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Similarity is the core problem of clustering. Clustering algorithms that are based on a certain, fixed type
of similarity are not sufficient to explore complicated structures. In this paper, a constructing method for
multiple similarity is proposed to deal with complicated structures of data sets. Multiple similarity
derives from the local modification of the initial similarity, based on the feedback information of elemen-
tary clusters. Combined with the proposed algorithm, the repeated modifications of local similarity mea-
surement generate a hierarchical clustering result. Some synthetic and real data sets are employed to
exhibit the superiority of the new clustering algorithm.
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1. Introduction

Clustering is an important technology in data mining and pat-
tern recognition, and it is the process of grouping a set of data into
some meaningful groups based on similarity. In the grouping pro-
cess the intra-group similarity is maximized and the inter-group
similarity is minimized. The group formed is usually called a clus-
ter. This technology is widely applied in text retrieval (Abolhassani
and Mahdavi, 2009), image segmentation (Pichel et al., 2006;
Mukherjee, 2002), image quantization (Schenders, 1997), and so on.

Similarity is of crucial importance for clustering. Each clustering
algorithm pays much attention to similarity measurement. Most of
the prevailing algorithms possess their own similarity definition or
particular processing methods. The commonly-used similarity
definitions are mainly based on L2-distance, L1-distance, Gaussian
kernel function, etc. Each algorithm performs well on certain types
of data sets or particular applications. The common character of
the existing algorithms is that each of them has its own single
and fixed similarity definition, which is not sufficient for data sets
of complicated structural features.

Multiple similarity is necessary for clustering, for it enables the
exploration of data sets of complicated structural features. In prac-
tical applications, there widely exist data sets with complicated
structures. For an image shown in Fig. 1(a), the locations of pixels
in color space are shown in Fig. 1(b), which exhibits a data set of
complicated structures. In the color space, the structures are mixed
ll rights reserved.
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and complicated, including density difference, connectedness, and
direction, etc., which is difficult to explore with a single and fixed
similarity definition.

A complicated structural data set may need various kinds of simi-
larity measurements simultaneously. The research on multiple simi-
larity is mainly in the fields of classification, such as multiple kernel
learning (MKL) (Lanckriet et al., 2004; Sonnengurg et al., 2006). MKL
is a supervised learning process which selects various kernels auto-
matically. Compared with classical classification algorithm, such as
SVM, the kernels in MKL are different though the kernel type is given.
MKL takes the structures of data set into account, which improves its
performance and generalization ability. Compared with MKL in classi-
fication, multiple similarity is difficult in clustering for there is no
priors, and it is also important to obtain better clustering results.

In this paper, we propose a constructing method for multiple sim-
ilarity in clustering. Elementary clusters emerge with initial similarity
and proposed algorithm. Then, the structural information of the ele-
mentary clusters is gathered to information feedback, and the initial
similarity is locally modified with the guidance of the feedback infor-
mation, thus forming different similarity measurements suitable to
redetermine the relations between elementary clusters. After that,
new elementary clusters appear, and the structural information of
them directs another modification of initial similarity to form new
similarity measurements suitable for structural features of new
elementary clusters. The process is repeated to generate a heuristic
hierarchical clustering, until only one cluster remains.

The main contributions of multiple similarity mechanism con-
tains: (i) Multiple similarity enables the identifying of outliers to
be conducted simultaneously with the sewing up of elementary

http://dx.doi.org/10.1016/j.patrec.2012.09.025
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Fig. 1. An color image and locations of pixels in R*G*B* color space. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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clusters. (ii) Multiple similarity derives from the local revision of
initial similarity in the heuristic process, which does not increase
the computing complexity of clustering algorithm, OðNlogNÞ. (iii)
Multiple similarity enlarges the application scope of the algorithm,
and the clustering results are stable.

The remainder of the paper is as follows: Section 2 introduces
three closely related algorithms; then the clustering framework
is given in Section 3; following the clustering framework, multiple
similarity mechanism is introduced in Sections 4–6 introduce the
clustering algorithm and its analysis, respectively; experiments
and conclusion are given in Section 7 and 8.
2. Iterative local centroid estimation

Among various clustering algorithms, iterative local centroid
estimation is one of the typical approaches, the representatives
of the approach include mean shift (MS) (Fukunaga and Hostetler,
1975; Cheng, 1995; Comaniciu and Meer, 2002), clustering by scale
space filtering (CSSF) (Leung et al., 2000), and Gaussian blurring
mean shift (GBMS) (Carreira-Perpinan, 2004). The three algorithms
are closely related with the new algorithm, and the new clustering
framework is introduced in the following part.

X ¼ fxigN
i¼1 is a data set and xi is a d-dimensional row vector rep-

resenting a pattern. By using the classical Gaussian kernel density
estimation (Bishop, 1999), the distribution of the data set X can be
represented as

pðx;rÞ ¼ 1
N
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In order to obtain the local maximums of pðx;rÞ and let them be
centroids, rxpðx;rÞ ¼ 0 is needed. According to Eq. (2), the itera-
tive numerical solution can be represented as

xðnþ 1Þ ¼
XN
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Eq. (3) is called mean shift algorithm.
Clustering by scale space filtering (Leung et al., 2000) (CSSF) is

different in approach but equally satisfactory in result with MS.
Compared with MS, the biggest character of CSSF is that it is a hier-
archical clustering with a series of scale parameters,

xðnþ 1Þ ¼
XN

i¼1

xie
�jjxðnÞ�xi jj
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; ð4Þ

where the parameter rðtÞ satisfies rðtÞ � rðt � 1Þ ¼ 0:029. MS can
be viewed as a solution of CSSF with fixed r, or CSSF can be viewed
as nested MS algorithm. With certain r, CSSF and Mean Shift are the
same procedure to find local maximums along with gradient direc-
tion of Eq. (1).

Gaussian blurring mean shift (Carreira-Perpinan, 2004) (GBMS)
is a revised version of MS. GBMS, compared with MS and CSSF, is
also a procedure with limited convergence. The difference is that
its filter and convolution data do not come from original data x
but from xðnÞ, and the iterative scheme is represented as

xðnþ 1Þ ¼
XN
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jjxðnÞ�xiðnÞjj

2

2r2

PN
i¼1e�

jjxðnÞ�xiðnÞjj
2

2r2

: ð5Þ

Since Eq. (5) considers only the structures of updated data xðnÞ, it
converges with much fewer steps compared with mean shift and
CSSF. However, the computing complexity of its each iteration does
not reduce.

3. A heuristic hierarchical clustering

In this section, a heuristic hierarchical clustering is introduced.
Compared with the above-mentioned three algorithms, the clus-
tering can accept various structural features, which can be applied
in multiple similarity.

3.1. A heuristic hierarchical clustering framework

In Eqs. (3)–(5), the term e�
jjx�xi jj

2

2r2 can be viewed as a similarity
(relationship) measurement between two data points,

Sðx; xi;rÞ ¼ e�
jjx�xi jj

2

2r2 .
The three mentioned algorithms are all based on iterative local

centroid estimation, and the distribution of original data set affects
clustering result directly or indirectly. From cognitive view of hu-
man (Santos and Marqures, 2005), it is reasonable that the struc-
ture of original data set plays a decisive role in and has
persistent effect on clustering results, so we proposed a new hier-
archical algorithm – constant strength general gaussian blurring
mean shift (Li and Xu, 2011)

xiðnþ 1Þ  
X

j

xhjjiiðnÞ � Sðxi; xhjjii; HÞP
jSðxi; xhjjii; HÞ

; ð6Þ
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where Sð�; �Þ is a filtering template which can be modeled with gen-
eral Gaussian kernel, and H is a set containing some parameters to
determine filtering template S. hjjii is the jth nearest neighbor of the
ith data point. Compared with GBMS and MS, the convergence of Eq.
(6) can be proved much easier. However, it’s real contribution lies in
its information processing mechanism itself, the procedure of the
hierarchical clustering. The model can integrate various kinds of
information with S, and it’s computing complexity is approximately
linear in application to large data set.

In consideration of the advantages of Eq. (6) and the aim to ob-
tain multiple similarity measurements to mine the complicated
structure of data set, we proposed a heuristic hierarchical cluster-
ing framework

xiðnþ 1Þ  
X

j

xhjjiiðnÞ � Sðxi; xhjjii; t;HÞP
jSðxi; xhjjii; t;HÞ ; n ¼ 0;1; . . . ; ð7Þ

and S derives from top-down procedure

Sðxi; xhjjii; t;HÞ  top�down
Sðxi; xhjjii; 0;HÞ; t ¼ 1;2; . . . : ð8Þ

Compared with Eq. (6), Eq. (7) has different similarity measurement
form, Sðxi; xhjjii; t;HÞ, which is related to t. Once t is fixed, similarity
measurement S is obtained, and the clustering procedure of Eq. (7)
is similar to Eq. (6). Data points with same structure feature will
shrink into their centroid as in iterative local centroid estimation.
So the cluster C can be recognized as

C ¼ xi; xj j jjxiðnÞ � xjðnÞjj ¼ 0; i – j; i; j ¼ 1; . . . ;N
� �

; ð9Þ

and the stop condition of Eq. (7) is

XN

i¼1

jjxiðnþ 1Þ � xiðnÞjj2 ¼ 0: ð10Þ

Each t corresponds to a complete iterative scheme of Eq. (7) and
an elementary clustering result, and the elementary clusters pro-
vide information feedback to guide the local revision of initial sim-
ilarity measurement, and finally help to form new similarity
measurement, Sðxi; xhjjii; t;HÞ. The symbol ‘‘  top�down

’’ in Eq. (8) repre-
sents the local revision of Sðxi; xhjjii; 0;HÞ. This operator locally re-
vises initial similarity between some pairs of data points
automatically rather than similarity between all pairs of data
points. Following different t, we can obtain different multiple sim-
ilarity measurements Sðxi; xhjjii; t;HÞ. The following section intro-
duces the way to obtain the multiple similarity measurement in
the top-down procedure.

4. Multiple similarity measurement

Similarity definition depends on the features that users pay
attention to and may be multiple in the same data set, especially
for complicated structural data sets. With the new clustering
framework, Sðxi; xhjjii; tÞ contains multiple kinds of similarity with
the same step t. Different from multiple kernel learning, the num-
ber of kernels or revised regions does not need to be given.

4.1. Initial similarity definition

Without any information gathered for feedback, the cognitive
features of human and application background play leading roles
in clustering. For a common data set in feature space, the density
difference feature and proximity feature are our primary concerns,
though some special data points need more complicated cognitive
features. The initial similarity is defined as

S xi; xhjjii; 0; fc;a; kg
� �

¼ e�c�jjxi�xhjjii jj � e
�a
jqðxi ;kÞ�qðxhjjii ;kÞj
qðxi ;kÞþqðxhjjii ;kÞ ; ð11Þ
where 0 represents t ¼ 0, and parameter set fc;a; kg contains three
parameters to determine the filtering template S. qðxi; kÞ represents
the average distance (Yousri and Kamel, 2009) between xi and its
nearest neighbors

qðxi; kÞ ¼ 1
k

Xk

j¼1

jjxi � xhjjiijj: ð12Þ

Eq. (11) considers two structural features: density difference
feature and proximity feature. The first term of Eq. (11) reflects
proximity of data points, parameter c is a scale parameter, whose
value controls the affecting region. The larger the value is, the
smaller the affecting region is, and vice versa. The second term of
Eq. (11) reflects the density difference feature of data set. The local
density is measured with average distance between data point and
its nearest neighborhood, and parameter c controls the density dif-
ference between two data points. Its value is directly proportional
to identifying strength of difference, and c ¼ 0 corresponds to the
neglect of the density difference.

With heuristic clustering model, Eqs. (7) and (8), the initial sim-
ilarity is revised locally with gathered information in top-down
process.

4.2. Multiple similarity measurement with top-down process

With initial similarity definition Sðxi; xhjjii; 0;HÞ and Eq. (7),
many elementary clusters emerge, mainly based on local struc-
tures of data set. The emergence of these elementary clusters en-
rich the structural features of data set, which can be gathered to
guide the following clustering procedure. For these gathered struc-
tural features, the large scale features are paid more attention, but
the density difference should not be ignored. And the multiple sim-
ilarity measurement has a specific model

S xi; xhjjii; t; fa; kg
� �

¼ linkðxi; xhjjii; kþ tÞ � e
�a
jqðxi ;kÞ�qðxhjjii ;kÞj
qðxi ;kÞþqðxhjjii ;kÞ ; ð13Þ

where t is an integer greater than zero. linkðxi; xhjjiiÞ represents the
linkage between xi and its neighbor xhjjii, which is modeled as
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In Eq. (14), Rðxi; xhjjiiÞ considers large scale structural feature
with direction consistency measurement (DCM), Rðxi; xhjjiiÞ (Li
et al., 2011). The DCM between xi and its neighbor xhjjii is repre-
sented as

Rðxi; xhjjii; kÞ ¼ d � log
k2 � k

k2 � kþ 1

þ log det I þ DT D
� �

n ðxhjjii � xiÞTðxhjjii � xiÞ
� �� �h i

;

ð15Þ

where n is left inverse of matrix operator and I is a unit matrix; D is
a matrix, each column of which is the difference between each pair
of neighbors of data point xi. The basic idea of DCM is that it can
measure the consistence with direction xhjjii � xi and the directions,

xhjjii � xhj0 jiijj – j0; j; j0 ¼ 1; . . . k
n o

. The more consistent the directions
are, the much smaller the value is. The DCM has two advantages: (i)
its value can be negative or positive. The negative value represents
the consistency of the local directions, while the positive value rep-
resents the inconsistency. Meanwhile, the value can be used to de-
tect outliers, which is introduced in next subsection. (ii) It can be
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used to merge elementary clusters with similar manifold features. If
the neighborhood has no distinct principal direction, DCM can
degenerate into distance-based relationship only, e.g., k-nn.

linkðxi; xhjjiiÞ in Eq. (13) is to locally update Sðxi; xhjjii; t ¼ 0Þ by
Sðxi; xhjjii; t – 0Þ. This update does not involve xi and all its neigh-
bors, but xi and some of its neighbors. The main aim of Eq. (14)
is to sew up different elementary clusters with same manifold fea-
ture and cut off the relation between misclassified two data points
belonging to a same elementary cluster according to Rðxi; xhjjiiÞ. Eq.
(14) only contains two value, 1 and 0. 1 represents sewing up and 0
represents cutting off. linkðxi; xhjjiiÞ involves two cases: (i) If
Rðxi; xhjjiiÞ < 0, the two data points belonging to different elemen-
tary clusters are linked; if Rðxi; xhjjiiÞ > 0, the relation between
two data points in a same elementary clusters are cut off; (ii) If
Rðxi; xhjjiiÞ > 0, for each xi and xhjjii, the data set has no local direction
feature or manifold feature, and linkðxi; xhjjiiÞ is forced to be 1 with
Eq. (14). In this case, the link is distance-based only.

In the heuristic clustering procedure, Eq. (7) and (8), the multi-
ple similarity measurement Sðxi; xhjjii; t;HÞ is only local revision of
Sðxi; xhjjii; 0;HÞ and not all pairs of data points between xi and its
neighbors are revised, but only a few related data points according
to gathered structural feedback information. The procedure is to be
described with the example shown in Fig. 2.

The data set shown in Fig. 2(a) is composed of two manifold
clusters and a noise. In consistence with design and practical de-
mand, the two manifold clusters should merge together in the
hierarchical process, not the noise. It is difficult to conduct without
any pretreatment of the data set, but it is existing and necessary in
practical application as shown in Fig. 1(b).

With initial similarity, Eq. (11), the similarities between each
pair of data points are obtained and shown as pixels in Fig. 2(b).
The pixels that are painted with black represent that the similarity
between two data points is greater than zero, and the pixels
painted with white represent that the similarity is zero. The figure
shows that the noise is misclassified into one cluster. With infor-
mation feedback, there are two kinds of local revision of initial sim-
ilarity. One is to change the similarity that is zero to be positive
value, which is painted with red, and the other is to change the
similarity that is greater than zero to be zero, which is boxed with
blue rectangle.

From Fig. 2(b), it is obvious that the revision of the initial
similarity is minor, only the pixels painted with red and blue.
(a) (b)
Fig. 2. An example.
The pixels painted with red represent the sewing up of data points,
and pixels boxed with blue rectangle indicate the cutting off of the
relationship between two data points. Moreover, the sewing up and
cutting off are conducted simultaneously in the heuristic process.
5. Heuristic hierarchical clustering algorithm

Heuristic hierarchical clustering framework, Eq. (7) and (8), is a
blurring algorithm. The blurring procedure of the framework is
based on the similarity measurements, and the multiple similarity
measurements derive from the heuristic procedure. Elementary
clusters are generated in bottom-up procedure, and then the sim-
ilarity is revised locally according to the cluster information with
the top-down procedure. The heuristic hierarchical clustering pro-
cedure is shown in Fig. 3, in which the multiple similarity measure-
ments are obtained.

From the algorithm flow, Fig. 3, many elementary clusters
emerge with Eq. (7) based on the similarity Eq. (11). Some of these
elementary clusters may have same structural features (e.g., den-
sity difference and manifold feature) and need to be re-clustered
into a same one. With top-down procedure, the relationship be-
tween xi and xhjjii is reconsidered. If two data points are in different
elementary clusters and linkðxi; xhjjiiÞ ¼ 1, they are regarded to have
relation and are connected with red line as shown in Fig. 4. These
red lines in the figure sew up the different elementary clusters that
have same structural features. Clusters 3 and 4 are sewed up with
redlines and shown in bottom-right of Fig. 4. Although some ele-
mentary clusters are linked with redlines in up-left of Fig. (4),
Input data set
X={x1,...,xN}

Initial similarity measurement 
       S(xi,x<j|i>;t=0,{c,a,k})

Execute clustering algorithm,
             Eq. (7)

Satisify stop criteria?

Clustering results
C={xi,xj: ||xi(n)-xj(n)|| = 0; i,j=1,...N}

YES

NO

noisy clusters with CIS

Compute similarity
between two data 
points belonging to 
different clusters,
S(xi,x<j|i>;t,{c,k})

n = n+1

t = t+1

L
ocal revision

Fig. 3. The flow chart of the new clustering algorithm, which contains the
construction of initial similarity, local modification of similarity with information
feedback.
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the linkage should be cutting off because they have different den-
sity features according to Eq. (13). Note that linkðxi; xhjjiiÞ, Eq. (14),
can degenerate into connection based on k-nn if the elementary
clusters have no manifold structures.

The outliers (or noises) make the structural features difficult to
recognize, so the detection of noises and outliers is needed in clus-
tering process. In the new clustering algorithm shown in Fig. 3, the
noises and outliers identification have a same criterion – cluster
imbalance standard (CIS).

CIS is based on the intermediate clustering result generated by
Eqs. (7) and (9), which shifts data points with similar structural
features to centroid. #Ci represents the number of data points clus-
ter Ci contains. In the new algorithm, the noises identification is
based on imbalance of clusters. If #Ci is smaller compared with
others, then cluster Ci is viewed as noisy cluster.

The effective clustering result is determined by the lifetime of
the elementary clusters generated in the hierarchical clustering.
With the increase of t, if the clustering result in a layer does not
change within ½t1; t2�, then the lifetime of the clustering result is
t2 � t1. The clustering result with the longest lifetime is regarded
as the effective clustering result.
6. Parameters and complexity of the clustering algorithm

The new clustering framework involves three parameters: c;a
and k. Despite the involvement of three parameters, the robustness
of clustering framework itself makes the parameters very stable
and easy to execute.

Parameter c corresponds to the scale parameter in Gaussian
kernel and controls the affecting region of a data point, especially
for identifying noises with Eq. (11). The larger the value of c is,
the smaller the influence field of a data point is, and more data
points can be identified as noises. Note that the parameter is very
stable, for it only affects elementary clustering result generated by
the initial similarity, and the final perceptual result can not be af-
fected because of top-down procedure. In order to generate mean-
ingful elementary clusters, c should satisfy

c <
N

2 �
PN

i¼1jjxi � xh1jiijj
: ð16Þ

Parameter a is data-independent, which controls the strength of
identifying density difference. In similarity measurements, Eq. (11)
and (13), diff ¼ jA�Bj

AþB is called difference degree between two con-
stants, A and B. a > 50 means that the relationship with
diff > 0:1 is forced to be cut off. If the identifying strength needs
to be loosened, it only needs to decrease a. a is set as 50 in this pa-
per to cut off the relationship with diff > 0:1.

There are few efficient methods to select proper k because it is
related to the size and distribution of data sets. Small k leads to
emergence of more elementary clusters, and vice versa. Fortu-
nately, the value of k is not crucial to get good clustering result,
for it only affects the number of elementary clusters, but has little
influence on final clustering result. Based on large amounts of
experiments, the value is set within ½8;30� for moderate-sized data
sets in this paper. For large data sets, k is suggested to be 0.2–1% of
the size of data set.

The computing complexity of the new clustering is OðNlogNÞ,
and the complexity is not increased because the initial similarity
is only locally revised in the top-down procedure.
7. Experiments

In this section, we have applied the new clustering algorithm to
some synthetic data sets and real data sets to demonstrate its
superiority, in which the synthetic data sets contain some noises
and manifold structure. The clustering algorithms used for com-
parison contain classical hierarchical clustering, MS (Comaniciu
and Meer, 2002), GBMS (Carreira-Perpinan, 2004) and others (such
as single-linkage, complete-linkage, average-linkage, centroid-
linkage, median-linkage and ward-linkage), the algorithms that
can deal with manifold cluster and noises (such as NRSC (Li
et al., 2007), Spectral-Ng (Ng et al., 2001), STSC (Zelnik and Perona,
2005) and Chameleon (Karypis et al., 1999)), clustering used in im-
age segmentation (such as N-Cut (Shi and Malik, 2000) and MS
(Comaniciu and Meer, 2002)).
7.1. Clustering results on synthetic data sets

The synthetic data set shown in Fig. 5 is used to exhibit the heu-
ristic hierarchical clustering procedure. In the figure, the data set
contains structural features such as density difference feature,
proximity feature and local direction feature. With the increase
of t, the generated elementary clusters merged together in
sequence according to different structural features.

In Fig. 5 left column, the results are obtained in different level of
the heuristic hierarchical clustering. From top to down, with
c ¼ 50;a ¼ 50; k ¼ 10; t varies and the results are shown as agglom-
erative hierarchical clustering results. Following the increase of t,
elementary clusters merge together gradually from top to down,
according to certain sequence. Density difference is first considered,
and elementary clusters with small density difference merge to-
gether first. Then, elementary clusters with the same local direction
merge together, and finally, elementary clusters with short distance
merge together. If k < 10, only more elementary clusters will be ob-
tained in the first several feedback processes, but the clustering re-
sult shown in top-left subfigure of Fig. 5 will also appear, and the
following hierarchical results will not be affected.

For comparison, other algorithms were also experimented on
the data set, and the clustering results from single linkage were
more relatively satisfied as shown in Fig. 5 right column. Although
single linkage is able to produce a hierarchical clustering results
from top to down, it cannot reveal the local structures of data
set, e.g. in the top-right subfigure of Fig. 5, the results ignore the
density difference feature. Note that the single linkage algorithm
is sensitive to noises and the results shown are specially processed
to deal with noisy data points.

Another advantage of the new algorithm is its robustness to
noises. We experimented the two data sets in massive noises,
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and the clustering results are shown in Fig. 6. In Fig. 6(a), the mas-
sive noises pollute the structure of data set, even the native struc-
ture. With the top-down procedure, many elementary clusters
appeared while lots of noises were detected, but finally the mani-
fold structure of the data set was revealed. In Fig. 6(b), two Gauss-
ian type clusters were recognized from massive noises, and in large
scale, the two Gaussian type clusters could be recognized as one
cluster.
7.2. Clustering results on real data sets

Some Benchmark data sets were used to test the new algorithm,
in which Iris and Pendigits come from UCI Machine Learning
Repository (Blake, 1998), and another data set are samples (two
clusters, 0 and 1) from USPS handwriting data set.2 For data sets Iris
2 http://www.gaussianprocess.org/gpml/data/.
and USPS-01, 10% of uniformly distributed noises were added to
them to test the algorithm.

The accuracy of clustering is measured with normalized mutual
information (Strehl and Ghosh, 2003) (NMI for short), a measure-
ment to compare results of different clustering solutions when
the labels are known. This index lies between 0 and 1, and the
higher the NMI is, the better the clustering solution is. The algo-
rithms that are compared with on these benchmark data sets in-
volve NRSC (Li et al., 2007), Spectral-Ng (Ng et al., 2001), STSC
(Zelnik and Perona, 2005) and Chameleon (Karypis et al., 1999),
and the clustering results on the data sets are shown in Fig. 7.

From Fig. 7, the new algorithm outperforms others overall.
Among the algorithms used for comparison, NRSC and Chameleon
have the advantage to deal with noises. However, the new algo-
rithm performs better than them in dealing with noises, for the
new algorithm puts emphasis on description of local structures
and feedback mechanism in top-down procedure.

http://www.gaussianprocess.org/gpml/data/
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Fig. 8. Comparative results of image segmentation. (a) Elementary clusters generated b
without feedback; (d) results with K-means, k = 7; (e) results with N-Cut, k = 15; (f) resu
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We now present an experiment with the new algorithm in im-
age segmentation and the comparative results with three classical
algorithms: K-means, N-Cut (Shi and Malik, 2000) and MS
(Comaniciu and Meer, 2002). The image used in the experiment
is shown in Fig. 1(a), and it is segmented by clustering the data sets
in color space, Fig. 1(b).

Each result shown in Fig. 8 is selected with the best result with
different clustering algorithms. The first row of Fig. 8 shows the re-
sults generated by the new algorithm: the elementary cluster, re-
sults with feedback, and results without feedback, respectively.
The second row of Fig. 8 lists the comparative results with the
other three algorithms. From the figure, the results with feedback
are more organized than other results, both in comparison with
new algorithm without feedback, or comparison with other
algorithms.

8. Conclusion

Similarity measurement is one of the important factors in clus-
tering algorithm design, but the definition and application of sim-
ilarity measurement are limited in traditional algorithms.
efore feedback; (b) results after feedback, t ¼ 7; k ¼ 30; a ¼ 50; c ¼ 50; (c) results
lts with MS, r ¼ 0:04.
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Generally, by merely considering the distance information be-
tween a pair of points, similarity measurement is only defined as
a distance function, which inevitably will lose the orientation
information between a pair of points. Furthermore, there is only
one fixed similarity measurement for one clustering algorithm,
and the similarity measurement can not be changed in the cluster-
ing process, which deprives the clustering algorithm of the possi-
bility of further cluster identification in the clustering process. To
further rationalize the definition and application of similarity mea-
surement as well as the clustering process, the paper constructs a
flexible similarity measurement, which can be specialized through
information feedback in clustering process. Compared with tradi-
tional agglomerative clustering algorithms, the new algorithm
emphasizes the collection of the dynamic information of clusters
so as to adjust the similarity between the pairs of points automat-
ically, which can best correspond to the structural information of
the data set.

Combined with the multiple similarity, a new clustering frame-
work is put forward, which is simple but powerful. The advantages
of the new algorithm lie in two main points: the high computation
speed and strong expansion ability. With strong expansion ability,
many new similarity measurements can be added or learnt with it.
Compared with traditional algorithms, the new one possesses
obvious superiority, which is shown in the experiments.
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