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In this paper we derive an algorithm to follow the entire solution path of the sparse principal
component analysis (PCA) problem. The core idea is to iteratively identify the pairwise
variables along which the objective function of the sparse PCA model can be largely increased,
and then incrementally update the coefficients of the two variables so selected by a small
stepsize. The new algorithm dominates on its capability of providing a computational shortcut
to attain the entire spectrum of solutions of the sparse PCA problem, which is always beneficial
to real applications. The proposed algorithm is simple and easy to be implemented. The
effectiveness of our algorithm is empirically verified by a series of experiments implemented
on synthetic and real problems, as compared with other typical sparse PCA methods.
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1. Introduction

The principal component analysis (PCA) is one of the most classical and popular techniques for data processing and
dimensionality reduction, and has a wide range of applications throughout science and engineering [1–3]. In essence, PCA aims to
find the orthogonal directions along which the variance of the input data can be maximally preserved. Such directions correspond
to the so called principle components (PCs). Denote the data matrix as X ∈ Rd × n, where d and n are the number of variables
(dimensionality) and the number of observations (size), respectively. The first principal component (PC) of the data X is the
solution to the following optimization model:
Lpca
h i

: wpca ¼ argmax
w

V wð Þ ¼ wTXXTw

s:t: wTw≤1:
ð1Þ
The second PC can be successively attained by solving (1), under the constraint that it is orthogonal to the first, and so on.
Recently, the research on the sparse PCA problem has attracted much attention [4–13]. The motivation of sparse PCA is to
facilitate the interpretation of dimensionality reduction by involving fewer non-zero elements of the variables in the derived PCs.
This series of research is especially meritorious in the area where the original variables are of significant physical meanings.
Currently, sparse PCA has been successfully applied to many applications such as object recognition [16], biological gene analysis
[10], and financial asset trading [5].
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The sparse PCA model can be directly formulated by supplementing the l0 constraint to the traditional PCA model, Lpca, to
enforce sparsity of the derived PCs. The corresponding optimization model is:
where
½L0 kð Þ� : wl0
kð Þ ¼ argmax

w
V wð Þ ¼ wTXXTw

s:t: wTw≤ 1
wk k0 ≤ k:

ð2Þ
The above L0(k) optimization is a hard combinatorial problem and very difficult to be exactly solved, especially for high
dimensional data. Currently, by virtue of the slacking, thresholding, and greedy techniques, several methods, including DSPCA [5],
PathSPCA [6], DCPCA [7], GPowerlo, GPowerlo,m [8], etc., have been developed to approximate the solution to L0(k) or its
extensions.

As compared with the L0(k) model, another model for sparse PCA is more generally employed by relaxing the non-convex l0
constraint to a weaker but convex l1 constraint, as expressed in the following:
L1 tð Þ½ � :
wl1

tð Þ ¼ argmax
w

V wð Þ ¼ wTXXTw

s:t: wTw≤1
wk k1≤t:

ð3Þ
The typical methods constructed on this model or its related extensions include SCoTLASS [9], SPCA [4], GPower l1, GPower l1,m
[8], EMPCA [10], ALSPCA [11], PMD [13], sPCA-rSVD [14], RSPCA [15], etc.

Despite these developments, an important problem is still often encountered in real applications of sparse PCA: how to select
an appropriate parameter k/t of the l0/l1 constraint for the L0(k)/L1(t) model based on the given data. In practice, users often use
some default value for the parameter, or retrain the model multiple times under different parameter settings and then figure out a
good choice of k or t from them [4]. This, however, is actually a very difficult task, since on one hand, multiple training for a sparse
PCA method is always very time consuming, and on the other hand, there is no specific criterion, like the predictive performance
for the classification or regression problem, to judge whether a sparse PC vector is “good” for the unsupervised sparse PCA
problem. A very useful methodology against this challenge is to derive the entire solution path of the sparse PCA model, i.e., the
set of solutions for all meaningful values of the tuning parameter. The solution path so derived not only is capable of offering great
convenience on proper selection of optimal tuning parameter against specific application of sparse PCA, but also giving an
insightful spectrum to reflect the intrinsic mechanism underlying the sparse PCA model. Along this line, multiple efficient
path-following algorithms have been designed for a family of well known machine learning and pattern recognition problems.
They include the LARS for lasso [17], the SVMPath for L1 and L2 constraint SVMs [18,19], the GLM path algorithm for generalized
linear models [20], the path algorithm for multiple kernel learning [21], etc.

In this paper we consider the extension of such path-following technique to the sparse PCA problem. Inspired by the forward
stagewise regression method (FSε, [22,23]) designed for lasso, the core idea of the proposed method is to repeatedly identify the
pairwise variables along which the objective V(w) of the sparse PCA model can be increased at most, and then incrementally
update the coefficients of the two variables by a small stepsize. The new method capitalizes on its capability of creating a
coefficient profile to fit the entire solution path of the sparse PCA problem, which is always beneficial to real applications.

In Section 2 the core idea of our method and its implemented details are introduced. In Section 3 a series of experimental
results are presented to substantiate the effectiveness of the proposed method, as compared with the existing techniques. We
finish with conclusion in Section 4.

2. The coordinate-pairwise algorithm for sparse PCA

Denote the input data matrix as X = [x1,⋯,xd]T ∈ Rd × n, where d and n are the numbers of the variables and the observations,
respectively, and xi ∈ Rn corresponds to the coefficients of the i-th variable. Throughout the paper, we denote matrices, vectors,
and scalars by upper-case letters, lower case bold-faced letters, and lower-case non-bold-faced letters, respectively.

2.1. Reformulation of the L1(t) model

The proposed path-following algorithm is constructed on an equivalent reformulation of the L1(t) model, as expressed in the
following:
L2;c sð Þ
h i

:

wl2 ;c
sð Þ ¼ argmax

w
V wð Þ ¼ wTXXTw

s:t: wTw≤ s
wk k1 ≤ c;

ð4Þ

c is a pre-specified constant.
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Although the models L2,c(s) and L1(t) look somewhat alike, they are of significant difference in their intrinsic mechanisms of
implementing sparse PC calculation. In specific, L1(t) attains the PC vector with different cardinality through fixing the l2
constraint wTw ≤ 1, while varying the l1 constraint ‖w‖1 ≤ t with respect to t. Contrarily, L2,c(s) realizes this aim by fixing the l1
constraint ‖w‖1 ≤ c, while changing the l2 constraintwTw ≤ swith respect to s. Our motivation for this reformulation can be very
intuitively understood by virtue of Fig. 1. For the L1(t) model, the optimal solutionwl1 tð Þwith respect to t tends to be shifted along
the vertex of the constraint area of L1(t), i.e., along the nonlinear sub-manifold ofwTw = 1 (illustrated as the sub-circle in the left
panel of Fig. 1). While for the reformulated L2,c(s) model, the corresponding optimal wl2 c; sð Þ with respect to s inclines to move
along the linear surface of ‖w‖1 = c (depicted as the line segment in the right panel of Fig. 1). It is intuitively clear that the
solution path of the new model with respect to s tends to be more easily followed than that of the L1(t) model with respect to t.
Based on this direct comprehension, we expected to develop an effective and simple strategy to generate the entire solution path
of sparse PCA by virtue of the L2,c(s) model.

A natural question is what the relationship between L1(t) and its reformulation L2,c(s) is. The following theorem clarifies the
intrinsic equivalence between the two models.

Theorem 1. For the optimal solutions wl1 tð Þ and wl2 ;c sð Þ of L1(t) and L2,c(s) models, respectively, it holds that wl1 tð Þ ¼ t
cwl2 ;c

c2

t2

� �
and

wl2 ;c sð Þ ¼ ffiffi
s

p
wl1

cffiffi
s

p
� �

.

The proof of Theorem 1 is given in the Appendix. This theorem implies that a comprehensive solution path of L1(t) with
respect to t can be equivalently achieved by searching the entire solution path of L2,c(s) model with respect to s. This constitutes
the fundamental of the to-be-constructed path-following algorithm for sparse PCA.
2.2. The core idea of our method

Inspired by the forward stagewise regression strategy (FSε, [23]) proposed for lasso, we aim to build up the entire solution
path for sparse PCA by iteratively generating the solution of L2,c(s + ε) from that of L2,c(s) in successive small step ε. In specific,
there are two steps involved in each iteration of the proposed method: (1) selecting the pairwise coordinates/variables along
which the objective function of the L2,c(s) model tends to be maximally increased; and (2) updating the pairwise coordinates so
selected in a small step with the other variables fixed. Correspondingly, two key problems are required to be resolved: (i) how to
find the proper pairwise coordinates to be updated in each iteration; (ii) how to build up easy computation to increment the
pairwise coordinates so selected.

We first consider the aforementioned problem (ii). Denote the solution of L2,c(s) as wo = (w1
o,w2

o,⋯,wd
o)T, and suppose that the

i-th and j-th coordinates (wi
o,wj

o) of wo are selected to be updated. Our aim is to formulate simple computation to incrementally
update them in the feasible region of L2,c(s + ε) such that the objective function V(w) can be increased at most. To this aim, we
should first find the direction v along which V(w0) tends to be largely increased in the feasible region of L2,c(s + ε), and then
optimally move the i-th and j-th coefficients of wo along this direction to approach the solution w⁎ of L2,c(s + ε).
−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Mechanism of L
1
(t) model

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Mechanism of L
2,c

(s) model

Fig. 1. Graphical presentation for the implementation mechanisms of the L1(t) (left panel) and L2,c(s) (right panel) models. L1(t) attains different sparse PCs by
setting the l2 constraint wTw ≤ 1 (the circular area) fixed while the l1 constraint ‖w‖1 ≤ t (the diamond area) altered; yet L2,c(s) realizes this aim by fixing the l1
constraint ‖w‖1 ≤ c while varying the l2 constraint wTw ≤ s. The solution paths of the two models tend to be moved along the red curves as depicted in the two
panels, respectively (started from the same initial point, depicted as the circles in the figure).
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When we fix the coefficients of the variables of wo except the i-th and j-th ones, the cost function V(w) can be reexpressed
as:
Fig. 2. G
area of t
circle an
(sign(w
V wð Þ ¼ V wi;wj

� �
þ c0;

V(wi,wj) corresponds to the portion of V(w) with respect to wi and wj, and c0 is a constant independent of wi and wj. Then
where
the model L2,c(s + ε) with respect to the pairwise variables wi and wj is transformed into the following form:
L i; jð Þ
2;c sþ εð Þ

h i
:

max
wi ;wj

V wi;wj

� �
s:t: w2

i þw2
j ≤ s− ∑

k≠i; j
wo

k

� �2 þ ε

wij j þ wj

��� ���≤ c− ∑
k≠i; j

wo
k

� ��� ��:
Here we further assume that woTwo = s and ‖wo‖1 = c (in the following we will prove that this assumption always

holds along the generated solution path). Under this assumption, it is easy to deduce that s− ∑
k≠i; j

wo
k

� �2 ¼ wo
i

� �2 þ wo
j

� �2
and

c− ∑
k≠i; j

wo
k

�� �� ¼ wo
i

�� ��þ wo
j

��� ���, and thus L2,c(i,j)(s) can be equivalently written as:
L i; jð Þ
2;c sþ εð Þ

h i
:

max V wi;wj

� �
wi;wj

s:t: w2
i þw2

j ≤ wo
i

� �2 þ wo
j

� �2 þ ε

wij j þ wj

��� ���≤ wo
i

�� ��þ wo
j

��� ���:
ð5Þ
We then introduce an easy strategy to heuristically attain the direction v, along which the objective function V(wi,wj) tends to
be largely increased in the feasible region of L2,c

(i,j)(s + ε), in the following.
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d square represent wo, w∗ involved in (7), respectively; ΔV = (vi,vj)T denotes the gradient direction of V(wi,wj); and v = (sign(wi
o), −sign(wj

o))T and v′ =
i
o), sign(wj

o))T are two orthogonal directions. It is easy to see that v lies on the edge of the l1 constraint area of L2,c
(i,j)(s),Ωc = {(wi,wj)T||wi| + |wj| ≤ |wi

o| + |wj
o|}.
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Since wo corresponds to the solution to L2,c(s), we can reasonably assume the following KKT conditions (we will discuss the
reasonability of this assumption in Section 2.4):
where

⇒

⇒

1 Afte
2XXTwo−γwo−λsign wo� � ¼ 0

γ woTwo−s−�
� �

¼ 0;

λ wo�� ��
1−c

� �
¼ 0;

γ≥ 0;λ≥ 0:

ð6Þ
Since ΔV(w) = 2XXTw, the gradient direction ΔV = (vio,vjo)T of V(wi,wj) at (wi
o,wj

o) can be attained by:
voi ¼ sign wo
i

� �
γ wo

i

�� ��þ λ
� �

; voj ¼ sign wo
j

� �
γ wo

j

��� ���þ λ
� �

: ð7Þ
Assume |wi
o| ≥ |wj

o| without loss of generality, we can then get that: for the orthogonal directions v = (sign(wi
o), −sign(wj

o))T

and v′ = (sign(wi
o), sign(wj

o))T, it holds that
vTΔV ¼ γ wo
i

�� ��− wo
j

��� ���� �
≥0; v′

T
ΔV ¼ γ wo

i

�� ��þ wo
j

��� ���� �
þ 2λ N 0:
It can then be deduced that the largest increase of the cost function V(wi,wj) at (wi
o,wj

o)T in the feasible region of
L2,c
(i,j)(s + ε) is to be attained along the direction v = (sign(wi

o), − sign(wj
o))T, i.e., along the edge of the l1 constraint

area Ωc = {(wi,wj)T||wi| + |wj| ≤ |wi
o| + |wj

o|}, as depicted in Fig. 2.
For small stepsize ε, the optimum w∗ = (w1

∗ ,w2
∗ ,⋯,wd

∗)T of L2,c(s + ε) is thus expected to be obtained by
w�
k ¼

wo
k; for k≠i; j;

wo
i þ sign wo

i

� �
η; for k ¼ i;

wo
j−sign wo

j

� �
η; for k ¼ j;

8><
>: ð8Þ

the stepsize η from wo to w∗ can easily be computed by

wo
i þ sign wo

i

� �
η

� �2 þ wo
j−sign wo

j

� �
η

� �2− wo
i

� �2− wo
j

� �2 ¼ �

2η2 þ 2 wo
i

�� ��− wo
j

��� ���� �
η ¼ �

η ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wo

i

�� ��− wo
j

��� ���� �2 þ 2�
r

þ wo
i

�� ��− wo
j

��� ���
:

ð9Þ
By updating wo to w∗ as aforementioned, it is easy to see that the assumptions w∗ Tw∗ = s + ε and ‖w∗‖1 = c still hold. Such
pairwise-coordinate updating can thus be successively implemented until the convergence condition is met. All of the
aforementioned can be easily understood by observing the graphical illustration of Fig. 2.

It should be noted that after the pairwise-coordinate updating (7), the increased value of the cost function V(w) can be easily
calculated as follows:
J i; j; �ð Þ ¼ V w�� �
−V wo� �

¼ sign wo
i

� �
voi −sign wo

j

� �
voj

� �
η

þ sign wo
i

� �
xi−sign wo

j

� �
xj

��� ���2
2
η2:

ð10Þ
The above J(i,j,�) can thus be taken as a reasonable criterion against the aforementioned problem (i), i.e., the proper selection
of the pairwise coordinates to be updated. It should be noted that the zero element of wo should not be selected as the candidate
since its absolute value cannot be decreased any more and the updating step (8) cannot be implemented for such element.

The above analysis implies that the solution path of L2(c, s) with varying s can be sequentially approximated by iteratively
updating the pairwise coordinates (see Eq. (8)) along which the maximum of J i; j; εð Þ (see Eq. (10)) can be attained. The initial
point wo can be appropriately set as the optimal solution wpca to the Lpca model. It is easy to deduce that such wo corresponds to
the solution to L2,c(s) where c = ∥ wpca ∥ 1 and s = 1.1
r the initialization, the proposed method is to incrementally track the solution path of L2,c(s) under fixed c = ∥ wpca ∥ 1 and gradually increased s.
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2.3. The coordinate-pairwise algorithm for sparse PCA

We imbed the coordinate-pairwise updating technique as aforementioned into Algorithm 1 (called the COP-PCA algorithm
briefly). It is easy to observe that the algorithm only involves simple computations and thus is easy to be implemented. Here we
only discuss the method for one PC vector. More PCs of the data can be approximately constructed by applying the proposed
algorithm greedily to the remainder of the projected data into the orthogonal spaces to the obtained PC vectors.

Algorithm 1.
It should be noted that when jwt
j∗ jbη, step 2.4 is activated to amend the stepsize η for updatingwt

i∗ andwt
j∗ in the algorithm. This

is because in this case, the stepsize η calculated in step 2.3 of Algorithm 1 will conduct the abnormity that the updated w(t + 1)
goes out of the feasible region of L2,c(s + ε). In specific, let η1 ¼ η−jwt

j∗ j, and then we have
jwt
i� þ sign wt

i�

� �
η
���þ jwt

j�−sign wt
j�

� �
ηj

¼ jwt
i� þ sign wt

i�

� �
η1 þ sign wt

i�

� ����wt
j� jj

þ jwt
j�−sign wt

j�

� �
η1−sign wt

j�

� ����wt
j� jj

¼ jwt
i� j þ η1 þ jwt

j� j þ η1
N jwt

i� j þ jwt
j� j:
Step 2.4 of the proposed algorithm easily resolves this problem by shortening the stepsize η as a smaller η1 ¼ jwt
j∗ j. It is easy to

see that as long as this step is activated,wtþ1
j∗ attains 0 and the corresponding label j∗ is to be moved out from the non-zero element

index I, and simultaneously the number of nonzero elements (i.e., the sparsity) of w(t) reduces one along the solution path so
generated. It can thus be deduced that this step is to be activated no more than d-1 times.

The remainder problem is the proper specification of the stepsize ε and appropriate setting of the termination condition for
coordinate-pairwise updating iterations. When we initiatewpca (the solution of Lpca) as the starting point of our algorithm, a natural
idea is to implement the iterations of the algorithm until the sparsity ofw(t) is reduced to one. In this process, the coefficients ofw(t)
shrink to 0s one by one based on their capability of catching up the variance information V(w) from data. Along the solution path so
generated, the l2 constraint parameter smonotonically increases from1 (corresponding tow(0) = wpca) to ∥ wpca ∥ 1

2 (corresponding
to the last element in the solution path, where only one nonzero element left in w(t)), and in each iteration, w(t + 1)Tw(t + 1)
brings ε increase tow(t)Tw(t). Thus, the stepsize ε and the number of iteration steps IterNum is of the following relationship:
IterNum ¼
wpca

��� ���2
1
−1

ε
: ð11Þ
This means that instead of directly specifying ε, we can more easily preset an appropriate iteration number IterNum for the

algorithm, and the stepsize ε is then implied to be
wpca
�� ��2

1−1
IterNum

based on Eq. (13). Under such specification, the algorithm is to be

terminated after IterNum iterations, and the entire solution path of the L2(c,s) model with respect to s is simultaneously to be
achieved. Besides, if the proper PC sparsity is known beforehand by prior knowledge or experience, then we can simply initiate a
small ε or equivalently a large iteration number IterNum, and repeat the coordinate-pairwise updating of w(t) until its sparsity
attains the pre-specified value.

2.4. Computational complexity

In this subsection we discuss the computational complexity of the proposed algorithm. While only very simple computations
are involved in the coordinate-pairwise updating process (i.e., steps 2.3–2.6), the computation of the proposed COP-PCA
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algorithm is mainly costed on sorting the d(d-1)/2 elements of J i; j; εð Þ (i.e., step 2.2), which needs around O(d2logd) time by
utilizing the well known heapsort algorithm. This cost, however, can be further alleviated since the {i, j} candidates which are
possibly chosen as the maximum of J i; j; εð Þ can be picked up from I by some useful prior information, as described in the
following.

Based on Eq. (10), by omitting the o(ε) element of J i; j; εð Þ, it can be approximated as
−0.

0.

1.

2.

C
oe

ffi
ci

en
ts

Fig. 3. T
(the rig
J i; j; εð Þ≈
voi
�� ��− voj

��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wo

i

�� ��− wo
j

��� ���� �2 þ 2ε
r

þ wo
i

�� ��− wo
j

��� ���
¼ γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2 ε
wo

ij j− wo
j

�� ��q þ 1
:

This naturally implies the following fact: Instead of sorting the d(d-1)/2 elements of J i; j; εð Þ , we only need to sort O(d)
elements of {|wk

t |, k ∈ I}, and collect m (m ≪ d) largest and smallest ones from them as candidates for further comparison of
J i; j; εð Þ. The computation of the proposed algorithm is then decreased to O(ndlogd) × IterNum correspondingly. This means that
the computational complexity of the proposed algorithm is approximately linear in both the size and the dimensionality of the
input data.

As compared with the computational complexities of the current sparse PCA methods, such as O(nd3) × IterNum of SPCA,
O(nd4logd) × IterNum of DSPCA, O(ndlogd) × IterNum of EMPCA, O(nd2) × IterNum of ALSPCA, O(nd) × IterNum of GPower l0,
and O(nd3) × IterNum of PathSPCA (where IterNum is the iteration number of the corresponding method), it is evident that the
proposed algorithm is of a comparable computational complexity for sparse PCA calculation. Then the advantage of the new
algorithm is obvious: it is capable of yielding the entire solution path of the sparse PCA model only under one such computation.
Also, because along the path, each solution is ameliorated gradually by fully making use of the previous solution information, the
proposed algorithm is expected to perform consistently well to get the entire solutions to the problem.

2.5. Discussion on the reasonability of the KKT assumption

The reasonability of the KKT assumption (6), as well as the COP-PCA algorithm, lies in the following two aspects. First, the
solution path generated by the COP-PCA method is capable of effectively tracking the exact path of L2,c(s) in all of our
implemented experiments. This empirically validates that the KKT conditions (6) of L2,c(s) are expected to be satisfied along the
generated path. Second, the path w(t) generated from Algorithm 1 is always beneficial to explore the intrinsic information of
sparse PCs of the data at the following four-fold aspects: (i) ‖w(t)‖1 keeps to be a constant (i.e., ‖wpca‖1) along the path; (ii) w(t)
Tw(t) linearly increases (with the slope ε) along the path; (iii) V(w(t)) (the objective function) monotonically increases along the
path; (iv) the sparsity ofw(t) monotonically decreases from d to 1 along the path (Fig. 5 graphically illustrates these aspects). The
path so generated thus provides a very useful spectrum underlying the intrinsic implementation mechanism of the sparse PCA
model L2,c(s), as substantiated in the following experiments.

3. Experiments

To evaluate the performance of the proposed COP-PCA algorithm, it was applied to several synthetic and real problems. For
comparison, 9 of the current sparse PCA methods, including SPCA [4], DSPCA [5], PathSPCA [6], EMPCA [10], GPower l1 , GPower l0 ,
GPower l1 ;m, GPower l0 ;m [8], and ALSPCA [11], have also been utilized. The results are summarized and interpreted in the following
discussion. It should be noted that for each problem, the sparse PCs corresponding to different sparsity constraint parameters
were attained by executing the proposed algorithm only once, while by running the other competing methods multiple times.
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3.1. Hastie data

The Hastie data set was firstly proposed by [4], and has become one of the most frequently utilized data for the performance
evaluation of sparse PCA. The data set contains a collection of 10-D data points (x1,∙∙∙,x10)T generated via the following two
processes: firstly three hidden factors were created:
where

2 We
section.
V1∼N 0;290ð Þ; V2∼N 0;300ð Þ; V3 ¼ −0:3V1 þ 0:925V2 þ ε;

ε ~ N(0,1), and V1,V2 and ε are independent; afterwards, 10 observed variables were generated as

xi ¼ V1 þ εi; εi∼N 0;1ð Þ; i ¼ 1;2;3;4;
xi ¼ V2 þ εi; εi∼N 0;1ð Þ; i ¼ 5;6;7;8;
xi ¼ V3 þ εi; εi∼N 0;1ð Þ; i ¼ 9;10;

ð12Þ

εis (i = 1, 10) are independent. It has been clarified that the data generated as above are of intrinsic sparse PC vectors [4].
where
The first PC vector should recover the factor V2 only using (x5,x6,x7,x8), and the second should recover the factor V1 only using (x1,
x2,x3,x4). The 9 current sparse PCA methods and the proposed COP-PCA method were respectively employed to calculate the first
two PC vectors of the Hastie data. Through properly tuning parameters, all of the employed methods, except EMPCA, Gpower l0;m

,
and Gpowerl1,m, can faithfully deliver the ideal sparse representations of the first two PCs underlying the data. The specialty of
COP-PCA is that it further generates the smooth solution paths for the corresponding sparse PC vectors, as depicted in Fig. 3. The
path intuitively depicts the intrinsic evolution process of the corresponding PC vector when it varies from dense to sparse.

3.2. Pitprop data

The pitprop data firstly introduced in [24] contain 180 observations and 13 measured variables. It is the classic example
showing the difficulty of interpreting principal components [4,9]. For the first PC of this data set, the proposed COP-PCA method,
together with DSPCA, EMPCA, GPower l1, and GPower l0, consistently deliver the ideal PC vector with different pre-specification of
its sparsity.2 This can be easily observed from Fig. 4(a). It is clear that more variances are explained by these methods than other
employed sparse PCA methods with the same number of non-zero PC loadings. Besides, since the first 6 PCs of the data capture
87% of the total variance, we compared the explanatory powers of 6 sparse PCs of all these employed methods. The COP-PCA
captures 80.68% of the total variance with cardinality pattern of (4,4,4,4,4,4) (totally 24 non-zero loadings), as compared with
76.99% of SPCA, 79.71% of DSPCA, 80.28% of PathSPCA, 80.68% of EMPCA, 80.95% of GPower l1, 81.04% of Gpower l0, 53.59% of
ALSPCA under the same PC cardinality settings, as depicted in Fig. 4(b) respectively. It is evident that as compared to the current
sparse PCA methods, the proposed method is of the comparable, or even better performance on variance-capturing capability on
the first 6 PCs. The prominence of the COP-PCA method lies on the fact that it can further generate the entire solution path of the
problem, as depicted in the right panel of Fig. 3. It is seen that the 13 variables of the data sequentially shrink to zeroes,
intrinsically reflecting their different significance on capturing data variance.

3.3. Colon cancer data

The colon cancer data [7] consist of 62 tissue samples (22 normal and 40 cancerous) with the gene expression profiles of 2000
genes extracted from DNA micro-array data. The biological background of the data makes it a suitable candidate for studying the
performance of sparse PCA methods where feature selection is needed to get interpretable results. We have performed the 9
current sparse PCA methods on the colon cancer data, while the experiments on SPCA, DSPCA, PathSPCA, GPowerl1,m, GPower l0 ;m,
and ALSPCA could not be completed in reasonable time. Thus the results do not include the results of these methods.

The first PC vector of the data with different specified number of non-zero loadings (from 500 to 1999) were calculated by
EMPCA, Gpower l1 , Gpower l0 , and COP-PCA methods, respectively. The mean variance explained by COP-PCA among these
cardinality specifications is 0.003382%, 0.003191%, and −0.003074% more than those of EMPCA, Gpower l1 , and Gpower l0 ,
respectively. It can be clearly observed from Fig. 4(c) that such deviations are very unsubstantial. The similar phenomenon is
observed when applying these methods to compute the first 10 sparse PCs of the data. The corresponding cardinalities of these PC
vectors were all set as 1000 for easy comparison. As compared to 84.1821% of the total variance captured by the first 10 PCs of
classical PCA, COP-PCA, EMPCA, Gpower l1 , and Gpower l0 explain 83.0324%, 83.0309%, 83.0269%, and 83.0341% of the total
variance by their corresponding first 10 sparse PC vectors, as demonstrated in Fig. 4(d). From the figure, it is evident that the four
cumulative variance curves cannot be materially distinguished, either. These results show that for such data, all of the four
employed methods are of similar capabilities on sparse PCA computation, while the proposed method dominates on its
meaningful exploration on the entire solution path of the sparse PC vectors and easy specification of initial parameters.

Besides the above results, we also depict in Fig. 5 the tendency curves of the l1 constraint ∥ w(t) ∥ 1, the l2 constraintw(t)Tw(t),
and the objective V(w(t)) of the L2,c(s) model, corresponding to the solution paths of the first PC of the Hastie data, the pitprop
have tried but failed to properly tune the parameters of Gpowerl0,m, Gpowerl1,m in the pitprop data, and hence both of their results are not involved in this
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Fig. 4. (a)(c) Percentage of explained variances with respect to different pre-specified cardinalities of the first PC vector attained by applying the employed
methods to pitprop data and colon cancer data, respectively. (b)(d) Percentage of cumulative variances explained by the first 6 and 10 PCs attained by applying
the sparse PCA methods to pitprop data and colon cancer data, respectively. The embedded sub-panels in (c)(d) depict the amplifications of the positions the
corresponding arrows point from.
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data and the colon cancer data, as calculated by the COP-PCA method, respectively. It is easy to observe that the l1 constraint
‖w(t)‖1 keeps to be a constant, the l2 constraint w(t)Tw(t) linearly increases, and the objective V(w(t)) monotonically increases
along the generated solution path w(t). All of these results are consistent with our theoretical arguments presented in the end of
Section 2, and thus further substantiate the intrinsic effectiveness mechanism of the proposed method.

3.4. Computation complexity evaluation

As analyzed in Section 2.4, the computational cost of the proposed method is comparable or even less than the current sparse
PCA methods. In this section we want to further verify this point through experiments. For this task, we have designed 18
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Fig. 5. The tendency curves of the l1 constraint ∥ w(t) ∥ 1, the l2 constraintw(t)Tw(t), and the objective V(w(t)), corresponding to the first PC solution path yielded
from the COP-PCA method. The first, second, third rows of panels depict the results obtained on the Hastie data, the pitprop data and the colon cancer data,
respectively.
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extended Hastie data sets with dimensions ranging from d = 10 to d = 180 with interval 10. Each data set contains a collection
of data points (x1,x2,⋯,xd)T generated in the following way: firstly create three hidden factors:
where
V1∼N 0;290ð Þ; V2∼N 0;300ð Þ; V3 ¼ −0:3V1 þ 0:925V2 þ ε;

ε ∼ N(0,1), and V1, V2 and ε are independent; and then generate d observed variables as:

xi ¼ V1 þ εi; εi∼N 0;1ð Þ; i ¼ 1;2; ⋯;0:4d;
xi ¼ V2 þ εi; εi∼N 0;1ð Þ; i ¼ 0:4dþ 1;0:4dþ 2; ⋯;0:8d;
xi ¼ V3 þ εi; εi∼N 0;1ð Þ; i ¼ 0:8dþ 1;0:8dþ 2; ⋯;d;

ð13Þ

εi s (i = 1,⋯, d) are all independent. Just as the Hastie data, the data sets so generated are also of intrinsic sparse PC vectors.
where
The first PC vector tends to recover the factor V2 only using (0.4d + 1,0.4d + 2,∙∙∙,0.8d) variables, and the second should recover
the factor V1 only using (1,2,∙∙∙,0.4d) ones. The 9 competing sparse PCA methods, including SPCA, PathSPCA, EMPCA, GPower l1

,
GPower l0

, GPower l1;m
, GPower l0;m

, ALSPCA and the proposed COP-PCA method were utilized to calculate the first two sparse PC
vectors of each data set. We recorded the computation times of these methods and compared their efficiency in Fig. 6. To make a
fair comparison, we set the maximal iteration number of all competing methods for calculating each PC vector as 100. The actual
average iteration number of the competing methods among these 18 experiments are: SPCA, 200; PathSPCA, 76; EMPCA, 200;
GPower l1

, 8.3; GPower l0
, 6.7; GPower l1 ;m

, 6.3; GPower l0;m
, 5.7; ALSPCA, 5.6; and COP-PCA, 200, respectively. The average time of

the utilized methods among these experiments are: SPCA, 0.2157 s; PathSPCA, 0.1466 s; EMPCA, 1.8792 s; GPower l1
, 0.0614 s;

GPower l0
, 0.0496 s; GPower l1 ;m

, 0.0975 s; GPower l0 ;m
, 0.0646 s; ALSPCA, 0.1574 s; and COP-PCA, 0.1128 s, respectively.

From the above statistics and Fig. 6, it can be seen that the computation cost of the proposed COP-PCA method is comparable
to the other competing sparse PCA methods (a little higher than GPower l1 , GPower l0 , GPower l1 ;m and GPower l0 ;m, while lower
than SPCA, PathSPCA, EMPCA and ALSPCA). This complies with our theoretical analysis aforementioned in Section 2.4.

4. Conclusion

Inspired by the early path methods constructed on the other settings, we have proposed a new path-following algorithm for
the sparse PCA problem. The proposed algorithm is simple and easy to be implemented, and is expected to effectively explore the
entire solution path of the sparse PCA model. Along the path so generated, the data variables sequentially shrink to zeroes,
intrinsically reflecting their different significance on capturing data variance. The path so generated can not only provide great
convenience on proper selection of optimal tuning parameter for real sparse PCA applications, but also gives further insight into
the intrinsic effect of the sparse PCA model.
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Appendix A. Proof of Theorem 1

Theorem 1. For the optimal solutions wl1 tð Þ and wl2 ;c sð Þ of L1(t) and L2,c(s) models, respectively, it holds that wl1 tð Þ ¼ t
cwl2 ;c

c2

t2

� �
and

wl2 ;c sð Þ ¼ ffiffi
s

p
wl1

cffiffi
s

p
� �

.

Proof. (1)wl2 ;c
c2

t2

� �
can be attained through the optimization model L2;c c2

t2

� �
as follows:
As

wh

i.e.
wl2 ;c
c2

t2

 !
¼ argmax

w
V wð Þ ¼ wTXXTw

s:t: wTw≤ c2

t2
wk k1≤c:

ð16Þ

a comparison, c
twl1 tð Þ can be obtained through solving the following optimization:

c
t
wl1

tð Þ ¼ argmax
w

V
t
c
w

	 

¼ t2

c2
wTXXTw

s:t:
t2

c2
wTw≤1

t
c

wk k1≤t;

ð17Þ

ich is equivalent to the following model:

argmax
w

t2

c2
wTXXTw

s:t: wTw≤ c2

t2
wk k1≤c:

ð18Þ
,

Evidently, the two optimization models (16) and (18) are intrinsically equivalent, and thus wl2 ;c
c2

t2

� � ¼ c
twl1 tð Þ, i.e.,
wl1
tð Þ ¼ t

c
wl2 ;c

c2

t2

 !
: ð17Þ
(2)By substituting s ¼ c2

t2
into (17), we have
wl1

cffiffi
s

p
	 


¼ 1ffiffi
s

p wl2 ;c
sð Þ;

wl2 ;c
sð Þ ¼ ffiffi

s
p

wl1

cffiffi
s

p
	 


:

The proof is then completed. ■
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