crucial role in CS. Unlike the conventional sam-

pling, CS is a procedure of using the sparsity of the signal and combining sampling with

compression, which then permits the signal being sampled at the sub-Nyquist rate and

reconstructed from the compressed measurements. Thus, the main benefit of CS applied

to SAR imaging is the significant reduction of the number of necessary transmitted and/or

received electromagnetic waveforms for reconstructing a high resolution SAR image. In-

spired by this, many CS based algorithms have been suggested for SAR imaging.

A compressive radar imaging scheme based on CS notation was firstly reported by

Baraniuk et al [6]. They employed Orthogonal Matching Pursuit (OMP) algorithm [14]

for radar imaging from the compressed measurements. In [7], Alonso et al focused on

the SAR raw data, and used the Regularized OMP (ROMP) algorithm [15] to implement

SAR imaging. Both OMP and ROMP, are greedy pursuit algorithms, which can be quite

fast, especially in the ultrasparse regime. However, they are inefficient or even failed
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when the signal is not very sparse and there exists heavy observation noise [16]. In [8], a

compressed SAR imaging modality was suggested based on L1 regularization, which is a

convex optimization and thus can be efficiently solved [17, 18, 19, 20]. It was also shown

in [21] that, under certain conditions, the resultant solution of L1 regularization coincide

with one of the solutions of L0 regularization (L1/L0 equivalence). Because of these, L1

regularization gets its popularity and has been treated as a useful tool for solution of the

sparsity problems.

In spite of its computational efficiency and well approximation of L0 regularization,

L1 regularization cannot enforce further sparsity. Lq (0 < q < 1) regularization was

introduced as an improvement upon performance of L1 regularization [22, 23, 24, 25]. In

particular, a new regularization framework with L1/2 regularizer was developed by Xu et

al [22, 23, 24]. Inspired by the well developed theoretical properties of L1/2 regularization,

an L1/2 regularization based SAR imaging method (L1/2-SAR in briefly) was suggested

in [10, 11]. It is demonstrated that L1/2-SAR requires much fewer measurements to

reconstruct an interested scene. Also, it is more robust to noise over L1-SAR and the

greedy pursuit based SAR imaging methods [11].

Despite its effectiveness, L1/2-SAR suffers from the same challenge as that for most

CS based SAR imaging methods: its computational burden is heavy, especially for high

dimensional SAR imaging applications. This challenge is mainly due to the fact that

L1/2-SAR is a gradient descent based method, of which the convergence is at most linear,

and thus a lot of iterations are necessary to reach a satisfactory result.

In this paper, we aim to develop an accelerated L1/2-SAR imaging method. The

main idea is to apply the block coordinate relaxation approach for the L1/2-SAR imaging
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procedure, and use the reduced Newton skill for acceleration (called the BCRA-L1/2-SAR

hereafter). The block coordinate relaxation (BCR) method is widely used in minimization

of a continuously differential function with multiple variables [26, 27]. A special case of

BCR is the well-known (block) coordinate descent method [28], which has been extended

to minimize a nondifferential (nonconvex) function with certain separability and regular-

ity properties like continuity on a compact level set [29]. In BCR, the coordinates are

partitioned into several blocks. At each iteration, the objective function descends along

a relaxed descent direction with respect to one of the coordinate blocks while the other

are fixed. Therefore, instead of the original high dimensional problem, a relative lower

dimensional and thus commonly more easily solved problem at each iteration is solved.

Thus, BCR scheme is potentially effective for high dimensional applications, especially

for SAR imaging. The reduced Newton skill was previously proposed to accelerate BCR

for the convex regularization problem with certain separable structure ([30]). We extend

it to L1/2 regularization, which is nonconvex.

A series of simulations and two real SAR applications are conducted to support the

fast convergence and high reconstruction precision properties of BCRA-L1/2-SAR method.

In particular, we demonstrate the outperformance of BCRA-L1/2-SAR over the other CS

based SAR imaging methods like OMP [14] and L1 regularization.

The reminder of the paper is organized as follows. In Section 2, we review L1/2-

SAR method and then formulate the BCRA-L1/2-SAR imaging method. In section 3, we

conduct a numerical study to assess the performance of BCRA-L1/2-SAR. In Section 4, we

then provide two real SAR applications, showing the high performance and effectiveness

of BCRA-L1/2-SAR. Finally, we conclude the paper in Section 5 with some useful remarks.
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2. BCRA-L1/2-SAR Imaging

In this section, we first introduce the L1/2-SAR imaging method suggested in [11]

briefly, formulate the accelerated L1/2-SAR imaging method, and then present some re-

marks of the proposed method.

2.1. L1/2-SAR Imaging

According to [1], the ground-plane geometry for stripmap-mode SAR is shown as in

Figure 1. The radar platform travels at velocity v in the azimuth direction and transmits

wideband microwave pulses at regular intervals. The corresponding echoes are recorded.

Many pulses are transmitted during the so-called integration time, i.e., the time the

platform takes to travel the footprint cross-range length. More specifically, a complex

baseband pulse s(τ), usually Chirp, is modulated in quadrature by a carrier frequency f0

to yield the transmitted waveform p(τ) = Re{s(τ)exp{j2πf0τ}}, where Re{·} denotes the

real part of {·}. Then p(τ) is transmitted at the uniform pulse repetition interval (PRI).

The received backscattered energy can be modeled as a convolution of the pulse waveform

with the ground reflectivity function f(τ, η), where τ , η represent the fast (range) and slow

(azimuth) times, respectively. Upon receiving, the echo is then quadrature demodulated

to the complex baseband signal yr(τ
′
, η

′
), that is,

yr(τ
′
, η

′
) =

∫∫
f(τ, η)g(τ

′
, η

′ − η; τ)dτdη + e(τ
′
, η

′
), (2.1)

where g(τ
′
, η

′−η; τ) = ωτ (τ
′− 2R(τ,η

′−η)
c

)ωη(η
′
)s(τ− 2R(τ,η

′−η)
c

)exp{−j4πf0R(τ, η
′ − η)/c},

and c is the speed of light, ωτ is the envelop function of transmitted pulse in range, ωη

is the antenna beam pattern in azimuth, R(τ, η
′ − η) =

√
(cτ/2)2 + [v(η′ − η)]2 is the
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slant range between radar and the target, e(τ
′
, η

′
) is assumed to be the complex white

Gaussian noise arising from thermal noise in the transmitter and receiver hardware.

If one samples the continuous-time analog echo yr(τ
′
, η

′
) with the additive complex

white Gaussian noise e(τ
′
, η

′
) at the grid of time (τ

′

k, η
′

l), k = 1, . . . , K and l = 1, . . . , L,

and discretizes the reflectivity field f(τ, η) at the grid of time (τi, ηj), i = 1, . . . ,M and

j = 1, . . . , N , the following SAR observation model then can be obtained

y = Af + e, (2.2)

where y ∈ Cm, f ∈ Cn, A ∈ Cm×n, e ∈ Cm, m = KL and n = MN . More specifically,

yk+(l−1)K = yr(τ
′

k, η
′

l), fi+(j−1)M = f(τi, ηj), ek+(l−1)K = e(τ
′

k, η
′

l), andA(k+(l−1)K),(i+(j−1)M) =

g(τ
′

k, η
′

l − ηj; τi). The SAR imaging problem is to reconstruct the reflectivity f from the

measurement (2.2).

Moreover, if reflectivity f is sparse under a basis Ψ ∈ Cn×n with sparse representation

x, the linear model (2.2) then can be rewritten as

y = Af + e = AΨx+ e = Φx+ e, (2.3)

where Φ = AΨ and f = Ψx. According to [10, 11], the above inverse problem can be

solved by the L1/2 regularization scheme (the so-called L1/2-SAR imaging)

x∗ = argminx∈Cn{∥y − Φx∥22 + λ∥x∥1/21/2}, (2.4)

where ∥ · ∥1/2 denotes the L1/2 quasi-norm of Cn, defined by ∥x∥1/21/2 =
∑n

i=1

√
|xi|, and

λ > 0 is a regularization parameter. The first term in (2.4) is a data fidelity term,

which corresponds to the linear model (2.3). The second term in (2.4) incorporates the

prior information on the behavior of the filed f in the transformed domain Ψ, and the
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nature features of the interested scene in the resulting reconstruction (say, the sparse

representation x obeys the hyper-Laplace distribution).

According to [24], the solutions of problem (2.4) can be analytically expressed in a

thresholding form: any solution x of the L1/2-SAR imaging problem (2.4) is given by

x = Hλµ,1/2(Bµ(x)), (2.5)

where Bµ(x) = x + µΦH(y − Φx), µ is a step size, and Hλµ,1/2(·) is the complex-valued

half thresholding operator defined by

Hλµ,1/2(u) = (hλµ,1/2(u1), . . . , hλµ,1/2(un))
T , (2.6)

for any u = (u1, . . . , un)
T ∈ Cn, where the complex-valued half thresholding function

hλµ,1/2(·) is defined by

hλµ,1/2(z) =


2
3
z(1 + cos(2π

3
− 2

3
arccos(λµ

8
( |z|

3
)
− 3

2 ))), |z| >
3√54
4
(λµ)2/3

0, otherwise

. (2.7)

With the thresholding representation (2.5)-(2.7), a complex-valued iterative half thresh-

olding algorithm for solution of the L1/2-SAR imaging problem (2.4) was suggested in

[11], which is as follows:

x(k+1) = Hλkµk,1/2(Bµk
(x(k))). (2.8)

The algorithm can be seen as a procedure of Landweber iteration projected by the half

thresholding operator, which is only deduced from the gradient information of the objec-

tive function. Thus, the convergence of L1/2-SAR is at most linear. As a result, a lot of

iterations are necessary to reach a satisfactory result.
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2.2. Accelerated L1/2-SAR Imaging

In this subsection, we formulate an accelerated L1/2-SAR method, called the BCRA-

L1/2-SAR imaging method, by applying the block coordinate relaxation method and the

reduced Newton skill.

First, we apply BCR to L1/2-SAR imaging. For this purpose, we divide x into a series

of blocks without intersection, say, {x[q]|q ∈ Q} with {[q]|q ∈ Q} being a partition of

{1, 2, . . . , n}, where Q = {1, 2, . . . , |Q|} is the index set of blocks. For any set S, we

denote by |S| its cardinality. It is obvious that the regularization term in (2.4), ∥x∥1/21/2,

can then be split into the form:

∥x∥1/21/2 =
∑

q∈Q
∥x[q]∥1/21/2

. (2.9)

Similarly, the matrix Φ can be split into the corresponding |Q| blocks, {Φ[q]|q ∈ Q}. Thus

the L1/2-SAR imaging problem (2.4) can be rewritten as

x∗ = argminx∈Cn

{∥∥∥y −∑
q∈Q

Φ[q]x[q]

∥∥∥2

2
+ λ

∑
q∈Q

∥x[q]∥1/21/2

}
. (2.10)

Assume that the k-th iteration x(k) has been updated, and we need to yield a new update

at k + 1-th iteration. The idea of BCR is then that |Q| substeps are taken for updating.

At each substep, only one coordinate block is updated while the other blocks are fixed.

Specifically, to update the q−th coordinate block, one considers the subproblem

min
x[q]∈C|[q]|

{
∥∥y(k)q − Φ[q]x[q]

∥∥2

2
+ λ∥x[q]∥1/21/2

}, (2.11)

where y
(k)
q = y −

∑
i ̸=qΦ[i]x

(k)
[i] . From (2.8), the following relaxed iteration for solution of

the subproblem is suggested

x̂
(k+1)
[q] = Hλµq ,1/2(Bµq(x

(k)
[q] )), (2.12)
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where Bµq(x
(k)
[q] ) = x

(k)
[q] + µqΦ

H
[q](y

(k)
q − Φ[q]x

(k)
[q] ), µq is a step size, and Hλµq ,1/2(·) is the

complex-valued half thresholding operator defined as in (2.6)-(2.7).

We observe that the gradient information is only used in (2.12), hence, it is generally

not sufficient to imply fast convergence. Therefore, we further apply the reduced Newton

skill to the procedure (2.12).

The reduced Newton skill was previously proposed to accelerate BCR for the following

regularized optimization problem ([30])

minx{Jλ(x) = f(x) + λp(x)}, (2.13)

where f is a smooth function, p is a closed, proper, convex function with certain separable

structure, and λ > 0 is a regularization parameter. The idea is to use not only the

gradient information but also the second-order differential information of the objective

function for defining a new descent direction on an active manifold of the current iteration.

However, the reduced Newton skill cannot directly apply to the case (2.4), since in this

case, p(x) = ∥x∥1/21/2, which is nonconvex. We can, however, extend the skill to such a

nonconvex case, detailed as follows.

Assume that x̂
(k+1)
[q] is defined by (2.12) and its support set is S

(k+1)
[q] , that is, S

(k+1)
[q]

contains all the indices of non-zero components of x̂
(k+1)
[q] . We let

Jλ,q(x[q]) = fq(x[q]) + λpq(x[q]), (2.14)

where fq(x[q]) =
∥∥∥y(k)q − Φ[q]x[q]

∥∥∥2

2
and pq(x[q]) = ∥x[q]∥1/21/2

. Since pq(x[q]) is nondifferen-

tiable at zero, we consider the differentiability of Jλ,q(x[q]) on the active complex manifold,
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M(k+1)
[q] ⊂ C|[q]|, of which the i-th component is defined by

M(k+1)
[q] (i) =


C1\{0}, |x̂(k+1)

[q] (i)| ̸= 0

{0}, otherwise

, for i ∈ [q]. (2.15)

We then find a new iteration x
(k+1)
[q] on the manifold M(k+1)

[q] by using the first and second-

order differential information of Jλ,q(x[q]). To achieve this, we expand Jλ,q(x[q]) at x̂
(k+1)
[q]

up to the second order, to get

ψλ,q(x[q]) = Jλ,q(x̂
(k+1)
[q] )+∇fq(x̂(k+1)

[q] )
H
(x[q]−x̂(k+1)

[q] )+
1

2
(x[q] − x̂

(k+1)
[q] )

H
∇2fq(x̂

(k+1)
[q] )(x[q] − x̂

(k+1)
[q] ),

(2.16)

Then we take the new update x
(k+1)
[q] as the minimizer of ψλ,q(x[q]) on M(k+1)

[q] :

x
(k+1)
[q] = argmin

x[q]∈M
(k+1)
[q]

ψλ,q(x[q]). (2.17)

Since (2.17) is a constrained optimization problem, it is generally difficult to solve directly.

We then propose to transform it into an unconstrained optimization problem, detailed as

follows.

Denote by P[q] the matrix whose columns are those of the |[q]| × |[q]| identity matrix,

I|[q]|, corresponding to S
(k+1)
[q] (i.e., P[q] = I|[q]||S(k+1)

[q]

). Then for any x[q] ∈ M(k+1)
[q] , there

exists a unique xs ∈ C|S(k+1)
[q]

| such that x[q] = P[q]xs (particularly, xs can be taken as

PH
[q]x[q]). We remodel problem (2.17) as the following unconstrained optimization problem

x(k+1)
s = argmin

xs∈C
|S(k+1)

[q]
|

{
∇fq(x̂(k+1)

[q] )
H
P[q]d

(k+1)
s +

1

2
d(k+1)
s

H
PH
[q]∇2fq(x̂

(k+1)
[q] )P[q]d

(k+1)
s

}
,

(2.18)

with d
(k+1)
s = xs − x̂

(k+1)
s and x̂

(k+1)
s = PH

[q]x̂
(k+1)
[q] . Actually, after some simplifications,
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problem (2.18) is equivalent to the following least square problem

x(k+1)
s = argmin

xs∈C
|S(k+1)

[q]
|

{
∥y(k)q − ΦS,qxs∥22

}
.

Thus, the new iteration x
(k+1)
[q] can be specified as

x
(k+1)
[q] = P[q]x

(k+1)
s . (2.19)

To summarize, the BCRA-L1/2 algorithm we proposed can be summarized as Algo-

rithm 1.

2.3. Some Remarks

(i) Algorithm Illustration. As shown in Algorithm 1, the BCRA-L1/2 algorithm can

be operated as the following procedure: (1) block partition: partitioning the coordinates

and the corresponding sensing matrix into several blocks; (2) updating the regulariza-

tion parameter; (3) inner loop iteration: for each block coordinates, (i) taking iterative

half thresholding scheme to obtain a signal proxy, (ii) identify the support set of the ob-

tained signal proxy, (iii) updating the coefficients of the identified support set via least

square principle; (4) termination test. It is seen that in BCRA-L1/2 algorithm, the crucial

factors for affecting its performance includes block partition scheme, regularization pa-

rameter setting, updating rule for iteration. Among these, the block partition scheme and

regularization parameter setting will be discussed in the later remarks. It is well known

that the support set takes a key role in the sparsity problems. Once the support set is

determined, the coefficients can be obtained by various methods directly. According to

[22, 24], L1/2 regularization can be accepted as a good variable selector. In our case, it can

not only select the correct support set adaptively, but also yield the corresponding update
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values. However, it is well known that there are amplitude bias problems for the simple

CS estimators like L1 and L1/2 regularization, that is, they will slightly, yet systemati-

cally, underestimate the amplitudes of the coefficients. To overcome this, we have taken

the least square rule to modify the coefficients, which will bring higher reconstruction

precision in imaging as demonstrated by the latter simulations.

(ii) On Block Partition. It is obvious that the performance of the proposed BCRA-

L1/2 algorithm hinges upon the specific choice of block partition scheme, since the choice

determines the complexity and extent of speed-up of the algorithm. In principle, the

coordinate block can be partitioned in any manner, say, in any stochastic or deterministic

ways. Generally, we prefer the deterministic way for convenience of implementation and

analysis. Moreover, if the orthogonality information among the columns of the sensing

matrix is known, we can suggest a delicate block partition scheme based on an interesting

observation on the solution of subproblem (2.11), which will be further analyzed in the

following. Otherwise, we prefer the sequential block partition scheme for simplicity, that

is, the coordinates are partitioned sequentially into several blocks with fixed size.

Let us suppose that the submatrix Φ[q] corresponding to the q-th block satisfies the

following unitary condition, that is,

ΦH
[q]Φ[q] = νqI|[q]|, (2.20)

where νq > 0 is any positive real number. Then, we can observe that through choosing

µq = 1/νq in the thresholding representation formula (2.5)-(2.7), the solution of subprob-

lem (2.11) can be explicitly represented as the following closed form:

x̂
(k+1)
[q] = Hλµq ,1/2(µqΦ

H
[q]y

(k)
q ). (2.21)
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Consequently, the new update (2.19) can be analysitically expressed as

x
(k+1)
[q] = µqP[q]P

H
[q]Φ

H
[q]y

(k)
q . (2.22)

This observation shows that as long as a block partition scheme is made to satisfy the

unitary condition (2.20), the BCRA-L1/2 algorithm can be of a very simple form, and

therefore can be most efficiently implemented. Thus, in this case, we suggest the use of

the scheme of block partition to satisfy (2.20).

With the unitary partition scheme, the whole update procedure of all the blocks can

be uniformly expressed, say, as follows

x̂(k+1) = Hλ(k)α,1/2(x
(k) + diag(α)ΦH(y − Φx(k))), (2.23)

and

x(k+1) = diag(S(k+1))(x(k) + diag(α)ΦH(y − Φx(k))), (2.24)

where, for any z = (z1, z2, . . . , zn)
T ∈ Cn, diag(z) = diag{z1, z2, . . . , zn}, α ∈ Rn

+ with

α(i) = µq if i ∈ [q] for q = 1, 2, · · · , |Q|, Hλ(k)α,1/2 is the half thresholding operator with

the parameters λ(k) and α, that is,

Hλ(k)α,1/2(x) = (hλ(k)α(1),1/2(x1), . . . , hλ(k)α(n),1/2(xn))
T , (2.25)

hλ(k)α(i),1/2 is defined by (2.7), and S(k+1) is the indicator vector of the support set of

x̂(k+1), i.e., S(k+1)(i) = 1 if i ∈ supp{x̂(k+1)} and S(k+1)(i) = 0 otherwise.

It is observed that, with the unitary block partition scheme, the proposed BCRA-L1/2

algorithm degenerates actually to a two-stage iterative thresholding algorithm with the

well-known block coordinate descent [29] for L1/2 regularization in the first stage and a

modification via the reduced Newton acceleration skill in the second stage.
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(iii) On Regularization Parameter Setting. Besides the block partition scheme, another

factor of BCRA-L1/2 algorithm is the regularization parameter setting. Cross-validation

[31] and generalized cross-validation [32] are considered as the most commonly used meth-

ods. However, these are time-consuming, especially for high dimensional problems. Al-

ternatively, some heuristic approaches have been suggested in [24, 33]. The basic ideal

of those approaches is to treat the regularization algorithm as a tuning parameter prob-

lem whose values are determined according to the sparsity level (i.e., the number of the

nonzero components of the unknown sparse signal). We follow this latter approach. More

specifically, if x∗ is a solution of the problem (2.4) with s-sparsity, we let

Bα(x
∗) = x∗ + diag(α)ΦH(y − Φx∗), (2.26)

and

Λ(x∗) =

√
96

9
diag(α)−1|Bα(x

∗)|3/2. (2.27)

Then it can be justified that the optimal regularization parameter λ∗ satisfies

λ∗ ∈ [[Λ(x∗)]s+1, [Λ(x
∗)]s), (2.28)

where [Λ(x∗)]s represents the s-th largest component of Λ(x∗). Thus, as shown in [24], a

nearly optimal regularization parameter setting strategy in implementation of the BCRA-

L1/2 algorithm can be given by

λ(k) = [Λ(x(k))]s+1, (2.29)

where {x(k)} is any approximation sequence of x∗.

It is observed that the suggested strategy depends on the prespecified sparsity level

s of the unknown signal. Therefore, the estimation of sparsity level s is critical. In
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applications, we may conduct an empirical study or based on some known prior to yield

a reasonable approximation of s.

(iv) On Computational Complexity. The computational complexity of BCR-L1/2 al-

gorithm in each iteration step can be analysed as follows. The block partition can be

done off-line. Let us consider the general block partition case. As shown in Algorithm 1,

the total computational complexity of Φ[q]x
(k)
[q] for q = 1, 2, . . . , |Q| is O(mn) at k + 1-th

iteration. At the inner loop, for q-th block coordinates, the computational complexity

of updating x̂
(k+1)
[q] is O(m|[q]|), and the computational complexity of modifying the q-th

block coordinates x
(k+1)
[q] can be neglected since |S(k+1)

q | ≪ m generally. Consequently, the

total computational complexity of the inner loop is O(mn) since
∑|Q|

q=1 |[q]| = n. Hence,

the computational complexity per iteration of the algorithm is O(mn), which is the same

order with that of the L1/2-SAR imaging method shown as in (2.8).

We will show in the next section that the number of iterations required by the proposed

algorithm is significantly fewer than those required by other reconstruction algorithms.

3. Simulations

In this section, some fundamental properties of BCRA-L1/2-SAR imaging method, in-

cluding the fast convergence speed and high reconstruction precision are verified by a series

of one-dimensional (1-D) simulations. Moreover, the phase transition diagrams are pre-

sented to show the sparse reconstruction ability of the proposed method. The advantages

of the new method are demonstrated by comparing it with L1/2-SAR imaging method

[11], the L1 and orthogonal matching pursuit algorithm (OMP) [14] based SAR imaging

methods (called, L1-SAR and OMP-SAR for short). In simulations, we employed the
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fast iterative shrinkage-thresholding algorithm (FISTA) [18] for L1 regularization. This is

adequate since it is known that FISTA is an essential L1 regularization algorithm which

is efficient for high-dimensional problems (this is crucial for SAR imaging application).

In all experiments, the terminational criterions of all the employed algorithms except

OMP were taken as: ∥x(k+1) − x(k)∥2/∥x(k+1)∥ < 10−6. The termination criteria of OMP

was taken as the maximum iteration number at which the sparsity level can be attained.

Moreover, the block partition and some parameters of the proposed method were set as

follows: the coordinates were partitioned empirically into three blocks with the same size,

and the regularization parameter was set according to (2.29).

All the experiments were implemented in a personal computer (2.51GHz, 127GB of

RAM, Quad-Core AMD Opteron(tm) Processor 8380) with MATLAB 7.12.0 platform

(R2011a).

The simulations were implemented in the subsequent way. First, the round-trip delay

for a collection of point targets was randomly generated from a uniform distribution

corresponding to a range of valid distances. Then, the complex scattering coefficient

of each target was randomly assigned from a Rayleigh distribution in amplitude and a

uniform distribution in phase. Finally, the received signal was generated as the sum of

the time-shifted replicas of the transmitted waveform (which was adjusted to be a chirp

signal), with each being multiplied by its corresponding scattering coefficient. The aim

of the simulations was to recover the scattering coefficients from the echo by the related

algorithms.
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3.1. Convergence of BCRA-L1/2 Algorithm

In order to evaluate the convergence of BCRA-L1/2 algorithm, we conducted a group

of 1-D simulations described as above with different experiment parameters (s,m, n),

where s is the sparsity level of the scattering coefficients, m is the measurement number

and n is the dimension of the scattering coefficients. In the simulations, the experiment

parameters were set as s = 200, n = 10000, and m varied from 2000 to 10000 with the

same interval 2000.

The simulation results are depicted in Figure 2. In Fig. 2, the horizontal axis rep-

resents the number of iterations, and the vertical axis represents the iteration error in

the logarithmic scale with 10 as the base, defined by lg
∥x(k)−x∗∥2

∥x∗∥2
, where x(k) is the k-th

iteration, and x∗ is the ground-truth scattering coefficients. The red line with circle, green

line with x-mark, blue line with plus, cyan line with star, and black line with square rep-

resent the iteration results of m = 2000, 4000, 6000, 8000, 10000, respectively. It can be

seen from Figure 2 that the BCRA-L1/2 algorithm converges very fast. In all cases, a very

few iterations (averaging 8 iterations) are sufficient for convergence of the new method.

Moreover, under the same setting of the scattering coefficients, the more measurements

are used, the fewer iterations are necessary for convergence in general. It is mainly due to

the fact that the ill-posedness of the SAR imaging problem commonly gets better when

more measurements used.

3.2. Outperformance of BCRA-L1/2 Algorithm

The outperformance of BCRA-L1/2 algorithm over other sparse SAR imaging methods

was demonstrated in this subsection.
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We have conducted a series of experiments with different parameter triplets (s,m, n),

where s = 200, m = 2000, and n varied from 2000 to 20000 with the same interval 2000.

For each setting, the recovery precision, running time and iteration number were recorded.

The recovery precision was evaluated by relative mean square error (RMSE), defined by

RMSE = ∥x− x∗∥2/∥x∗∥2, where x and x∗ represent the recovery and the ground-truth

signal, respectively. The corresponding experiment results are shown in Figure 3.

As shown in Figure 3 (a) and (b), among all the tested algorithms, the recovery

accuracy of the new method is the best. More specifically, the recovery accuracy of the

new method is with the order of 10−15, which is slightly better than those of OMP-SAR

method. While the recovery accuracies of L1/2-SAR and L1-SAR methods are worse

with the order of 10−5. As an additional surprise, high reconstruction precision of the

new method is mainly due to the fact that the amplitude bias problems of simple CS

estimators like L1 and L1/2 regularization may be overcome via taking the least square

principle to refine the coefficients. Furthermore, the recovery error of the new method

keeps stable with slight oscillation, while that of L1/2-SAR method increases fast as the

signal dimension increases. Also, the new method is the fastest when the signal dimension

is more than 104, as compared to the other algorithms, as shown in Figure 3 (c). In terms

of the tendency of running time as the dimension increases, the new method increases

much slower than the other algorithms, as shown in Figure 3 (d). In the case of n = 20000,

the running time of the new method is 87.23 seconds, while L1/2-SAR, L1-SAR and OMP-

SAR methods take 189.8, 268.3 and 732.6 seconds, respectively. The running time of

L1/2-SAR, L1-SAR and OMP-SAR methods are more than 2, 3 and 8 times that of the

new method, respectively. Moreover, as indicated in Figure 3 (e) and (f), the iteration
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number of the new method is much fewer than those of the other algorithms, and it is

almost a constant (averaging 12) as the signal dimension varies.

Additionally, we have designed a set of simulations to substantiate the applicability of

the new method to high dimensional SAR imaging problems. To this end, we implemented

the BCRA-L1/2-SAR method, as well as L1/2-SAR method, to a series of simulations. In

the simulations, we fixed s = 200, m = 2000, and varied n from 2000 to 105 with the

same interval 2000. The simulation results are then depicted in Figure 4.

It can be seen in Figure 4 (b) that the running time of BCRA-L1/2 algorithm grows

much slower than L1/2-SAR method as the dimension increases. More specifically, when

the dimension n increases to 105, the running time of the new method is 191.5 seconds,

while the running time of L1/2-SAR method is 1591 seconds, more than 8 times of the

new method. It is anticipated that more significant improvement can be obtained as the

signal dimension increases. Besides, the iteration number necessary for convergence of

the new method is much less than that of L1/2-SAR method, and it keeps very few with

the order O(10), as shown in Figure 4 (c) and (d). Comparatively, the iteration number

necessary for convergence of L1/2-SAR method increases faster as the signal dimension

increases. Moreover, the recovery precision of the new method is much higher than L1/2-

SAR method when the signal dimension is lower than 7.2×104, as shown in Figure 4

(a). In these cases, the recovery precision of the new method is O(10−15), while those of

L1/2-SAR method is O(10−5). However, as the signal dimension increases to 7.4×104, the

recovery precision of the new method gets worse sharply. This breakdown phenomenon

will be further studied by the phase transition diagram in the following subsection.
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3.3. Phase Transition Diagram

The phase transition diagram was firstly introduced by Donoho et al. [34] to provide a

way of checking L1/L0 equivalence, indicating how sparsity and indeterminancy affect the

success of L1 regularization, and later it was extended as an experiment tool to study the

equivalence of Lq/L0(0 < q < 1) [23] and comparing the ability of sparse reconstruction

of different compressed sensing strategies [35]. We propose to apply this tool to evaluate

the performance of the proposed method for SAR imaging and compare it with L1/2-

SAR, L1-SAR and OMP-SAR methods. Let δ = m/n be the normalized measure of

undersampling factor and ρ = k/m be the normalized measure of sparsity. A plot of

the pairing of variables δ and ρ describes a two-dimensional phase space (δ, ρ) ∈ [0, 1]2.

With those notations, we implemented a series of simulation runs by taking the values

of δ and ρ at 40 equispaced points in the phase space (n = 1600). At each point on the

grid, corresponding to a SAR imaging model (2.3) with different setting of (s,m, n) (in

this case Ψ = I and n = 1600), the average of RMSE of 30 independent realizations was

recorded, and a phase transition diagram of each method was then draw based on these

results. The phase transition diagrams of OMP-SAR, L1-SAR, L1/2-SAR and the new

methods are shown in Figure 5.

It can be seen from Figure 5 (d) that the original target scene can be reconstructed

well by the new method as long as it is sufficiently sparse and enough measurements are

taken. Furthermore, compared to OMP-SAR and L1-SAR methods, the new method uses

fewer measurements to reconstruct the scene with the same sparsity, and can reconstruct

much denser scene effectively when the same measurements are taken, as demonstrated by

Figure 5. From another point of view, we can see that the new method has better sparse
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reconstruction ability than both OMP-SAR and L1-SAR methods, as it demonstrates

that the successful reconstruction regions (the blue regions) of Figures 5 (d) is obviously

larger than those of (a) and (b). Moreover, the reconstruction ability of the new method

is almost the same as L1/2-SAR method as shown in Figure 5 (c) and (d), which implies

that the new method preserves the promoting sparsity property of L1/2-SAR method well.

Furthermore, we calculated the percentages of the blue regions in the squares, of which

the grid values are less than 0.3. The percentages of the blue regions of Figures 5 (a),

(b), (c) and (d) are 41.81%, 43.56%, 53.13% and 50.25%, respectively. In terms of the

percentage of the successful reconstruction region, the new method is better than both

OMP-SAR and L1-SAR methods with more than 8% and 6% improvements, respectively,

and slightly worse than L1/2-SAR method.

4. Applications

In this section, we demonstrate the effectiveness of the new method on real SAR

data, as compared with the traditional SAR imaging method. We also compare the new

method with the other three CS based SAR imaging methods aforementioned in the last

section. Specifically, we employed the range doppler algorithm (RDA) [3], which is one of

the most commonly used traditional SAR imaging methods. The experiment data of two

real scenes were acquired from Ground-Base SAR (called GB-SAR) and RADARSAT-1,

respectively. In these experiments, the algorithm settings were the same with those in

simulations.
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4.1. Ground-Based SAR Data Reconstruction

We have implemented the four SAR imaging methods for Ground-Based SAR da-

ta, which is acquired by the Advanced Scanning Two-dimensional Railway Observation

Ground-Based SAR system of the Institute of Electronics, Chinese Academy of Sciences

(called, IECAS-ASTRO Ground-Based SAR system). The interested scene composes

three corner reflectors, shown as Figure 6 (a). Some related radar parameters are set

as follows: the signal bandwidth is 4 GHz with carrier frequency 17 GHz, correspond-

ing to a range resolution of 0.0375m. The pulse repetition frequency is 250 Hz, i.e., 651

pulses within dwell time [-1.3,1.3](s) are used in this experiment. The traditional SAR

reconstruction result using 651 pulses via RDA is shown in Figure 6 (b).

We applied the four sparse SAR imaging methods to the GB-SAR data by the use

of different number of pulses including 651, 130 and 65. Some reconstruction results of

these methods are shown in Figure 6 (the second and third rows, respectively, correspond

to 130 and 65 pulses). The corresponding running times of the four sparse SAR imaging

methods are listed in Table 1. As seen in Table 1, the new method is the fastest among

all these methods. More specifically, the running time of the new method is no more

than 11% of those of L1/2-SAR, L1-SAR and OMP-SAR methods when 651 pulses were

used for reconstruction. When fewer pulses, say 130, are used to reconstruct the SAR

scene, the new method is still much faster than the other sparse methods. Furthermore,

when the number of pulses is reduced to 65, the running time of the new method is still

much less than the other sparse methods. A remarkable feature of the new method, as

compared to the other sparse SAR imaging methods, is that the running time of the new

method increases much slower as the number of the measurements increases.
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Additionally, as demonstrated in Figure 6 (b)-(c), there are many sidelobes and ar-

tifacts in the traditional SAR image, while the result reconstructed by the new method

even only using 130 pulses is much better, that is, the new method can reconstruct the

scene with higher resolution and reduced sidelobes. Especially, as compared with the

other sparse SAR imaging methods, the reconstruction of the new method is better than

the other three methods, since there are fewer artifacts in the reconstructions of the new

method, as exhibited in Figure 6 (c) and (g). Moreover, when the number of pulses

used for reconstruction is reduced to 65, both L1-SAR and OMP-SAR methods are failed

with many artifacts in the reconstruction results, as demonstrated in Figure 6 (i) and (j).

While the new method is still effective, and the reconstruction result is better than that

of L1/2-SAR, as shown in Figure 6 (g) and (h).

4.2. RADARSAT-1 Data Reconstruction

We now show the application results of the new method for the data from RADARSAT-

1 in the fine mode-2 about Vancouver region. In [2], the detailed target and data descrip-

tions were provided. We are interested in the region of the English Bay, where there are

six sitting vessels. The traditional SAR image via RDA from full sampling based on the

Nyquist rate is shown in Figure 7 (a). The main radar parameters are set as follows: the

signal bandwidth is 30.111 MHz, the pulse repetition frequency is 1256.98 Hz.

We applied the aforementioned four sparse SAR imaging methods to the RADARSAT-

1 data with different sampling rates including 25%, 10%, 8%, and 5%. A part of the

reconstruction results of these methods are shown in Figure 7. The reconstruction results

with 10% and 5% sampling rates are represented in the second and third rows of Figure
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7, respectively. The corresponding running times of the four SAR imaging methods are

listed in Table 2. It can be seen from Table 2 that the new method is the fastest among all

four methods. In particular, under the sampling rate 25%, the running time of L1/2-SAR,

L1-SAR and OMP-SAR methods are about 3.5, 4 and 35 times of that of the new method.

As the sampling rate descreasing, the running time of the new method is still much less

than that of the other methods (less than 50% of the other methods).

Also, it can be seen that there are many sidelobes and artifacts in the traditional SAR

image shown as in Figure 7 (a). As compared, the result reconstructed by the new method

even with only 10% sampling is much better, with higher resolution and reduced sidelobes,

as shown in Figure 7 (b). The outperformance of the new method is also supported by

comparing it with the other sparsity based SAR imaging methods. Moreover, when the

sampling rate is further reduced to 5%, the reconstruction of the new method is still

better than the other three methods in the sense of identification and giving much clearer

visual effect.

5. Conclusion

In this paper, we have suggested an accelerated L1/2-SAR imaging method through

applying the block coordinate relaxation (BCR) technique combined with the use of re-

duced Newton acceleration skill. From the perspective of algorithmic implementation, the

proposed method can be viewed as the following procedure: first, dividing the coordinates

of unknown variables and the corresponding sensing matrix into several blocks, and then,

updating all coordinate blocks sequentially via an iterative scheme. More specifically, at

each iteration step, we apply L1/2 regularization to identify the support set of each iterate

25



and then use the least square principle to update iterate values for each coordinate block.

It is shown that the proposed method possesses the following two main advantages while

preserving the sparsity and high-resolution properties of the original L1/2-SAR method:

(i) Fast convergence. The number of iteration for convergence is only in the order

of O(10) in most cases, which makes it applicable to high dimensional SAR imaging

applications.

(ii) High reconstruction precision. The proposed method achieves good recovery ac-

curacy, which makes it possible to produce high quality SAR images.

The study of the present paper shows that the accelerated L1/2-SAR method poten-

tially serves as an efficient SAR imaging methodology. Although we have numerically

shown that the new method can converge fast within a very few iterations, the conver-

gence property should be further justified in theory. Also, some other issues like the

recovery performance bound and the minimal number of measurements should be fur-

ther investigated. Furthermore, how to fast implement the new method through the way

of parallel computing, or other high performance computing (HPC) techniques, such as

Graphic Processing Unit (GPU) technique, should be further studied.
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Algorithm1 : BCRA-L1/2 Algorithm

Input : The measurement matrix Φ and measurements y.

Block Partition : Partition the coordinates of unknown variable x ∈ Cn and the

columns of Φ into |Q| blocks without intersection, say, {x[q]|q ∈ Q} and {Φ[q]|q ∈ Q},

where Q = {1, 2, · · · , |Q|} is the index set of blocks, and x[q], Φ[q] are the coordinates

of x and Φ corresponding to index set [q]. Given step-sizes {µq|q ∈ Q}.

Initialization : Initialize x(0) = 0, let k := 0.

Step 1: Calculate: Φ[q]x
(k)
[q] , q = 1, 2, · · · , |Q|, and r(k) = y −

∑|Q|
q=1Φ[q]x

(k)
[q] ;

Step 2: Update regularization parameter λ(k);

Step 3: Update all blocks sequentially at k + 1-th iteration

for q = 1 : |Q|

(1) Calculate y
(k)
q = r(k) + Φ[q]x

(k)
[q] , Bµq(x

(k)
[q] ) = x

(k)
[q] + µqΦ

H
[q](y

(k)
q − Φ[q]x

(k)
[q] );

(2) (Form Signal Proxy) Update x̂
(k+1)
[q] via iterative half thresholding scheme:

x̂
(k+1)
[q] = Hλ(k)µq ,1/2(Bµq(x

(k)
[q] )),

(3) (Identify Support Set) Identify S
(k+1)
[q] :

S
(k+1)
[q] = supp(x̂

(k+1)
[q] ), P[q] = I|[q]||S(k+1)

[q]

, ΦS,q = P[q]Φ[q];

(4) (Signal Estimation) Estimate the q-th block coordinates x
(k+1)
[q] :

x
(k+1)
s = argmin

xs∈C
|S(k+1)

[q]
|

{
∥y(k)q − ΦS,qxs∥22

}
, x

(k+1)
[q] = P[q]x

(k+1)
s ;

end for

Step 4. Termination check: if yes, then the iteration stops; otherwise, let k := k + 1,

return to Step 1.

Output : x(k+1).
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Figure 1: SAR data acquisition geometry of stripmap-mode SAR.
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Figure 2: Fast convergence of BCRA-L1/2 algorithm with different measurements. The

horizontal axis represents the iteration number, and the vertical axis represents the iter-

ative error in the logarithmic scale with 10 as the base.
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(b) Detailed RMSE
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(c) Running time (RT)
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(d) Detailed RT
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(e) Iteration number (IterN)
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(f) IterN of BCRA-L1/2

Figure 3: Simulations with different signal dimensions. (a) The tendency curve of RMSE

with different dimensions varying from 2000 to 20000. (b) Detailed comparison on RMSE

of BCRA-L1/2 and OMP. (c) The tendency curve of the running time (RT) for different

algorithms. (d) Detailed comparison on RT. (e) The tendency curve of the iteration

number (IterN) necessary for different algorithms. (f) IterN necessary for BCRA-L1/2.
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(a) Comparison on RMSE
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(b) Comparison on RT
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(c) Comparison on IterN
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Figure 4: Comparison for applicability to high dimensional SAR imaging problems. (a)

Comparison on tendency of RMSE in the logarithmic scale with 10 as the base. (b)

Comparison on tendency of the running time. (c) Comparison on tendency of the iteration

number. (d) The tendency of the iteration number necessary for BCRA-L1/2.
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(a) OMP-SAR
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(c) L1/2-SAR
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(d) BCRA-L1/2-SAR

Figure 5: The phase transition diagrams of OMP-SAR, L1-SAR, L1/2-SAR and BCRA-

L1/2-SAR methods when applied to SAR imaging. (a) OMP-SAR method; (b) L1-SAR

method; (c) L1/2-SAR method; (d) BCRA-L1/2-SAR method.
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Pulses BCRA-L1/2-SAR L1/2-SAR L1-SAR OMP-SAR

651 8.22 79.25 79.22 138.95

130 4.31 8.48 8.95 21.0156

65 3.64 5.70 5.45 12.47

Table 1: The running time for GB-SAR data (unit: second)
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(b) Traditional SAR image
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(d) L1/2-SAR (130)
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(e) L1-SAR (130)
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(f) OMP-SAR (130)
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(g) BCRA-L1/2 (65)
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(h) L1/2-SAR (65)
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(i) L1-SAR (65)
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(j) OMP-SAR (65)

Figure 6: Reconstruction results of Ground-Based SAR data via different SAR imaging

methods using different pulses. (a) The original SAR scene with three corner reflectors.

(b) The traditional SAR reconstruction via RDA using 651 pulses, which is sampled at

the traditional Nyquist rate. (c), (d), (e) and (f) represent the reconstruction results of

BCRA-L1/2-SAR, L1/2-SAR, L1-SAR, and OMP-SAR methods using 130 pulses, respec-

tively. (g), (h), (i) and (j) are the reconstruction results of BCRA-L1/2-SAR, L1/2-SAR,

L1-SAR, and OMP-SAR methods using 65 pulses, respectively.
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Sampling Rate(%) BCRA-L1/2-SAR L1/2-SAR L1-SAR OMP-SAR

25 363.60 1240.22 1454.80 12403.20

10 214.68 511.63 663.45 5273.64

8 198.88 454.98 534.58 3578.59

5 152.28 330.55 377.39 1578.59

Table 2: The running time for RADARSAT-1 data (unit: second)
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(a) Traditional SAR image
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Figure 7: Reconstruction results of RADARSAT-1 SAR data via different SAR imaging

methods with different sampling rates. (a) Traditional SAR image via RDA with full

sampling based on the Nyquist rate. (b)-(i) represent the reconstruction results of BCRA-

L1/2-SAR, L1/2-SAR, L1-SAR and OMP-SAR methods with 10% and 5% sampling rates,

respectively.
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