
1598 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 24, NO. 10, OCTOBER 2013

Learning Capability of Relaxed Greedy Algorithms
Shaobo Lin, Yuanhua Rong, Xingping Sun, and Zongben Xu

Abstract— In the practice of machine learning, one often
encounters problems in which noisy data are abundant while the
learning targets are imprecise and elusive. To these challenges,
most of the traditional learning algorithms employ hypothesis
spaces of large capacity. This has inevitably led to high compu-
tational burdens and caused considerable machine sluggishness.
Utilizing greedy algorithms in this kind of learning environment
has greatly improved machine performance. The best existing
learning rate of various greedy algorithms is proved to achieve
the order of (m/ log m)−1/2, where m is the sample size. In
this paper, we provide a relaxed greedy algorithm and study
its learning capability. We prove that the learning rate of the
new relaxed greedy algorithm is faster than the order m−1/2.
Unlike many other greedy algorithms, which are often indecisive
issuing a stopping order to the iteration process, our algorithm
has a clearly established stopping criteria.

Index Terms— Algorithm, generalization error, learning theory,
orthogonal greedy algorithm, relaxed greedy algorithm.

I. INTRODUCTION

MACHINE learning refers to training a computer system
to perform a task with available data of the form

(xi , yi)
m
i=1. The data are also known as examples. In math-

ematical terms, training means synthesizing a function f
that best represents the relation between inputs x and the
corresponding outputs y. The function f is chosen from a
suitable class of functions, called hypothesis space, encoding
prior knowledge on the relation between x and y. Statistically,
a learning algorithm is an inference process from the (often
unruly) data to a reasonable decision-making model based on
the capacity of the hypothesis space. One of the main goals of
learning theory is to design an efficient algorithm such that the
synthesized function can approximate the best possible relation
between x and y, as the number of available data increases.

The core of learning theory is a quantitative assessment of
the inference property of a learning algorithm. The central
question is and will always be: how well does a synthesized
function generalize to reflect the reality that the prior examples
purport to show us? The celebrated representation theorem [5]
in machine learning, in a certain sense, asserts that an orig-
inal minimization problem in a usually infinite dimensional

Manuscript received November 20, 2012; revised March 14, 2013 and
May 20, 2013; accepted May 23, 2013. Date of publication June 13, 2013;
date of current version September 27, 2013. This work was supported in part
by the National 973 Program under Grant 2013CB329404, the Key Program
of National Natural Science Foundation of China, under Grant 11131006, and
the National Natural Science Foundations of China under Grant 61075054.

S. Lin, Y. Rong, and Z. Xu are with the Institute for Informa-
tion and System Sciences, School of Mathematics and Statistics, Xiàn
Jiaotong University, Xiàn 710049, China (e-mail: sblin1983@gmail.com;
yuanhuarong@stu.xjtu.edu.cn; zbxu@mail.xjtu.edu.cn).

X. Sun is with the Department of Mathematics, Missouri State University,
Springfield, MO 65897 USA (e-mail: xsun@missouristate.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2013.2265397

reproducing kernel Hilbert spaces (RKHS) can be reduced to
finding finitely many coefficients in a linear combination of
kernel function. This has greatly propelled the popular use of
RKHS as hypothesis spaces in support vector machine (SVM)
algorithms and regularized least square (RLS) algorithms
[3]–[6], [9], [11], [13], [15], [20], [22]. Many of these
algorithms are easy to implement as long as the number of
samples m is not too large. However, memory requirements
for storing the symmetric positive semidefinite matrix increase
quadratically with m. As such, large data sets pose a serious
problem for the above-mentioned algorithms, and often cause
sluggishness in machine performance. Further complications
can evolve when dealing with problems in which data are noisy
and learning targets imprecise and elusive.

To these challenges, most traditional algorithms employ
hypothesis spaces of large capacities. While learning theorists
cheer the philosophy behind the no pain, no gain strategy,
practitioners are often at their wit’s end in handling the high
and sometimes insurmountable computation burdens brought
forth by the introduction of super-large hypothesis spaces.
To tackle this dichotomy, Barron et al. [2] advocate greedy
algorithms in this kind of learning environment. They show
that the learning rates of both orthogonal greedy algorithms
(OGA) and relax greedy algorithms (RGA) are in the order
(m/ log m)−1/2. In achieving this goal, they have essentially
used a complexity regularization principle as the stopping
criterion. Literature abounds in the analysis of pros and cons of
OGA and RGA. A consensus in the machine learning commu-
nity is that OGA are inherently sensitive to noise, a hallmark of
many machine learning problems. Our numerical experiments
in Section 4 also support this viewpoint. Nevertheless, OGA
have been widely used in signal processing [1], [12], [17] and
approximation theory [8], [16], [18].

Two of the authors of the current paper have been avid
practitioners of the RGA proposed in [2]. A long time
period of exposure to and experimentation with the RGA has
motivated them to improve the algorithms’ efficiency and user-
friendliness. In this paper, we propose a prior knowledge-
dependent RGA and study its generalization capability. Using
an alternating projection method, we are able to obtain a
representation of the RGA estimator (in closed form) in every
step of the iterations, and reduce the computation complexity
to a level comparable to that of the pure greedy algorithm
(PGA). Furthermore, we find that if a truncation operator
is applied to the estimator in every step, then the learning
capability is monotonically nonincreasing with respect to the
number of iterations, which essentially establishes a new and
easy-to-code stopping criteria. This feature is well-received
by the community of computer programmers we have been
working with. Using a widely used l2 empirical covering
number technique, we show that the learning rate of the

2162-237X © 2013 IEEE

LIN et al.: LEARNING CAPABILITY OF RELAXED GREEDY ALGORITHMS 1599

algorithm is faster than the order m−1/2, which, to the best of
our knowledge, is a new record ever achieved by any classical
RGAs. Numerous numerical simulation results confirm that
the algorithm is more stable in dealing with noisy machine
learning problems than OGAs. In comparison to RLS and
SVM algorithms, we witness noticeable machine performance
enhancement made possible by the new RGA.

The rest of the paper is organized as follows. In Section
II, we review notations and preliminary results in machine
learning theory and greedy algorithms that will be frequently
referred to throughout this paper. In Section III, we introduce
our new relaxed greedy algorithms and state the main results
of the paper. In Section IV, we present numerical simulation
results that compare the performance of our new RGA with
several other algorithms. Section V is devoted to proofs of the
main results and Section VI concluding remarks.

II. PRELIMINARIES

A. Review of Learning Theory

In most of the machine learning problems, data are taken
from two sets: the input space X ⊆ Rd and the output space
Y ⊆ R. The relation between the variable x ∈ X and the
variable y ∈ Y is not deterministic, and is described by a
probability distribution ρ on Z := X × Y that admits the
decomposition

ρ(x, y) = ρX (x)ρ(y|x)

in which ρ(y|x) denotes the conditional (given x) probability
measure on Y , and ρX (x) the marginal probability measure
on X . Let z = (xi , yi)

m
i=1 be a set of finite random samples

of size m, m ∈ N, drawn identically, independently according
to ρ from Z . The set of examples z is called a training set.
Without loss of generality, we assume that |yi | ≤ M for a
prescribed (and fixed) M > 0.

The major goal in a machine learning problem is to derive
from a training set a function f : X → Y such that f (x) is
an effective and reliable estimate of y when x is given. One
natural measurement of the error incurred by using f (x) for
this purpose is the generalization error, given by

E(f) :=
∫

Z
(f (x) − y)2dρ

which is minimized by the regression function [7], defined by

fρ(x) :=
∫

Y
ydρ(y|x).

This ideal minimizer fρ exists in theory only. In practice, we
do not know ρ, and we can only access random examples from
X × Y sampled according to ρ.

Let L2
ρX

be the Hilbert space of ρX square integrable
functions on X , with norm denoted by ‖ · ‖ρ . With the
assumption that fρ ∈ L2

ρX
, it is well-known [5] that, for every

f ∈ L2
ρX

, there holds

E(f) − E(fρ) = ‖ f − fρ‖2
ρ . (1)

The task of the least square regression problem is then to
construct functions fz that approximates fρ , in the norm ‖·‖ρ ,
using finite samples.

B. Greedy Algorithm

There exist several types of greedy algorithms [16]. The four
most commonly used are the pure greedy, orthogonal greedy,
relax greedy, and stepwise projection algorithms, which are
often denoted by their acronyms PGA, OGA, RGA, and SPA,
respectively.

Let H be a Hilbert space with norm and inner product ‖·‖H

and 〈·, ·, 〉H . Let Dn := {gi}n
i=1 be a given dictionary. In all

the above greedy algorithms, we begin by setting f0 := 0. The
new approximation fk (k ≥ 1) is defined based on fk−1 and
its residual rk−1 := f − fk−1. In relaxed greedy algorithms,
fk is defined as

fk = αk fk−1 + βk gk

where (αk , βk) ∈ R2 and gk ∈ Dn . There exist many methods
to choose (αk, βk, gk), and the most greedy approach is

(αk, βk, gk) := arg min(α,β,g)∈R2×Dn
‖ f − α fk−1 − βg‖H .

To reduce the computational burden, one chooses (judiciously)
the first parameter αk , and then determine βk, gk using the
following optimization [2], [8]:

(βk, gk) := arg min(β,g)∈R×Dn
‖ f − αk fk−1 − βg‖H . (2)

Given a training sample z = (xi , yi)
m
i=1, the empirical inner

product and norm are defined by

〈 f, g〉m := 1

m

m∑
i=1

f (xi)g(xi), ‖ f ‖2
m := 1

m

m∑
i=1

| f (xi)|2.

Barron et al. [2] studied the RGA as described in (2) with
αk = 1 − 1/k, ‖ · ‖H = ‖ · ‖m , and 〈·, ·, 〉H = 〈·, ·〉m .
To rephrase their result precisely, we need to reintroduce
some of their notations. Let Dn ⊂ D := {gi}∞i=1, L1(D) :=
{ f : f = ∑

g∈D agg}. The norm of L1(D) is defined by

‖ f ‖L1 := inf
{∑

g∈D |ag| : f =∑g∈D agg
}

. For r > 0, the
space Lr

1 is defined to be the set of all functions f such that,
for all n, there exists h ∈ span{Dn} such that

‖h‖L1 ≤ B, and ‖ f − h‖ ≤ Bn−r (3)

where ‖ · ‖ denotes the uniform norm for C(X) and C(X)
denotes the spaces of continuous functions defined on X . The
infimum of all such B defines a norm (for f) on Lr

1.
One of the main results in [2] can be stated as follows. Let

f̂ := �M fk∗ , where �M f (x) := min{M, | f (x)|}sgn(f (x))
is the truncation operator at level M and

k∗ := arg min
1≤k≤n

{
‖y − �M fk‖2

m + κ
k log m

m

}
(4)

with κ ≥ 12840M4. Then for each fρ ∈ Lr
1, we have

E(‖ f̂ − fρ‖2
ρ) ≤ C

(
(1 + B2)

(
m

log m

)−1/2

+ n−2r

)
(5)

where C is a constant depending only on κ and M . If n
is sufficiently large, then (5) shows that the learning rate
of the RGA with the number of iterations satisfying (4) is
O (m/log m)−1/2. Barron et al. [2, Theorem 3.8] also showed
that the RGA is weakly universally consistent.

1600 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 24, NO. 10, OCTOBER 2013

III. PRIOR DEPENDENT RGA AND ITS

LEARNING CAPABILITY

A. Motivation

Two of the authors (of the present paper) have had an
extensive experience in the numerical implementation of RGA
defined in (4). We have run simulations of problems from both
virtual and real world: from weather forecasting to video game
design. To a large extent, we have met with success. However,
we have also encountered glitches, stemming mostly from the
difficulty of communicating the sophisticated mathematical
ideas in RGA to programmers who coded the numerical sim-
ulations. In particular, we had a hard time trying to convince
the programmers that there is a certain mathematical necessity
to use the truncating operator in the algorithm.

Programmers believed that the truncation operators have
made the estimator f̂ difficult to code. They also confirmed a
remark in [2, Remark 3.5] that the estimate on the parameter
k is too pessimistic. More precisely, it follows from (4) and
|y| ≤ M that

κ
k∗ log m

m
≤ ‖y − �M fk∗‖2

m + κ
k∗ log m

m
≤ ‖y − �M f0‖2

m ≤ M2.

This implies that k∗ is not larger than M2m/(κ log m). If
κ ≥ 12840M4 and m ≤ 12840M2, then only one iteration can
be done in implementing the RGA. Many of the programmers’
spirit are dampened by this restriction, and shy away from
running the RGA for large k.

These experiences have motivated us to modify the above
RGA for the purpose of making it more user-friendly and
efficient. In the following subsection, we introduce a prior
dependent RGA. Granted, the RGA in [2] are built inde-
pendently of any prior knowledge and are weakly universal
consistent. Theoretically, these algorithms are applicable in a
variety of learning environment. The RGA we are proposing
is prior dependent in nature. More practically efficient and
noise-resistant as they manifest, we are unable to show that
the new RGA is weakly universal consistent.

B. Algorithm

In this part, we design a new RGA depending on the prior
knowledge (3) and analyze the computational feasibility of the
new algorithm.

Given a dictionary Dn := (gi)
n
i=1, let

D∗
n :=

{
± gi

‖gi‖m
: i = 1, . . . , n

}
.

We introduce our new RGA as follows:

f0 = 0, f k
z := αk f k−1

z + βk
z gk

z (6)

in which

α0 = 0, αk := 1 − 1

k
, for k ≥ 1

gk
z := arg maxg∈D∗

n

m∑
i=1

(
yi − αk f k−1

z (xi)
)

g(xi)

and

βk
z := arg minβ∈[0,B/k](β2

−2β
1

m

m∑
i=1

(yi − αk f k−1
z (xi))gk

z (xi)). (7)

For each g ∈ D∗
n , we have

1

m

m∑
i=1

∣∣∣yi − αk f k−1
z (xi) − βg(xi)

∣∣∣2

= 1

m

m∑
i=1

∣∣∣yi − αk f k−1
z (xi)

∣∣∣2 + β2 1

m

m∑
i=1

g2(xi)

−2β
1

m

m∑
i=1

(
yi − αk f k−1

z (xi)
)

g(xi)

= 1

m

m∑
i=1

∣∣∣yi − αk f k−1
z (xi)

∣∣∣2 + β2

−2β
1

m

m∑
i=1

(
yi − αk f k−1

z (xi)
)

g(xi).

It follows from the definition of gk
z that for each given

β ∈ [0,B/k], we have:

gk
z = arg min

g∈D∗
n

1

m

m∑
i=1

∣∣∣yi − αk f k−1
z (xi) − βg(xi)

∣∣∣2 . (8)

Similarly, for each given g ∈ D∗
n , we have

βk
z = arg min

β∈[0,B/k]
1

m

m∑
i=1

∣∣∣yi − αk f k−1
z (xi) − βg(xi)

∣∣∣2 . (9)

Thus, the proposed algorithm (6) is a RGA with its parameter
βk and gk chosen according to an alternating projection
strategy. Furthermore, the definitions of gk

z and D∗
n yield that

m∑
i=1

(
yi − αk f k−1

z (xi)
)

gk
z (xi) ≥ 0

which implies that the solution of (7) is

βk
z = min

{∑m
i=1

(
yi − αk f k−1

z (xi)
)

gk
z (xi)∑m

j=1 gk
z (x j)

,
B
k

}
.

From the above statement, it can be found that the coefficient
βk

z depends on the prior knowledge B defined in (3). So the
new RGA we presented is a prior dependent algorithm, and
B is called as the prior parameter. We observe further that
fk ∈ span(Dn) for all k ∈ N and the computational complexity
of algorithm (6) is similar to that of PGA. Moreover, it is easy
to see that the derived estimator f k

z belongs to span(Dk) since
the truncation operator is only implemented upon βk

z in every
step.

C. Learning Rate

Before giving the main result, we need to introduce few
notations. Let s ∈ (0, 1] and φ(x, y) be a continuous function
on X × X such that for all y, x, x ′ ∈ X , there holds

|φ(y, x) − φ(y, x ′)| ≤ Cs |x − x ′|s, max |φ(y, x)| ≤ 1.

(10)

LIN et al.: LEARNING CAPABILITY OF RELAXED GREEDY ALGORITHMS 1601

Here Cs is a positive constant depending only on s.
We remark that the first inequality in (10) is simply the
Lipchitz continuity of φ with respect to x , and that the second
inequality is essentially the boundedness of φ with respect to
both x and y. There is an abundant supply of such functions.
For example, for each fixed a > 0, the widely used Gausssian
kernel G(x, y) = exp{−|x − y|2/a} fulfills the assumption
(10) with s = 1, as are the inverse multiquadrics and most of
the Wendland functions ([19]). For a given set of n distinct
points z1, . . . , zn , let

Dn := {φ(zi , ·), zi ∈ X, i = 1, 2, . . . , n} (11)

and D := {φ(x, ·) : x ∈ X}.
We state the main result of this paper and give the proof in

Section V.
Theorem 1: Let δ ∈ (0, 1), Dn and f k

z be defined in (11)
and (6), respectively. If fρ ∈ Lr

1, then the inequality

E(f k
z) − E(fρ) ≤ CB2

(
m− 2s+d

2d+2s log
2

δ
+ k−1 + n−2r

)
(12)

holds with probability at least 1 − δ, where C is a positive
constant depending only on φ, d , and fρ .

Remark 1: In a certain sense, the learning rate established
in (12) is faster than that in (5). Indeed, if we choose n and k
large enough, then the learning rate of (12) is asymptotically
m−2s+d/2d+2s , which is faster than m−1/2.

Remark 2: The presence of the term k−1 in the error
estimate of Theorem 1 is very much to the liking of program-
mers who think it gives a well-indicated stopping criteria for
iteration. If k−1 is smaller than n−2r , then the generalization
error do not increase when k does. Roughly speaking, the
larger the number of iteration, the better is the generalization
error we get. This is in sharp contrast to a related feature
manifested by most of OGA.

Remark 3: In (12), we give a probabilistic estimate rather
than expectation estimate. The latter can be derived from the
former with a standard probabilistic manipulation.

IV. SIMULATION RESULTS

In this section, we present the results of two numerical
experiments1 in which we test the performance of the new
RGA as described in Section III. In each experiment, we
run the new RGA and several other algorithms (SVM, OGA,
and RLS) to the same machine learning problem. Needless
to say, we want to have a level competing ground to compare
these algorithms. In the first experiment we randomly sampled
500 data from the function

x �→ sin x

x
x ∈ [−1, 1].

Let x0 = −1, and let xi (0 ≤ i < 200) be the 200 equally
spaced points in [−1, 1]. We use

{
e−‖x−xi‖2 : i = 0, . . . , 199

}
as dictionary. To show the stability of RGA (6), we also added
a Gaussian noise N(0, δ2) with δ2 = 0.2. Recalling (7), there
is also a prior parameter B in the new RGA. In this simulation,

1All the numerical simulations are carried out in MATLAB2009b environ-
ment running Windows 7, 2.66 HZ CPU.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

−10 −5 0 5 10
−1

−0.5

0

0.5

1

1.5

Fig. 1. RGA with noiseless data and noisy data.

we use the so-called cross validation strategy [10, Chap. 8] to
select an optimal B from the set {1, 10, 100, 1000}. In the
numerical experiments, RMSETest is the rooted mean square
error (RMSE) of the testing data. RMSETrain is the RMSE
of the training data. Sparsity shows the average number of
functions in the dictionary used to construct the estimator and
Time represents the average time (in seconds) of running one
simulation (We run 20 simulations). Fig. 1 shows an intuitive
effects of RGA learning. Table I summarizes the performance
of the algorithms handling non-noisy data. We see that all the
algorithms demonstrate good generalization capability. OGA
and RGA are better-behaved than SVM and RLS in terms of
the training time. Table 2 shows the results of 20 simulations
when noise is added in. We observe that RGA is much more
robust than OGA in dealing with noisy data. Both Tables II
and III show that the average number of functions used in the
dictionary in constructing the estimator of RGA and OGA are
much smaller than that in RLS, which shows that RGA and
OGA are capable of producing sparse yet efficient estimators.
Overall, the numerical experiments underscore the fact that the
new RGA (6) is stable, fast, and efficient.

In Fig. 2, we describe the relationships between test error
and number of iteration (the upper left figure), training time,
and number of iteration (the upper right figure), number of
functions used in the dictionary and number of iteration (the
lower left figure). The lower right figure shows test error for
k = 5 (blue line), k = 50 (green line), and k = 2000 (red
line). All of these support the result of Theorem 1.

1602 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 24, NO. 10, OCTOBER 2013

TABLE I

RESULTS OF 20 SIMULATIONS (NO NOISE ADDED). NUMBER OF

ITERATION IN RGA IS 2000 AND PRIOR PARAMETER B IS 10

Methods RMSETest RMSETrain Sparsity Time

OGA 0.0094 0.0091 18.700 0.8479

RGA 0.0102 0.0097 83.300 3.2674

RLS 0.0104 0.0098 500 84.700

SVM 0.0070 0.0071 161.300 70.481

TABLE II

RESULTS OF 20 SIMULATIONS WITH NOISY DATA. NUMBER OF

ITERATION IN RGA IS 2000 AND PRIOR PARAMETER B IS 10

Methods RMSETest RMSETrain Sparsity Time

OGA 0.0786 0.1871 60.7000 2.0607

RGA 0.0391 0.1981 79.4500 3.2667

RLS 0.0412 0.1962 500 74.3499

SVM 0.0382 0.1965 43.6000 90.3201

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
TestRMSE

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3
TrainTime

0 500 1000 1500 2000
0

10

20

30

40

50

60

70

80

90
Number of basis

−10 −5 0 5 10
−1

−0.5

0

0.5

1

1.5

Fig. 2. Criteria to choose parameter k for the univariate case.

In the second numerical experiment, we sampled 1000 data
from

f (x) = 0.1e−‖x−z1‖2 + 0.2e−‖x−z2‖2

+0.3e−‖x−z3‖2 + 0.4e−‖x−z4‖2

according to uniform distribution on [0, 1]4, where {zi }4
i=1 are

arbitrarily chosen from [0, 1]4. Again we added in Gaussian
noise N(0, δ2) with δ2 = 0.1. It can be easily found that
the prior parameter B = 1 in this simulation. We use as
our dictionary 400 functions of the form e−‖x−xi‖2

, where
the centers x ′

i s are drawn from [0, 1]4 according to uniform
distribution on [0, 1]4. Table III shows the results of this
numerical experiment. Similar to Fig. 2, Fig 3. depicts the
relationships between test error and number of iteration (the
left figure), training time and number of iteration (the middle

TABLE III

NUMERICAL RESULTS FOR 20 MULTIVARIATE SIMULATIONS WITH

NOISY DATA. NUMBER OF ITERATION IN RGA IS 2000 AND THE PRIOR

PARAMETER B IS 1

Methods RMSETest RMSETrain Sparsity Time

RGA 0.0103 0.0992 19.2503 13.952

OGA 0.0192 0.0997 15.7000 3.0601

RLS 0.0191 0.0973 1000 19.775

SVM 0.0163 0.0985 319.4520 43.663

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
TestRMSE

0 500 1000 1500 2000
0

2

4

6

8

10

12

14
TrainTime

0 500 1000 1500 2000
0

5

10

15

20

25
Number of basis

Fig. 3. Criteria to choose parameter k for the multivariate case.

figure), number of functions used in the dictionary and number
of iteration (the right figure).

V. PROOF OF THEOREM 1

In this section, we prove our main result (Theorem 1).
The proof is divided into five parts, which contains the error
decomposition strategy, approximation error estimate, sample
error estimate, hypothesis error estimate, and learning rate
analysis.

A. Error Decomposition Strategy

To give an error decomposition strategy for E(f k
z)−E(fρ),

we need to construct a function f ∗
k ∈ span(Dn) as follows.

As fρ ∈ Lr
1, there exists a hρ :=∑n

i=1 ai gi ∈ span(Dn) such
that

‖hρ‖L1 ≤ B, and ‖ fρ − hρ‖ ≤ Bn−r . (13)

Define

f ∗
0 = 0, f ∗

k =
(

1 − 1

k

)
f ∗
k−1 +

∑n
i=1 |ai |‖gi‖ρ

k
g∗

k (14)

where

g∗
k := arg max

g∈D′
n

〈
hρ −

(
1 − 1

k

)
f ∗
k−1, g

〉
ρ

and

D′
n := {gi(x)/‖gi‖ρ

}n
i=1

⋃{−gi(x)/‖gi‖ρ

}n
i=1

with gi ∈ Dn .

LIN et al.: LEARNING CAPABILITY OF RELAXED GREEDY ALGORITHMS 1603

Let f k
z and f ∗

k be defined as in (6) and (14), respectively,
then we have

E(f k
z) − E(fρ)

≤ E(f ∗
k) − E(fρ) + Ez(f k

z) − Ez(f ∗
k)

+Ez(f ∗
k) − E(f ∗

k) + E(f k
z) − Ez(f k

z)

where Ez(f) = (1/m)
∑m

i=1(yi − f (xi))
2.

Upon making the short-hand notations

D(k) := E(f ∗
k) − E(fρ)

S(z, k) := Ez(f ∗
k) − E(f ∗

k) + E(f k
z) − Ez(f k

z)

and

P(z, k) := Ez(f k
z) − Ez(f ∗

k)

respectively for the approximation error, the sample error and
the hypothesis error, we have

E(f k
z) − E(fρ) = D(k) + S(z, k) + P(z, k). (15)

This completes our error decomposition strategy.

B. Approximation Error

In this subsection, we give an upper bound estimate for
D(k).

Proposition 1: Let f ∗
k be defined in (14). If fρ ∈ Lr

1, then

D(k) ≤ B2(k−1/2 + n−r)2. (16)
Proof: From the definition of D(k) and (1), it follows that

for arbitrary h ∈ span(Dn), there holds:

D(k) = E(f ∗
k) − E(fρ) = ‖ f ∗

k − fρ‖2
ρ

≤ (‖ f ∗
k − h‖ρ + ‖h − fρ‖ρ

)2
.

As fρ ∈ Lr
1 and ‖ f ‖ρ ≤ ‖ f ‖, (13) and (14) imply

D(k) ≤ (‖ f ∗
k − hρ‖ρ + ‖h − fρ‖ρ

)2
≤ (‖ f ∗

k − hρ‖ρ + ‖h − fρ‖)2
≤ (‖ f ∗

k − hρ‖ρ + Bn−r)2 .

To bound ‖ f ∗
k − hρ‖ρ , we note that for arbitrary ϕ ∈ D′

n∥∥∥∥hρ − αk f ∗
k−1 −

∑n
i=1 |ai |‖gi‖ρ

k
ϕ

∥∥∥∥
2

ρ

= ∥∥hρ − αk f ∗
k−1

∥∥2
ρ

+
(∑n

i=1 |ai |‖gi‖ρ

)2
k2

−2

∑n
i=1 |ai |‖gi‖ρ

k

〈
hρ − αk f ∗

k−1, ϕ
〉
ρ

.

It follows from the definition of g∗
k that:

g∗
k = arg minϕ∈D′

n

∥∥∥∥hρ −
(

1 − 1

k

)
f ∗
k−1

−
∑n

i=1 |ai |‖gi‖ρ

k
ϕ

∥∥∥∥
2

ρ

. (17)

Using the fact that hρ is a linear combination of the gi s, we
write

hρ =
n∑

i=1

ai gi =
n∑

i=1

ai‖gi‖ρ
gi

‖gi‖ρ
=

n∑
i=1

ai‖gi‖ρϕi .

Thus we obtain hρ(x) = ∑n
i=1 |ai |‖gi‖ρϕ∗

i (x) where ϕi :=
gi/‖gi‖ρ ∈ D′

n and ϕ∗
i :=

{
ϕi , ai ≥ 0

−ϕi , ai < 0
. It follows from (17)

and (14) that, for all ϕ ∈ D′
n , there holds:

‖hρ − f ∗
k ‖2

ρ

≤
∥∥∥∥αk f ∗

k−1 +
∑n

i=1 |ai |‖gi‖ρ

k
ϕ − hρ

∥∥∥∥
2

ρ

=
∥∥∥∥αk(f ∗

k−1 − hρ) +
∑n

i=1 |ai |‖gi‖ρ

k
ϕ − hρ

k

∥∥∥∥
2

ρ

= α2
k ‖ f ∗

k−1 − hρ‖2
ρ +

(∑n
i=1 |ai |‖gi‖ρ

)2
k2

− 2

k2

〈
n∑

i=1

|ai |‖gi‖ρϕ, hρ

〉
+ 1

k2 ‖hρ‖2
ρ

+2αk

〈
f ∗
k−1 − hρ,

∑n
i=1 |ai |‖gi‖ρ

k
ϕ − hρ

k

〉
.

The above inequality holds true for all ϕ∗
1 , . . . , ϕ∗

n ∈ D′
n . Thus

we have

‖hρ − f ∗
k ‖2

ρ

≤ 1

k

[(
α2

k ‖ f ∗
k−1 − hρ‖2

ρ +
(∑n

i=1 |ai |‖gi‖ρ

)2
k2

− 2

k2

〈
n∑

i=1

|ai |‖gi‖ρϕ∗
1 , hρ

〉

ρ

+ 1

k2 ‖hρ‖2
ρ

+ 2αk

〈
f ∗
k−1 − hρ,

∑n
i=1 |ai |‖gi‖ρ

k
ϕ∗

1 − hρ

k

〉
ρ

)

+ · · · +
(

α2
k ‖ f ∗

k−1 − hρ‖2
ρ +

(∑n
i=1 |ai |‖gi‖ρ

)2
k2

− 2

k2

〈
n∑

i=1

|ai |‖gi‖ρϕ∗
n , hρ

〉

ρ

+ 1

k2 ‖hρ‖2
ρ

+ 2αk

〈
f ∗
k−1 − hρ,

∑n
i=1 |ai |‖gi‖ρ

k
ϕ∗

n − hρ

k

〉
ρ

)]

= α2
k ‖ f ∗

k−1 − hρ‖2
ρ − 1

k2 ‖hρ‖2
ρ

+
(∑n

i=1 |ai |‖gi‖ρ

k

)
.

Noting that ‖hρ‖L1 =∑n
i=1 |ai |‖gi‖ρ , we therefore, obtain

‖hρ − f ∗
k ‖2

ρ ≤ α2
k ‖hρ − f ∗

k−1‖2
ρ + 1

k2 (‖hρ‖2
L1

− ‖hρ‖2
ρ).

Therefore, similar method as that in the proof of [2, Theo-
rem 2.2] yields the estimation

‖hρ − f ∗
k ‖2

ρ ≤ (‖hρ‖2
L1

− ‖hρ‖2
ρ)1/2k−1/2.

Hence, the inequality ‖hρ‖ρ ≤ ‖hρ‖L1 ≤ B implies

D(k) ≤ (‖h∗
k − hρ‖ρ + Bn−r)2

≤ B2(k−1/2 + n−r)2.

This completes the proof of Proposition 1.

1604 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 24, NO. 10, OCTOBER 2013

C. Sample Error

In this subsection, we will bound the sample error S(z, k).
Upon using the short-hand notations

S1(z, k) := {Ez(f ∗
k) − Ez(fρ)} − {E(f ∗

k) − E(fρ)}
and

S2(z, k) := {E(f k
z) − E(fρ)} − {Ez(f k

z) − Ez(fρ)}
we write

S(z, k) = S1(z, k) + S2(z, k). (18)

To bound S1(z, k), we need the following two lemmas. The
first one gives an upper-bound estimate for ‖ f ∗

k ‖. The second
one is the well-known Bernstein inequality that can be found
in [14].

Lemma 1: Let f ∗
k be defined in (14), then there holds

‖ f ∗
k ‖ ≤ B. (19)

Proof: It follows from the definition of f ∗
k that

fk = αkαk−1 · · · α2β1g∗
1 + αkαkαk−1 · · ·α3β2g∗

2 + · · ·
+αkβk−1g∗

k−1 + βk g∗
k .

As αk = 1 − 1/k, βk = (1/k)
∑n

i=1 |ai |‖gi‖ρ ≤ B/k, we get

‖ f ∗
k ‖L1 ≤

∣∣∣∣
(

1 − 1

k

)
· · ·
(

1 − 1

k − (k − 2)

)
B
∣∣∣∣

+
∣∣∣∣
(

1 − 1

k

)
· · ·
(

1 − 1

k − (k − 3)

) B
2

∣∣∣∣
+ · · · +

∣∣∣∣
(

1 − 1

k

) B
k − 1

∣∣∣∣+ B
k

= k × B
k

≤ B.

We then use the assumptions made in (10) to finish the proof
of Lemma 1.

Lemma 2: Let ξ be a random variable on a probability
space Z with variance σ 2 satisfying |ξ − Eξ | ≤ Mξ for some
constant Mξ . Then for any 0 < δ < 1, with confidence 1 − δ,
we have

1

m

m∑
i=1

ξ(zi) − Eξ ≤ 2Mξ log 1
δ

3m
+
√

2σ 2 log 1
δ

m
.

Proposition 2: For any 0 < δ < 1, with confidence 1 − δ/2

S1(z, k) ≤ 7(3M + B log 2
δ)

3m
+ 1

2
D(k).

Proof: Let the random variable ξ on Z be defined by

ξ(z) = (y − f ∗
k (x))2 − (y − fρ(x))2 z = (x, y) ∈ Z .

As | fρ(x)| ≤ M almost everywhere, it follows from Lemma 1
that

|ξ(z)| = (fρ(x) − f ∗
k (x))(2y − f ∗

k (x) − fρ(x))

≤ (M + B)(3M + B)

≤ Mξ := (3M + B)2

and almost surely

|ξ − Eξ | ≤ 2Mξ .

Moreover, we have

E(ξ2)

=
∫

Z
(f ∗

k (x) + fρ(x) − 2y)2(f ∗
k (x) − fρ(x))2dρ

≤ Mξ ‖ fρ − f ∗
k ‖2

ρ

which implies that the variance σ 2 of ξ can be bounded
as σ 2 ≤ E(ξ2) ≤ MξD(k). Now applying Lemma 2, with
confidence 1 − δ/2, we have

S1(z, k) = 1

m

m∑
i=1

ξ(zi) − Eξ

≤ 4Mξ log 2
δ

3m
+
√

2MξD(k) log 2
δ

m

≤ 7(3M + B)2 log 2
δ

3m
+ 1

2
D(k).

To bound S2(z, k), we need the concept of an empirical
covering number.

Definition 1: Let (M, d) be a pseudo-metric space and
T ⊂ M a subset. For every ε > 0, the covering number
N (T, ε, d) of T with respect to ε and d is defined as the
minimal number of balls of radius ε whose union covers T,
that is

N (T, ε, d) := min

⎧⎨
⎩l ∈ N : T ⊂

l⋃
j=1

B(t j , ε)

⎫⎬
⎭

for some {t j }l
j=1 ⊂M, where B(t j , ε)={t ∈M : d(t, t j) ≤ ε}.

The l2-empirical covering number of a function set is
defined by means of the normalized l2-metric d2 on the
Euclidean space Rd given in [14] with d2(a, b) = ((1/m)∑m

i=1 |ai − bi |2)1/2 for a=(ai)
m
i=1, b = (bi)

m
i=1 ∈Rm .

Definition 2: Let F be a set of functions on X , x = (xi)
m
i=1⊂ Xm , and let

F |x := {(f (xi))
m
i=1 : f ∈ F} ⊂ Rm .

Set N2,x(F , ε) = N (F |x, ε, d2). The l2-empirical covering
number of F is defined by

N2(F , ε) := sup
m∈N

sup
x∈Sm

N2,x(F , ε), ε > 0.

The following two lemmas can be found, respectively, in
[14, Theorem 2] and [21].

Lemma 3: If φ satisfies (10), then for arbitrary ε > 0

logN2(B1, ε) ≤ C1ε
− 2d

d+2s

where BR is the ball in L1 with radius R, and C1 is a constant
depending only on s, Cs , and X .

Lemma 4: Let F be a class of measurable functions on Z .
Assume that there are constants B, c > 0 and α ∈ [0, 1] such
that ‖ f ‖∞ ≤ B and E f 2 ≤ c(E f)α for every f ∈ F . If for
some a > 0 and p ∈ (0, 2)

logN2(F , ε) ≤ aε−p ∀ε > 0 (20)

LIN et al.: LEARNING CAPABILITY OF RELAXED GREEDY ALGORITHMS 1605

then there exists a constant c′
p depending only on p such that

for any t > 0, with probability at least 1 − e−t , there holds

E f − 1

m

m∑
i=1

f (zi) ≤ 1

2
η1−α(E f)α + c′

pη

+2

(
ct

m

) 1
2−α + 18Bt

m
∀ f ∈ F (21)

where

η := max

{
c

2−p
4−2α+pα

(a

m

) 2
4−2α+pα

, B
2−p
2+p

(a

m

) 2
2+p
}

.

By using the same method as that in the proof of Lemma 1,
we obtain the following result.

Lemma 5: Let f k
z be defined in (6), then there holds

‖ f k
z ‖L1 ≤ B. (22)

Proof: It follows from the definition of f k
z that

f k
z = αkαk−1 · · ·α2β

1
z gk

z + αkαkαk−1 · · · α3β
2
z g2

z

+ · · · + αkβ
k−1
z gk−1

z + βk
z gk

z .

Since αk = 1 − 1/k and βk
z ≤ B/k, we get

‖ f k
z ‖L1 ≤

∣∣∣∣
(

1 − 1

k

)
· · ·
(

1 − 1

k − (k − 2)

)
B
∣∣∣∣

+
∣∣∣∣
(

1 − 1

k

)
· · ·
(

1 − 1

k − (k − 3)

) B
2

∣∣∣∣
+ · · · +

∣∣∣∣
(

1 − 1

k

) B
k − 1

∣∣∣∣+ B
k

= k × B
k

≤ B.

We then use the assumptions made in (10) to finish the proof
of Lemma 5.

We are now in a position to establish an upper bound
estimate for S2(z, k).

Proposition 3: Let f k
z be defined as in (6) and 0 < δ < 1,

then with confidence 1 − δ/2, there holds

S2(z, k) ≤ 1

2
{E(f k

z) − E(fρ)} + C3 log
2

δ
m− d+2s

2d+2s

where C3 is a constant depending only on d , X , φ and M .
Proof: We apply Lemma 4 to the set of functions FR ,

where

FR :=
{
(y − f (x))2 − (y − fρ(x))2 : f ∈ BR

}
. (23)

Each function g ∈ FR has the form

g(z) = (y − f (x))2 − (y − fρ(x))2, f ∈ BR,

and is automatically a function on Z . Hence

Eg = E(f) − E(fρ) = ‖ f − fρ‖2
ρ

and

1

m

m∑
i=1

g(zi) = Ez(f) − Ez(fρ).

Observe that

g(z) = (f (x) − fρ(x))((f (x) − y) + (fρ(x) − y)).

Using the obvious inequalities ‖ f ‖∞ ≤ R a.e. | fρ | ≤ M a.e.,
we get the inequalities

|g(z)| ≤ (R + M)(R + 3M) ≤ (R + 3M)2

and

Eg2 =
∫

Z
(2y − f (x) − fρ(x))2(f (x) − fρ(x))2dρ

≤ (R + 3M)2Eg.

For g1, g2 ∈ FR , we have

|g1(z) − g2(z)| = |(y − f1(x))2 − (y − f2(x))2|
≤ (2M + 2R)| f1(x) − f2(x)|.

It follows that:

N2,z(FR, ε) ≤ N2,x

(
BR,

ε

2M + 2R

)

≤ N2,x

(
B1,

ε

R(2M + 2R)

)
.

Using the above inequality and Lemma 3, we have

logN2,z(FR, ε) ≤ C1(2M R + 2R2)
2d

d+2s ε− 2d
d+2s .

By Lemma 4 with B = c = (3M + R)2, α = 1 and a =
C1(2M R + 2R2)2d/d+2s , we know that for any δ ∈ (0, 1),
with confidence 1 − δ/2, there exists a constant C depending
only on d , X , and φ such that for all g ∈ FR

Eg − 1

m

m∑
i=1

g(zi) ≤ 1

2
Eg + Cη + C(M + 1)2 log(4/δ)

m
.

Here

η = {(3M + R)2} s
s+d

(
(2RM + 2R2)

2d
d+2s

m

) d+2s
2d+2s

.

Therefore, there exists a constant C2 depending only on d , X ,
φ and M such that

η ≤ C2 R2m− d+2s
2d+2s

which implies

Eg − 1

m

m∑
i=1

g(zi) ≤ 1

2
Eg + CC2 R2 log

δ

2
m− d+2s

2d+2s .

By Lemma 5, we know that ‖ f k
z ‖L1 ≤ B. It follows that there

exists a constant C3 depending only on d , X , φ and M such
that

S2(z, k) ≤ 1

2
{E(f k

z) − E(fρ)} + C3B2 log
δ

4
m− 2s+d

2d+2s .

1606 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 24, NO. 10, OCTOBER 2013

D. Hypothesis Error

In this subsection, we give an error estimate for P(z, k).
Proposition 4: If f k

z and f ∗
k are defined in (6) and (14),

then we have

P(z, k) ≤ B2k−1.

Proof: For arbitrary h ∈ span(Dn) satisfying ‖h‖L1 ≤ B,
there exists a set of real numbers {bi}n

i=1 such that

h(x) =
n∑

i=1

bi gi(x) =
n∑

i=1

bi‖gi‖m
gi (x)

‖gi‖m

=
n∑

i=1

bi‖gi‖mϕi (x) =
n∑

i=1

|bi |‖gi‖mϕ∗
i (x)

where ϕi := gi/‖gi‖m ∈ D∗
n and ϕ∗

i :=
{

ϕi , bi ≥ 0
−ϕi , bi < 0

. Now

we prove

‖ f k
z − y‖2

m − ‖h − y‖2
m ≤ B

k
. (24)

From (8) and (9), it follows that for arbitrary fixed
β ∈ [0,B/k], the inequalities

‖y − f k
z ‖2

m ≤
∥∥∥y − αk f k−1

z − βϕ
∥∥∥2

m

=
∥∥∥∥αk(y − f k−1

z) + 1

k
y − βϕ

∥∥∥∥
2

m

= α2
k ‖y − f k−1

z ‖2
m + 2αk

〈
y − f k−1

z ,
1

k
y − βϕ

〉
m

+ 1

k2 ‖y − h‖2
m + 1

k

〈
y − h,

1

k
h − βϕ

〉
m

+ 1

k2 ‖h‖2
m + β2 − 2

k
〈h, βϕ〉m

hold for all ϕ ∈ D∗
n . As the same as the proof of Proposition 1,

it also holds true for every function in the convex hull of D∗
n .

Setting β = (1/k)
∑n

i=1 |bi |‖gi‖m , and applying Hölder’s
inequality, we get

‖y − f k
z ‖2

m ≤ α2
k ‖y − f k−1

z ‖2
m

+2αk

〈
y − f k−1

z ,
1

k
y − 1

k
h

〉
m

+ 1

k2 ‖y − h‖2
m − 1

k2 ‖h‖2
m + β2

=
∥∥∥∥αk(y − f k−1

z) + 1

k
(y − h)

∥∥∥∥
2

m
− 1

k2 ‖h‖2
m + β2

As β = ‖h‖L1/k, we obtain

‖y − f k
z ‖2

m ≤
(

αk‖y − f k−1
z ‖m + 1

k
‖y − h‖m

)2

+‖h‖2
L1

− ‖h‖2
m

k2 .

This is similar to that in [2, (2.45)]. Thus, using the similar
method as that in the proof of [2, Theorem 2.4], we can deduce

P(z, k) ≤ B2k−1 (25)

directly. This finishes the proof of Proposition 4.

E. Final Derivation of the Error Estimate

Proof of Theorem 1: We assemble the results in Proposi-
tions 1 through 4 and (15) to write

E(f k
z) − E(fρ) ≤ D(k) + S(z, k) + P(z, k)

= D(k) + S1(z, k) + S2(z, k) + P(z, k)

≤ 3

2
(B2(k−1/2 + n−r)2) + 7(3M + B log 2

δ)

3m

+1

2
{E(f k

z) − E(fρ)} + C3 log
2

δ
m− d+2s

2d+2s

+B2k−1

holds with confidence at least 1 − δ. Therefore

E(f k
z) − E(fρ) ≤ CB2

(
log

2

δ
m− 2s+d

2d+2s + k−1 + n−2r
)

(26)

holds with confidence at least 1 − δ, where C is a constant
depending only on φ, d , X , and M . This completes the proof
of Theorem 1.

VI. CONCLUDING REMARKS

The main contributions of the present paper can be sum-
marized as follows. Firstly, one important tool used in [2]
is the truncation operators that act as a deportation vehicle.
Namely, they send elements in the original dictionary out
of the dictionary. This has added a layer of difficulty in the
coding process. We have modified this process by truncating in
every iteration step. We have succeeded in getting an estimator
within the dictionary without compromising its generalization
capability. Secondly, most practitioners of greedy algorithms
prefer to have clear cut stopping criteria for the iteration which
most of the existing error estimates for greedy algorithms
are lacking. We have made a stride in this direction. Our
error estimate contains only one term involving the number of
iteration. Furthermore, this term is inversely proportional to
the number of iteration. This type of error estimate for greedy
algorithms has been well-received in the programming com-
munity. Finally, our new RGA has improved the previously
established learning rates for greedy algorithms. Precisely, our
error estimate yields a learning rate (in probability terms) that
is faster than m−1/2.

To make sense of the RGA presented in this paper, the
following two remarks are required.

Remark 4: Generally speaking, the tug of war between bias
and variance dictates that a small hypothesis space gives rise to
a large approximation error (or hypothesis error) while a large
one gives rise to a large sample error. To reach and stay in the
happy middle, one needs to carefully adjust her balance act in
each step of the iteration. This is the basic strategy we followed
in the proof of Theorem 1. A prevailing conception is that
the error estimate should have had more terms containing k,
besides the term k−1. However, this is not what our proof
has witnessed. We succeeded in deriving an error estimate in
the present form largely because we realize that applying the
truncation operator in each step of iteration does not essentially
increase the capacity of the hypothesis space. To elaborate, we
show first (in the proof of Proposition 3) that the l2 empirical
covering number of the FR defined as in (23) depends only

LIN et al.: LEARNING CAPABILITY OF RELAXED GREEDY ALGORITHMS 1607

on R. We then show (in the proof of Lemma 5) that R does not
increase with the number of iteration. A desirable consequence
of this process is that generalization error does not increase
when k increases.

Remark 5: Practitioners have frequently asked us how to
choose the prior parameter β in the new RGA algorithm
(6). This is a very good question. Admittedly, it is often
unlikely to have enough prior knowledge as required by (3) in
any machine learning problems. Thus, judiciously choosing
a value for B is crucial. If B is chosen to be too large,
then Theorem 1 gives a relatively weaker generalization error
estimate. If B is chosen to be too small, then the algorithm can
only be applicable to a limited variety of real world machine
learning problems. In a certain sense, this is a reflection of the
general Bias-Variance problem we alluded to in Remark 4. We
have been advising our programmers to use a cross validation
scheme to select an appropriate prior parameter B.

We conclude this paper with the sober note: there is still
much room for improvement. When applying the algorithm
to big data real world problems, we have been seeing mixed
results. Our programmers are still fretting about the frequent
improvising and supervising work required in the trial-and-
error stage of selecting the parameter B. Admittedly, most of
the real world data contain a lot of raw material that come in a
variety of shapes and sizes. In many circumstances, we know
what have caused the less-than-ideal system performance. But
we do not know why. We will keep working on this interesting
project, and report our progress in a future publication.

ACKNOWLEDGMENT

Three anonymous editors have carefully read this paper and
have given us numerous constructive suggestions. As a result,
the overall quality of this paper has been noticeably enhanced,
for which we are very grateful.

REFERENCES

[1] M. Avellaneda, G. Davis, and S. Mallat, “Adaptive greedy approxima-
tions,” Constructive Approximation, vol. 13, no. 1, pp. 57–89, 1997.

[2] A. R. Barron, A. Cohen, W. Dahmen, and R. A. Devore, “Approximation
and learning by greedy algorithms,” Ann. Stat., vol. 36, no. 1, pp. 64–94,
Feb. 2008.

[3] P. Boudoulis, K. Slavakis, and S. Theodoridis, “Adaptive learning
in complex reproducing kernel Hilbert spaces employing Writinger’s.
subgradients,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 1,
pp. 425–438, Jan. 2012.

[4] A. Caponnetto and E. DeVito, “Optimal rates for the regularized least
squares algorithm,” Found. Comput. Math., vol. 7, no. 3, pp. 331–368,
Jul. 2007.

[5] F. Cucker and S. Smale, “On the mathematical foundations of learning,”
Bull. Amer. Math. Soc., vol. 39, no. 1, pp. 1–49, Oct. 2001.

[6] F. Cucker and S. Smale, “Best choices for regularization parameters in
learning theory: On the bias–variance problem,” Found. Comput. Math.,
vol. 2, no. 4, pp. 413–428, Oct. 2002.

[7] F. Cucker and D. X. Zhou, Learning Theory: An Approximation Theory
Viewpoint. Cambridge, U.K.: Cambridge Univ. Press, 2007.

[8] R. Devore and V. Temlyakov, “Some remarks on greedy algorithms,”
Adv. Comput. Math., vol. 5, no. 1, pp. 173–187, 1996.

[9] T. Evgeniou, M. Pontil, and T. Poggio, “Regularization networks and
support vector machines,” Adv. Comput. Math., vol. 13, no. 1, pp. 1–50,
Apr. 2000.

[10] L. Györfy, M. Kohler, A. Krzyzak, and H. Walk, A Distribution-Free
Theory of Nonparametric Regression. Berlin, Germany: Springer-Verlag,
2002.

[11] M. Krejnik and A. Tyutin, “Reproducing kernel Hilbert spaces with
odd kernels in price prediction,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 23, no. 10, pp. 1564–1573, Oct. 2012.

[12] S. Kunis and H. Rauhut, “Random sampling of sparse trigonometric
polynomials, II. Orthogonal matching pursuit versus basis pursit,” Found.
Comput. Math., vol. 8, no. 6, pp. 737–763, Nov. 2008.

[13] B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized representer
theorem,” in Proc. 14th Ann. Conf. Comput. Learn. Theory, 2001,
pp. 416–426.

[14] L. Shi, Y. L. Feng, and D. X. Zhou, “Concentration estimates for
learning with �1-regularizer and data dependent hypothesis spaces,”
Appl. Comput. Harmon. Anal., vol. 31, no. 2, pp. 286–302, Sep. 2011.

[15] K. Slavakis, P. Bouboulis, and S. Theodoridis, “Adaptive multiregres-
sion in reproducing kernel Hilbert spaces: The multiaccess MIMO
channel case,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 2,
pp. 260–276, Feb. 2012.

[16] V. Temlyakov,“ Nonlinear methods of approximation,” Found. Comput.
Math., vol. 3, no. 1, pp. 33–107, Jan. 2003.

[17] V. Temlyakov and P. Zheltov, “On performance of greedy algorithms,”
J. Approx. Theory, vol. 163, no. 9, pp. 1134–1145, Sep. 2011.

[18] J. A. Tropp, “Greed is good: Algorithmic results for sparse approx-
imation,” IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231–2242,
Oct. 2004.

[19] H. Wendland, “Piecewise polynomial, positive definite and compactly
supported radial functions of minimal degree,” Adv. Comput. Math.,
vol. 4, no. 4, pp. 389–396, Dec. 1995.

[20] Q. Wu, Y. M. Ying, and D. X. Zhou, “Learning rates of least
square regularized regression,” Found. Comput. Math., vol. 6, no. 2,
pp. 171–192, Apr. 2006.

[21] Q. Wu, Y. Ying, and D. X. Zhou, “Multi-kernel regularized classifiers,”
J. Complex., vol. 23, no. 1, pp. 108–134, 2007.

[22] Y. L. Xu, D. R. Chen, H. X. Li, and L. Liu, “Least square regularized
regression in sum space,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24,
no. 4, pp. 635–646, Apr. 2013.

[23] D. X. Zhou and K. Jetter, “Approximation with polynomial kernels and
SVM classifiers,” Adv. Comp. Math., vol. 25, nos. 1–3, pp. 323–344,
Oct. 2006.

Shaobo Lin received the B.S. degree in mathematics
and the M.S. degree in basic mathematics from
Hangzhou Normal University, Hangzhou, China. He
is currently pursuing the Ph.D. degree with Xi’an
Jiaotong University, Xi’an, China.

His current research interests include machine
learning and scattered data fitting.

Yuanhua Rong received the B.S. degree in infor-
mation and computing science from the University
of Electronic Science and Technology of China,
Sichuan, China, in 2010. He is currently pursuing
the Masters degree with Xi’an Jiaotong University,
Xi’an, China.

His current research interests include learning the-
ory, data mining, and compressed sensing.

1608 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 24, NO. 10, OCTOBER 2013

Xingping Sun is a Professor with the Department of
Mathematics, Missouri State University, Springfield,
MO, USA. He has authored or co-authored over 40
papers in the areas of computational and applied har-
monic analysis, approximation theory and numerical
analysis. He is keen on applying classical analysis
to these new areas of active research. His current
research interests include statistical machine learning
and data mining.

Zongben Xu was born in 1955. He received the
Ph.D. degree in mathematics from Xi’an Jiaotong
University, Xi’an, China, in 1987.

He is currently a Vice President with Xi’an Jiao-
tong University, the Chief Scientist of the National
Basic Research Program of China (973 Project),
and the Director of the Institute for Information
and System Sciences of the University. He delivered
a 45-minute talk at the International Congress of
Mathematicians 2010. He was elected as a mem-
ber of the Chinese Academy of Science in 2011.

His current research interests include intelligent information processing and
applied mathematics.

Dr. Xu received the National Natural Science Award of China in 2007 and
the CSIAM Su Buchin Applied Mathematics Prize in 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

