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a b s t r a c t

There have been numerous recurrent neural network models diversely developed for modeling or

simulating the associative memory behavior of human beings in the past decades, and the existing

results for each model individual are in certain sense redundant with similarity. By utilizing the innate

character of general activation operators, i.e., the uniformly pseudo-projection-anti-monotone prop-

almost all of the known continuous-time recurrent neural network individuals. Under the critical

condition which is the intrinsic bounded line of stability and instability, we develop some convergence

and stability theory for the unified recurrent neural network model when the time is continuous. The

study shows that the approach adopted in the present paper is powerful, particularly in the sense of

unifying, simplifying and extending the currently existing various models and dynamics results of

continuous-time RNNs.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Recurrent neural networks (RNNs) are generally formalized as
dynamic systems which can be implemented by physical means.
They are assumed to capture the associative memory perfor-
mance of human beings and then widely used to model dynamic
process associated with control process, perform pattern recogni-
tion, solve optimization problems, and so on.

A RNN is associated with two fundamental operators: one is
the synaptic connections among the neurons, and the other is the
nonlinear activation functions deduced from the input-output
properties of the involved neurons. The synaptic connections
among the neurons are hopefully used to encode the memories
we expect to have; and the activation functions of a RNN are
assumed to capture the complex, nonlinear response of neurons
of the brain, which are preassigned before use in general,
depending on the simulation purpose or application. Once the
synaptic connections are given, the characteristics of the activa-
tion functions determine the performance of the RNN. As a rule,
the activation functions are monotonically nondecreasing and
saturated, as suggested from neurobiology [12,24]. However, the
monotonicity and boundedness of the activation functions do not
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sufficiently result in the expected properties of a RNN in general,
so usually, various other assumptions and specifications need to
be assumed additionally in the study and application of RNNs. To
discover some more essential characteristics else than the non-
decreasing and bounded properties of the commonly used activa-
tion functions, Xu and Qiao put forward two novel concepts:
uniformly anti-monotone as well as the pseudo-projection proper-
ties by carefully examining the properties of various activation
functions used in general [23]. When the number of neurons is fixed
as N and each activation function is denoted by gi (i¼ 1,2, . . . ,N), the
corresponding activation operator G¼ ðg1,g2, . . . ,gNÞ

T is called as
the uniformly pseudo-projection-anti-monotone (UPPAM) operator
[23]. As a framework of formalizing the activation operators, the
UPPAM operator embodies most of those meaningful activation
operators, e.g., signum operator, symmetric multi-valued step
operator, multi-threshold operator, linear saturating operator,
nearest-point projection, winner-take-all operator, etc. Results in a
natural, a unified RNN model which is called as the UPPAM neural
networks is presented in that paper. Consequently, it is proved that
most of the typical concrete RNN models are UPPAM RNNs. For
instance, the Hopfield-type neural networks [24,25], the bidirec-
tional associative memory models [26], the Little-Hopfield neural
networks [12], the recurrent back-propagation model [27], the
multi-valued associative memories [28], the multi-threshold neural
networks [29], the brain-state-in-a-box model [7], the bound-
constraints optimization solvers, the convex optimization solvers
[10], the winner-take-all automata [30], the mean-field model [31],
the recurrent correlation associative memories [32], and so on.
Further, a unified stability theory for the discrete-time UPPAM RNNs
were developed in [23]. But, it should be noticed that in that paper,
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the stability for the UPPAM RNNs was given only when the time is
discrete (i.e., the RNNs were described by difference equation forms)
and, the synaptic connections are symmetric. As we know, due to
the easy VLSI implementation of the continuous-time RNNs, most of
the existing study and applications for recurrent neural networks
were on the continuous-time case, and the synaptic connections of
RNNs in practice are asymmetric and very complex.

In this presented paper, we will consider the continuous-time
UPPAM RNNs model, i.e., the activation operators of the continuous-
time RNNs own the uniformly pseudo-projection-anti-monotone
property. Such RNNs model can be generally described as

t dxðtÞ

dt
¼�xðtÞþAGðWxðtÞþqÞþb, x0ARN

ð1Þ

where xðtÞ ¼ ðx1ðtÞ,x2ðtÞ, . . . ,xNðtÞÞ
T is the neural network state, G¼

ðg1,g2, . . . ,gNÞ
T is the nonlinear activation operator deduced from all

the activation functions gi. Here, we consider G has the UPPAM
property (see the next section for the precise definition). A and W

both are the connective weight matrices, b,q are two fixed external
bias vectors and t is the state feedback coefficient. Since the UPPAM
operator embodies most of those meaningful activation operators as
mentioned above, in fact, model (1) summarizes almost all of the
existing continuous-time RNNs specials, e.g., Hopfield-type neural
networks, brain-state-in-a-box neural networks, bound-constraints
optimization solvers, recurrent back-propagation neural networks,
mean-field neural networks, convex optimization solvers, recurrent
correlation associative memories neural networks, cellular neural
networks, etc. Thus, analysis of the dynamics behaviors for most of
the known concrete continuous-time RNNs individuals can be
replaced by studying the dynamics behaviors for model (1).

For the continuous-time RNNs, we should notice that there
exist two basic problems needed to be solved at present. On the
one hand, we know that the analysis of the dynamical behaviors,
such as the global convergence, asymptotic stability and expo-
nential stability, is a crucial foundation for any practical design
and application of them. While, for all those but not limited to
those commonly used continuous-time RNN individuals, the fact
is that there exist huge numbers of researches on the dynamics
behaviors for each model (see, e.g. [8,14,15,17–21,36,45] and the
references therein). However, those known studies have been
conducted in a very separative way, and there exist lots of
similarity and redundant among those results. All these prompt
us to look for a more universal methodology and formalize a
unified approach to jointly cover all those known diverse dynamics
results.

On the other hand, by summarizing the existing convergence
as well as stability for most of the continuous-time recurrent
neural network individuals, Peng, Xu, etc., pointed out that the
continuous-time RNN models are exponential stable under the
conditions that one discriminant matrix defined by the networks
is positive definite [1]. For the UPPAM RNNs model, if we define

SðG,PÞ ¼GP�
GAWþðGAWÞT

2

where both G and P are diagonal matrices, and A and W are the
connective weight matrices, then similar to the proof of Theorem
1 in [1], it can be generalized that most of the exponential
stability analysis for UPPAM RNNs individuals are under the
conditions that there exists a positive definite diagonal matrix
G, such that SðG,ð2L�BÞÞ is positive definite (where L and B are
two diagonal matrices given by the UPPAM RNNs model). On the
other hand, from [9,15], we know that a RNN will be globally
exponentially unstable if there is a positive definite diagonal matrix G
such that SðG,V�1

Þ is negative definite, where V ¼ diagfr1,r2, . . . ,rNg

with each ri40 being the inversely Lipschitz constant of activation
function fi. The questions then arise: since SðG,ð2L�BÞÞ40 (i.e.,
SðG,ð2L�BÞÞ is positive definite) is sufficient for the globally expo-
nential stability of UPPAM RNNs, and SðG,V�1

ÞZ0 (i.e., SðG,V�1
Þ is

nonnegative definite) is necessary for UPPAM RNNs to have globally
stable dynamics, then what kinds of asymptotic behavior of UPPAM
RNNs will hold when SðG,ð2L�BÞÞr0 (i.e., SðG,ð2L�BÞÞ is negative
semi-definite) and SðG,V�1

ÞZ0 (i.e., SðG,V�1
Þ is nonnegative defi-

nite)? If there exists a diagonal matrix Q, such that

SðG,ð2L�BÞÞrSðG,Q ÞrSðG,V�1
Þ

(here we use XrY to denote the condition that matrix Y�X is
nonnegative definite), then in particular, we want to know what will
happen when SðG,Q Þ ¼ 0 (i.e., for any xARN , xT SðG,Q Þx¼ 0). The
dynamics analysis of RNNs under such conditions is referred to as the
critical dynamics analysis. It should be remarked that it is by no means
easy to conduct a meaningful critical dynamics study for RNNs since
such exploration has essential difficult in analysis, and there exist
hardly any results about this topic.

In comparison to the general critical condition that SðG,Q Þ ¼ 0,
SðG,ð2L�BÞÞ ¼ 0 is the primary case of it, and since a UPPAM RNN is
globally exponential stability when SðG,ð2L�BÞÞ40, so in this paper,
we focus our attentions on the dynamics investigations of UPPAM
RNNs under the particular critical condition that SðG,ð2L�BÞÞZ0.
Even so, it is still much more difficult than the dynamics analysis
under the noncritical condition that SðG,ð2L�BÞÞ40.

Since the critical condition is the essential bounded line which
can distinguish between stability and instability of continuous-
time RNNs [5], the critical dynamics study has drawn special
attention in recent years. For continuous-time RNNs with hyper-
bolic tangent activation functions, in [6,8,21], the globally asymp-
totical stability and globally exponential stability of the network
under some certain specific critical conditions have been con-
ducted. Yang and Cao [22] have gotten the globally exponential
stability of a static neural network with projection operator under
the condition that I�W is nonnegative. In [1], the authors have
proved that RNN with sigmoidal activation operator has a globally
attractive equilibrium state, and when the synaptic connection
matrix is quasi-symmetric, RNN with nearest point projection
activation operator is global convergence on a region defined by
the network. Some improvements on [1] have been made in [2],
but it is with one requirement on the trajectories of the network,
which is hard to be verified in the application. In [3,4], the critical
global convergence and asymptotical stability for continuous-time
RNNs with projection activation operators have been achieved.
Some critical globally exponential stability of the continuous-time
RNNs when activation operator owns the decreasing anti-
monotone property has been studied in [5]. For all that, there are
still many important dynamics questions of RNNs unsettled under
the critical conditions. For example, for a continuous-time RNN
with general activation operator, what asymptotic behaviors of it
will be under the critical conditions? If the study on the asymptotic
behaviors of such RNN could be achieved, then would the
dynamics analysis for it unify and generalize the corresponding
theory validated for the individual models, or further, make some
new discoveries? Answering such questions are of great impor-
tance in both theory and applications.

Based on the essential characteristics of the activation opera-
tors, i.e., uniformly pseudo-projection anti-monotone properties,
we devote to establish a unified continuous-time RNNs model and
its critical dynamics theory in this paper. This work can answer
these two problems which are put forward above, i.e., it can
integrate and generalize the known stability results for almost all
of the known individual models under the noncritical conditions,
and, most important, it can give the general determinate method
of critical stability for continuous-time RNNs, and which is only
determined by the UPPAM constants and the connection matrix of
the networks. The investigation lunches a visible step towards
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establishing a unified method for the continuous-time RNNs, and
the obtained results cover and generalize almost all of the known
corresponding results for continuous-time RNN individuals,
which shows the powerfulness of the suggested unified model
and the approach.
2. Preliminaries

In this paper, associated with the activation operator G, the
domain, range and fixed-point set of G are, respectively, defined
by DðGÞ, RðGÞ and FðGÞ. For studying RNN purpose, we only
consider DðGÞ ¼ RðGÞDRN case below. We further assume that
RN is embedded with Euclidean norm J � J and inner product
/ � , �S.

For any x¼ ðx1,x2, . . . ,xNÞ
T ADðGÞ, write

GðxÞ ¼ ðg1ðxÞ,g2ðxÞ, . . . ,gNðxÞÞ
T , 8xADðGÞ

G is said to be diagonal if giðxÞ ¼ giðxiÞ holds for each i¼ 1,2, . . . ,N.
We further introduce some useful definitions of G as follows.

Definition 2.1 (Xu and Qiao [23]). (i) A operator G is said to be a
pseudo-projection if there exists a positive definite diagonal
matrix B¼ diagfb1,b2, . . . ,bNg, such that BRðGÞDDðGÞ and G¼GBG

(i.e., GðxÞ ¼ GðBGðxÞÞ, 8xADðGÞÞ. In this case, we say that G is a B-
projection.

(ii) A operator G is said to be l-uniformly anti-monotone (l-UAMÞ

if there is a positive constant l such that for any xADðGÞ and

yABRðGÞ,

/GðxÞ�GðyÞ,x�ySZlJGðxÞ�GðyÞJ2
2 ð2Þ

(iii) A operator G is uniformly pseudo-projection-anti-monotone

(UPPAM) if it is pseudo-projection and uniformly anti-monotone;

specially, we say it is (B,l)-UPPAM whenever it is B-projection and

l-UAM.

In [23], it is shown that most of the activation operators deduced
from the concrete activation operators diversely appeared in RNNs
literature all are the special cases of UPPAM operators, and then, the
UPPAM operator provides a very appropriate, unified framework
within which most of the known RNN models can be embedded
and uniformly studied.

Definition 2.2. Let L¼ diagfl1,l2, . . . ,lNg and B¼ diagfb1,b2, . . . ,
bNg. G is said to be diagonally (B,L)-UPPAM if each component gi

of G is a bi-projection and li-UAM.

In what follows, we will give the definition of the nonlinear
norm, which is similar to that of the matrix norm. Suppose that
T : CDRN-YDRN is a nonlinear operator, A is a nonsingular
N � N matrix, and ~xAC is a given vector.

Define

LJ�JðT,A, ~x,CÞ ¼ sup
xa ~x ,xAC

JATx�AT ~xJ

JAx�A ~xJ
ð3Þ

Clearly, LJ�JðT ,A, ~x,CÞ is a nonnegative function determined by five
parameters: T, A, ~x, J � J and C. Most important of all, LJ�JðT,A, ~x,CÞ
can be regarded as a nonlinear generalization of the matrix norm
J � J and it is called as the nonlinear norm. That is because, by
defining F ¼ ATA�1, y¼Ax, ~y ¼ A ~x and ~C ¼ AC, one can get

LJ�JðT,A, ~x,CÞ ¼ sup
xa ~x ,xAC

JATx�AT ~xJ

JAx�A ~xJ

¼ sup
xa ~x ,xAC

JATA�1
ðAxÞ�ATA�1

ðA ~xÞJ

JAx�A ~xJ
¼ sup
ya ~y ,yA ~C

JFy�F ~yJ

Jy� ~yJ

Obviously, when C contains ~x as an interior point (i.e., C contains
a neighborhood of ~x), then for any given matrix B, LJ�JðB,I, ~x,CÞ ¼ JBJ.
Additionally, for any b40, we have LJ�JðbT ,A, ~x,CÞ ¼ bLJ�JðT,A, ~x,CÞ.

Throughout the paper, the identity matrix is denoted by I. For a
positive semi-definite diagonal matrix D¼ diagfd1,d2, . . . ,dNg, let
D1=2
¼ diagfd1=2

1 ,d1=2
2 , . . . ,d1=2

N g.
3. Critical global convergence and stability results

In this section, we establish several global convergence and
asymptotic stability results for generic continuous-time UPPAM
RNNs, which are under the critical conditions that the discriminant
matrix defined by the network is positive semi-definite. To be
simple, we denote the range of the nonlinear activation operator,
i.e., RðGÞ, by Y.

Lemma 3.1. For any x0AAðYÞþb, xðt,x0Þ, the solution of (1), satisfies

xðt,x0ÞAAðYÞþbðtZ0Þ.

Proof. By the differential equation theory, we have

xðt,x0Þ ¼ e�t=tx0þ
1

t
e�t=t

Z t

0
es=tðAGðWxðsÞþqÞþbÞ ds

¼ e�t=tx0þð1�e�t=tÞ

R t=t
0 e�rðAGðWxðt�trÞþqÞþbÞ dr

1�e�t=t ð4Þ

where r¼ ðt�sÞ=t. Since 1�e�t=t ¼
R t=t

0 e�r dr¼ limn-þ1
Pn

i ¼ 1

ðt=tnÞe�it=tn, and AðYÞþb is a bounded, closed and convex subset,
then PðtÞ :¼

R t=t
0 e�rðAGðWxðt�trÞþqÞþbÞ dr, the limit of the sumPn

i ¼ 1ðt=tnÞe�it=tnðAGðWxðt�it=nÞþqÞþbÞ, should satisfy PðtÞ=ð1�
e�t=tÞAAðYÞþbð8tZ0Þ. Further, by (4), we know xðt,x0ÞAAðYÞþb

when x0AAðYÞþb. &

Suppose that Y is bounded, closed and convex. For any vAY,
define TðvÞ ¼ AGðWvþqÞþb, then by Brouwer’s fixed point theorem,
T has at least one fixed point vn, namely, F�1

e ð0Þ, the equilibrium
state set of (1) is not empty.

Theorem 3.1. Assume that G is diagonally ðB,LÞ-UPPAM with Y
being a bounded, closed and convex subset of RN , and A is a nonzero

diagonal matrix. If there exists a positive definite diagonal matrix G
such that
(i)
 MðGÞ ¼ ð2L�BÞG�ðGAWþðGAWÞT Þ=2 is positive semi-definite,
and
(ii)
 for one vnAF�1
e ð0Þ, LJ�J2

ðT ,D,vn,YÞr1 (here D¼ ðð2L�BÞGÞ1=2),
is the unique equilibrium point of (1), then xn is globally asympto-

tically stable on Y.

Proof. Denote A¼ diagfa1,a2, . . . ,aNg, G¼ diagfx1,x2, . . . ,xNg and
D¼ diagfd1,d2, . . . ,dNg. For any trajectory x(t) of (1) starting from
x0AAðYÞþb, it follows from Lemma 3.1 that xðtÞAAðYÞþb. Let
y0 ¼Wx0þq, yðtÞ ¼WxðtÞþq, zðtÞ ¼ AGðyðtÞÞþb and uðtÞ ¼ zðtÞ�xðtÞ.
In the following proof, we will use some diagonal Lyapunov functions,
and the concept of diagonal Lyapunov function was first introduced
in [41–43].

Define

PðxðtÞÞ ¼ 1
2fðyðtÞ�xðtÞÞT AGðyðtÞ�xðtÞÞ�yT ðtÞAGyðtÞ�xT ðtÞðI�ð2L�BÞÞAGxðtÞg

and

Q ðxðtÞÞ ¼ xT ðtÞð2L�BÞGxðtÞ�2xT ðtÞð2L�BÞGvn
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Let

E1ðxðtÞÞ ¼ txT ðtÞ
ðð2L�BÞAþBÞG

2
�ðGAWþðGAWÞT Þ

� �
xðtÞ�2txT ðtÞAGq

�txT ðtÞGBbþt
XN

i ¼ 1

xiai

Z ðWxðtÞþqÞi

ðWx0þqÞi

ðaigiðsÞþbiÞ ds�tPðxðtÞÞ

þtQ ðxðtÞÞ

We will complete the proof in the following four steps.

Step1. We show that limt-þ1dE1ðxðtÞÞ=dt¼ 0:

Note first that

dPðxðtÞÞ

dt
¼/AGðyðtÞ�xðtÞÞ,ðW�IÞuðtÞS�/AGyðtÞ,WuðtÞS

�/ðI�ð2L�BÞÞAGxðtÞ,uðtÞS
¼/AGxðtÞ,ðð2L�BÞ�WÞuðtÞS�/AGyðtÞ,uðtÞS

and

dQ ðxðtÞÞ

dt
¼ 2/ð2L�BÞGxðtÞ,uðtÞS�2/ð2L�BÞGvn,uðtÞS

Since xðtÞAAðYÞþb, there exists pðtÞAY, such that xðtÞ ¼ ApðtÞþb,

and then, ApðtÞ ¼ xðtÞ�b. Meanwhile, on noting that ðð2L�BÞAþBÞG=
2�ðGAWþðGAWÞT Þ is symmetric, then a direct calculation shows

dE1ðxðtÞÞ

dt
¼/ðð2L�BÞAG�2ðGAWþðGAWÞT ÞxðtÞ,uðtÞS

þ/GBxðtÞ,uðtÞS�2/AGq,uðtÞS�/GBb,uðtÞS
þ/AGzðtÞ,WuðtÞS
�/AGxðtÞ,ðð2L�BÞ�WÞuðtÞSþ/AGyðtÞ,uðtÞS

þ2/ð2L�BÞGxðtÞ,uðtÞS�2/ð2L�BÞGvn,uðtÞS

¼/Að2L�BÞGxðtÞ,uðtÞS�2/AGyðtÞ,uðtÞSþ/GBApðtÞ,uðtÞS

�2/AGxðtÞ,WuðtÞSþ/ð2L�BÞAGzðtÞ,uðtÞS
�/AGzðtÞ,ðð2L�BÞ�WÞuðtÞS
�/AGxðtÞ,ðð2L�BÞ�WÞuðtÞSþ/AGyðtÞ,uðtÞS

þ2/ð2L�BÞGxðtÞ,uðtÞS�2/ð2L�BÞGvn,uðtÞS
¼�/AGðyðtÞ�BpðtÞÞ,uðtÞSþ/AGuðtÞ,WuðtÞS

þ2/ð2L�BÞGxðtÞ,uðtÞS�2/ð2L�BÞGvn,uðtÞS

¼�/AGðyðtÞ�BpðtÞÞ,uðtÞSþ
1

2
/uðtÞ,ðGAWþðGAWÞT ÞuðtÞS

þ2/ð2L�BÞGxðtÞ,uðtÞS�2/ð2L�BÞGvn,uðtÞS

¼�/AGðyðtÞ�BpðtÞÞ,uðtÞS�uT ðtÞðð2L�BÞG

�
GAWþðGAWÞT

2
ÞuðtÞ

þuT ðtÞð2L�BÞGuðtÞþ2/ð2L�BÞGxðtÞ,uðtÞS

�2/ð2L�BÞGvn,uðtÞS ð5Þ

From the assumption that vn is a fixed point of AGðWvþqÞþb, we

have vn ¼ AGðWvn
þqÞþb, and then

uT ðtÞð2L�BÞGuðtÞþ2/ð2L�BÞGxðtÞ,uðtÞS�2/ð2L�BÞGvn,uðtÞS
¼/zðtÞ�xðtÞ,ð2L�BÞGuðtÞSþ2/ð2L�BÞGxðtÞ,uðtÞS

�2/ð2L�BÞGvn,uðtÞS

¼/zðtÞþxðtÞ,ð2L�BÞGuðtÞS�2/vn,ð2L�BÞGuðtÞS

¼/ðzðtÞ�vnÞþðxðtÞ�vnÞ,ð2L�BÞGuðtÞS

¼/ðzðtÞ�vnÞþðxðtÞ�vnÞ,ð2L�BÞGððzðtÞ�vnÞ�ðxðtÞ�vnÞÞS

¼/zðtÞ�vn,ð2L�BÞGðzðtÞ�vnÞS�/xðtÞ�vn,ð2L�BÞGðxðtÞ�vnÞS

¼/AðGðWxðtÞþqÞ�GðWvn
þqÞÞ,Gð2L�BÞAðGðWxðtÞþqÞ�GðWvn

þqÞÞS

�/xðtÞ�vn,ð2L�BÞGðxðtÞ�vnÞS

¼/DAðGðWxðtÞþqÞ�GðWvn
þqÞÞ,DAðGðWxðtÞþqÞ�GðWvn

þqÞÞS
�/DðxðtÞ�vnÞ,DðxðtÞ�vnÞS

¼ JDAðGðWxðtÞþqÞ�GðWvn
þqÞÞJ2

2�JDðxðtÞ�vnÞJ2
2 ð6Þ

Noting that LJ�J2
ðT,D,vn,RðGÞÞr1, it follows

LJ�J2
ðT,D,vn,RðGÞÞ ¼ sup

xavn ,xARðGÞ

JDTx�DTvnJ2

JDx�DvnJ2

¼ sup
xavn ,xARðGÞ

JDðAGðWxþqÞþbÞ�DðAGðWvn
þqÞþbÞJ2

JDx�DvnJ2

r1:

This, combined with (6), implies that

/uT ðtÞð2L�BÞGuðtÞþ2/ð2L�BÞGxðtÞ,uðtÞS�2/ð2L�BÞGvn,uðtÞSr0:

Since G is a B-projection and pðtÞAY, it is clear that GðBpðtÞÞ ¼ pðtÞ.

Then by the conditions that ð2L�BÞG�ðGAWþðGAWÞT Þ=2 is positive

semi-definite and the diagonal nonlinear property of G, one can get

from (5) that

dE1ðxðtÞÞ

dt
r�/AGðyðtÞ�BpðtÞÞ,uðtÞS

¼�
XN

i ¼ 1

aixiððWxðtÞþqÞi�bipiðtÞÞ � ððaigiððWxðtÞþqÞiÞþbiÞ�ðaipiðtÞþbiÞÞ

¼ �
XN

i ¼ 1

a2
i xiððWxðtÞþqÞi�bipiðtÞÞ � ðgiððWxðtÞþqÞiÞ�giðbipiðtÞÞÞ ð7Þ

For each component gi of G is a bi-projection and li-UAM, we then

have

ððWxðtÞþqÞi�bipiðtÞÞ � ðgiððWxðtÞþqÞiÞ�giðbipiðtÞÞÞ

ZliðgiððWxðtÞþqÞiÞ�giðbipiðtÞÞÞ
2

ð8Þ

Let lminðLGÞ be the smallest eigenvalue of LG. Then by (7) and (8),

we get

dE1ðxðtÞÞ

dt
r�

XN

i ¼ 1

xia
2
i liðgiððWxðtÞþqÞiÞ�giðbipiðtÞÞÞ

2

¼�
XN

i ¼ 1

xiliðaiðgiððWxðtÞþqÞiÞ�piðtÞÞÞ
2

¼�ðAðGðWxþqÞ�pðtÞÞÞTLGðAðGðWxþqÞ�pðtÞÞÞ

r�lminðLGÞJAðGðWxþqÞ�pðtÞÞJ2
2

¼�lminðLGÞJzðtÞ�xðtÞJ2
2 ð9Þ

Since dE1ðxðtÞÞ=dt is continuous, xðtÞAAðYÞþb and Y is a bounded

and closed set, it follows that dE1ðxðtÞÞ=dt is a uniformly continuous

function of t in ½0,þ1Þ. Furthermore, by (9), we have dE1ðxðtÞÞ=

dtr0 since L and G all are positive definite, which, combined with

the fact that E1ðxðtÞÞ is bounded, implies that limt-þ1E1ðxðtÞÞ

exists. Thus, applying the well-known Barbalat Lemma, we obtain

that limt-þ1dE1ðxðtÞÞ=dt¼ 0.

Step2. We show that any limit point of x(t) is an equilibrium

state of (1).

Let xn be any limit point of x(t), i.e., limn-þ1xðtnÞ ¼ xn for some

positive sequence ftng with tn-þ1 as n-þ1 (notice that xn

exists since x(t) is bounded).

From (9) and the fact that lminðLGÞ40, we have

0¼ lim
t-þ1

dE1ðxðtÞÞ

dt

r lim inf
t-þ1

ð�lminðLGÞÞJzðtÞ�xðtÞJ2
2

r0

consequently,

lim
t-þ1

JAGðWxðtÞþqÞþb�xðtÞJ2 ¼ 0 ð10Þ
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Thus, it can be deduced that

JAGðWxn
þqÞþb�xnJ2 ¼ 0

That is, xn is an equilibrium state of (1).

Step3. In what follows, we still use the denotation that

yðtÞ ¼WxðtÞþq, and specially, denote yðtnÞ ¼WxðtnÞþq. We will

show limt-þ1ðAGðyðtÞÞþbÞ�xn ¼ 0.

Clearly, since xn is the limit point of xðtnÞ, xðtnÞAAðYÞþb and Y
is closed, then xnAAðYÞþb, i.e., there exists pnAY, such that

xn ¼ Apn
þb. Further, since G is a B-projection and xn is an

equilibrium state of (1) (that is to say, xn ¼ AGðWxn
þqÞþb holds),

we can deduce that GðBpn
Þ ¼ pn and Apn

¼ AGðWxn
þqÞ.

Let

E2ðxðtÞÞ ¼ t
XN

i ¼ 1

xia
2
i

Z yiðtÞ

ðWxn
þqÞi

ðgiðrÞ�giððWxn
þqÞiÞÞ dr

It can be deduced that

dE2ðxðtÞÞ

dt
¼
XN

i ¼ 1

xia
2
i ðgiðyiðtÞÞ�giððWxn

þqÞiÞÞ � t dyiðtÞ

dt

� �

¼ ðAGðyðtÞÞ�Apn
Þ
TGAWð�xðtÞþAGðyðtÞÞþbÞ

¼ ðAGðyðtÞÞ�Apn
Þ
TGA½ð�ððWxðtÞþqÞ�Bpn

ÞþððWxn
þqÞ�BGðyðtÞÞÞ

þWðAGðyðtÞÞþb�xnÞþBðGðyðtÞÞ�pnÞ�

¼�ðAGðyðtÞÞ�Apn
Þ
TGAððWxðtÞþqÞ�Bpn

Þ

�ðApn
�AGðyðtÞÞÞTGAððWxn

þqÞ�BGðyðtÞÞÞ

þðAGðyðtÞÞ�Apn
Þ
TGAWðAGðyðtÞÞþb�xnÞ

þðAGðyðtÞÞ�Apn
Þ
TGABðGðyðtÞÞ�pnÞ ð11Þ

Observing that G is diagonally (B,L)-UPPAM and GðBpn
Þ ¼ pn, we

obtain

ðAGðyðtÞÞ�Apn
Þ
TGAððWxðtÞþqÞ�Bpn

Þ

¼ ðAGðyðtÞÞ�AGðBpn
ÞÞ

TGAðyðtÞ�Bpn
Þ

¼
XN

i ¼ 1

xia
2
i ðgiðyiðtÞÞ�giðbip

n

i ÞÞðyiðtÞ�bip
n

i Þ

Z

XN

i ¼ 1

xia
2
i liðgiðyiðtÞÞ�giðbip

n

i ÞÞ
2

¼
XN

i ¼ 1

xia
2
i liðgiðyiðtÞÞ�pn

i Þ
2

¼ ðAGðyðtÞÞ�Apn
Þ
TGLðAGðyðtÞÞ�Apn

Þ ð12Þ

and similarly, by the fact that Apn
¼ AGðWxn

þqÞ and GðyðtÞÞ ¼

GðBGðyðtÞÞÞ, we have

ðApn
�AGðyðtÞÞÞTGAððWxn

þqÞ�BGðyðtÞÞÞ

¼/GðWxn
þqÞ�GðBGðyðtÞÞÞ,AGAððWxn

þqÞ�BGðyðtÞÞÞS

Z/GðWxn
þqÞ�GðBGðyðtÞÞÞ,LA2GðGðWxn

þqÞ�GðBGðyðtÞÞÞÞS

¼/AGðWxn
þqÞ�AGðBGðyðtÞÞÞ,LGðAGðWxn

þqÞ�AGðBGðyðtÞÞÞÞS

¼ ðApn
�AGðyðtÞÞÞTGLðApn

�AGðyðtÞÞÞ

¼ ðAGðyðtÞÞ�Apn
Þ
TGLðAGðyðtÞÞ�Apn

Þ ð13Þ

ðAGðyðtÞÞ�Apn
Þ
TGAWðAGðyðtÞÞþb�xnÞ

¼ ðAGðyðtÞÞ�Apn
Þ
TGAWðAGðyðtÞÞþb�ðAGðWxn

þqÞþbÞÞ

¼ ðAGðyðtÞÞ�Apn
Þ
TGAWðAGðyðtÞÞ�AGðWxn

þqÞÞ

¼ ðAGðyðtÞÞ�Apn
Þ
T GAWþðGAWÞT

2
ðAGðyðtÞÞ�Apn

Þ ð14Þ

then by (11)–(14), it can be deduced that

dE2ðxðtÞÞ

dt
r�2ðAGðyðtÞÞ�Apn

Þ
TGLðAGðyðtÞÞ�Apn

Þ

þðAGðyðtÞÞ�Apn
Þ
T GAWþðGAWÞT

2
ðAGðyðtÞÞ�Apn

Þ

þðAGðyðtÞÞ�Apn
Þ
TGBðAGðyðtÞÞ�Apn

Þ

¼�ðAGðyðtÞÞ�Apn
Þ
T
ðð2L�BÞG�

GAWþðGAWÞT

2
ÞðAGðyðtÞÞ�Apn

Þ

Thus, the positive semi-definiteness of ð2L�BÞG�ðGAWþ

ðGAWÞT Þ=2 implies dE2ðxðtÞÞ=dtr0 for all tZ0, and furthermore,

limt-þ1E2ðxðtÞÞ exists since E2ðxðtÞÞZ0 by Lemma 2 in [2]. This,

together with the fact that limn-þ1yðtnÞ ¼Wxn
þq, implies that

limt-þ1E2ðxðtÞÞ ¼ 0. As a result, we obtain by applying Lemma

2 in [2] to each component gi of G that

lim
t-þ1

ðGðyðtÞÞ�GðWxn
þqÞÞ ¼ 0

that is

lim
t-þ1

ðAGðyðtÞÞþb�ðAGðWxn
þqÞþbÞÞ

¼ lim
t-þ1

ðAGðyðtÞÞþb�ðAGðpnÞþbÞÞ

¼ lim
t-þ1

ðAGðyðtÞÞþb�ðApn
þbÞÞ

¼ lim
t-þ1

ðAGðyðtÞÞþb�xnÞ

¼ 0

and then,

lim
t-þ1

ðAGðyðtÞÞþbÞ ¼ xn ð15Þ

Step4. We finally prove that limt-þ1xðtÞ ¼ xn.

By differential equation theory, x(t) solves the following integral

equation:

xðtÞ�xn ¼ e�ð1=tÞðt�t0ÞIðx0�xnÞþ

Z t

t0

e�ð1=tÞðt�sÞI �
1

t
�ðAGðyðsÞÞþb�xnÞ ds

Obviously, it holds that

JxðtÞ�xnJre�ð1=tÞðt�t0ÞJx0�xnJþ

Z t

t0

e�ð1=tÞðt�sÞ �
1

t
�JAGðyðsÞÞþb�xnJ ds ð16Þ

By (15), for any e40, there is a Te40 such that, whenever

t4t0ZTe,

JAGðyðtÞÞþb�xnJre

Therefore, we conclude from (16) that, when t4t0ZTe,

JxðtÞ�xnJre�ð1=tÞðt�t0ÞJx0�xnJþ
e
t

Z t

t0

e�ð1=tÞðt�sÞds

oe�ð1=tÞðt�t0ÞJx0�xnJþe

Letting t-þ1 in the above inequality yields limt-þ1

JxðtÞ�xnJre, which then implies limt-þ1xðtÞ ¼ xn since e is

arbitrary, i.e., for any trajectory x(t) of (1) starting from AðYÞþb,

there corresponds an equilibrium state xn of (1) such that

limt-þ1xðtÞ ¼ xn. Furthermore, when F�1
e ð0Þ ¼ fx

ng, then xn is both

attractive and stable on Y since Y is bounded, i.e., xn is globally

asymptotically stable on Y. This completes the proof of the

theorem. &

Corollary 3.1. Assume that G is diagonally (B,L)-UPPAM and

RðGÞDRN is a bounded, closed and convex set, and A is a nonzero

diagonal matrix. If there exists a positive definite diagonal matrix G,
such that ð2L�BÞG�ðGAWþðGAWÞT Þ=2 is positive semi-definite and

JDL�1AWD�1J2r1 (here D¼ ðð2L�BÞGÞ1=2), then RNN system (1)
is globally convergent on RðGÞ. Moreover, when xn is the unique
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equilibrium point of (1), then xn is globally asymptotically stable on

RðGÞ.

Proof. For any vnAF�1
e ð0Þ, we have

JDTx�DTvnJ2
2 ¼ JDðAGðWxþqÞþbÞ�DðAGðWvn

þqÞþbÞJ2
2

¼
XN

i ¼ 1

ðdiaiðgiððWxþqÞiÞ�giððWvn
þqÞiÞÞÞ

2: ð17Þ

Since gi is li-uniformly anti-monotone, then

ðgiððWxþqÞiÞ�giððWvn
þqÞiÞÞððWxþqÞi�ðWvn

þqÞiÞ

ZliðgiððWxþqÞiÞ�giððWvn
þqÞiÞÞ

2

Z0

and further

9ðWxþqÞi�ðWvn
þqÞi9

2
Zl2

i 9giððWxþqÞiÞ�giððWvn
þqÞiÞ9

2

then from (17), we get

JDTx�DTvnJ2
2 ¼

XN

i ¼ 1

ðdiaiðgiððWxþqÞiÞ�giððWvn
þqÞiÞÞÞ

2

r
XN

i ¼ 1

ðdiail
�1
i ðWðx�vnÞÞiÞ

2

¼
XN

i ¼ 1

ðdiail
�1
i Þ

2
XN

j ¼ 1

Wijd
�1
j ðdjðxj�vn

j ÞÞ

0
@

1
A

2

¼
XN

i ¼ 1

XN

j ¼ 1

diail
�1
i Wijd

�1
j ðdjðxj�vn

j ÞÞ

0
@

1
A

2

¼ JDL�1AWD�1
ðDðx�vnÞÞJ2

2 ð18Þ

Clearly, when JDL�1AWD�1J2r1, then by (18), it can be deduced
that

LJ�J2
ðT ,D,vn,RðGÞÞ ¼ sup

xavn ,xARðGÞ

JDTx�DTvnJ2

JDx�DvnJ2

r1:

Corollary 3.1 is then proved from Theorem 3.1. &

Remark 3.1. The continuous-time recurrent neural networks
have been attracting great interest either as associative memories,
optimization solvers, or system simulators in science and engi-
neering [33–35]. For different purpose, there exist varies
continuous-time RNN individuals and huge numbers of dynamics
behaviors analysis for each individual. Since the uniformly pseudo-
projection-anti-monotone operator provides a very appropriate,
unified framework within which most of the known activation
operators can be embedded, the continuous-time UPPAM RNNs
model, i.e., model (1), offers a uniform approach to study
continuous-time RNNs. The global convergence as well as asympto-
tical stability results achieved in Theorem 3.1 and Corollary 3.1
exploit new dynamics analysis for continuous-time UPPAM RNNs.
The obtained results remove mostly the diversity and redundancy of
the dynamical conclusions existing in various RNNs models, and
further, discuss that under the critical condition (which is the
essential line of demarcation between stability and instability), what
asymptotic behavior for generic continuous-time RNNs will be.

Yang and Cao [22] have gotten the globally exponential stability

of a static neural network with projection operator under the

condition that I�W is nonnegative, while, this model is a kind of

the UPPAM RNNs model and ðI�WÞZ0 is only a special case of

SðG,ð2L�BÞÞZ0. Peng et al. [1] have proved that when W is quasi-

symmetric (i.e., there exists a positive definite diagonal matrix D,

such that DW is symmetric), then a static neural network model

with nearest point projection activation operator is critical global
convergence on a region defined by the network, and this

conclusion can also be summarized in our results. For a RNN

with projection activation operator, in [2–4], we have proved the

critical convergence of the static neural network model,

obviously, it is a special case for this critical analysis of UPPAM

RNNs. For Hopfield type neural network, in [44], Zeng et al. have

got the globally exponential stability of recurrent neural network

with time-varying delays when matrix C�Að1Þ�Bð1Þ is a nonsin-

gular M-matrix. While, we know that C�Að1Þ�Bð1Þ being a non-

singular M -matrix is only a special case of the noncritical

condition, let alone the critical condition. In [17], Guan et al. also

present some noncritical results for Hopfield type neural network.

For BSB-type RNNs, under the conditions that �ðGVþVTGÞ is

positive definite, or GðIþaVÞ is negative definite for a positive

diagonal matrix G (where a is a positive parameter and V is the

weight matrix of this RNN), the globally convergent analysis of

such type RNNs have been revealed in [9,15]. But, it is easy to

verify that such conditions are still noncritical. For cellular neural

networks, when W is symmetric with I�W being positive definite,

or G�ðGWþWTGÞ=2 is positive definite, or GW is symmetric and

either 1 is not an eigenvalue of any principal sub-matrix of W, or

GðI�WÞ is nonnegative definite, the stability analysis haven been

proved in [13–16]. Similarly, these stability results are given

under the noncritical conditions or under a special case of critical

conditions. In all, the conclusions presented in this section can

unify and improve the latest critical analysis for continuous-time

RNN models, let alone they can extend deeply those noncritical

analysis for continuous-time RNNs (see, e.g. [14,15,17–20,22] and

the references therein). And specially, the achieved results gen-

eralize and extend further the existing dynamics conclusions for

the brain-state-in-a-box/domain recurrent neural networks, Hopfield-

type neural networks, cellular neural networks, etc.

In addition, the obtained analysis results can be applied to solve

the following linear variational inequality (LVI): determining a

vector xn in a nonempty closed convex subset ODRn such that

ðQxn
þqÞT ðx�xnÞZ0, 8xAO ð19Þ

where Q ¼ ðQijÞ is an n�n real matrix and qARn is a vector. The

corresponding RNN for solving LVI is described by

tdx

dt
¼�xþPOðx�LQxþqÞ ð20Þ

where L is a positive diagonal matrix.

LVI has many applications in bound constrained quadratic pro-

gramming, linear complementarity problem, economic equilibrium

modeling, traffic network equilibrium modeling, analysis of

piecewise-linear resistive circuits, and so on [11,18,38,39]. Hu, Wang,

Xia, et al. have proved that the solutions for an LVI on its constrained

set can be found when matrix ðI�LQ Þ is positive semi-definite

[19,37,40]. We can see that it is a special case of SðG,ð2L�BÞÞZ0.

Applying Theorem 3.1 and Corollary 3.1 directory to the specific

RNN model (20), we can have some new criteria for global

convergence of such RNN and what is more important, new solution

for solving LVI problems. Because quadratic and linear programming

problems are special cases of LVI in terms of solutions, then our

critical results can solve them efficiently as well.

4. Illustrative examples

In this section, we provide two illustrative examples to
demonstrate the validity of the critical convergence and stability
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results formulated in the previous section. It should be noticed
that the known stability and convergence results developed in
literature can not be applied here.

Example 4.1. Consider the following UPPAM RNN with two
neurons:

dx1ðtÞ

dt
¼�x1ðtÞþg1ð

ffiffiffi
2
p

x1ðtÞþ
ffiffiffi
2
p

x2ðtÞÞ

dx2ðtÞ

dt
¼�x2ðtÞþg1ð�

ffiffiffi
2
p

x1ðtÞþ
ffiffiffi
2
p

x2ðtÞþ3
ffiffiffi
2
p
Þ

8>><
>>:

ð21Þ

where gi (i¼1, 2) is defined as follows:

giðsÞ ¼

1, s4
ffiffiffi
2
p

s=
ffiffiffi
2
p

, sA ½�
ffiffiffi
2
p

,
ffiffiffi
2
p
�

�1, so�
ffiffiffi
2
p

8><
>: ð22Þ

In this example, L¼ B¼
ffiffiffi
2
p

I, A¼ I, the unique equilibrium state is
ð1,1ÞT . For this UPPAM network, almost all of the existing stability
conclusions cannot be used here, because in this example, the
activation operator is not a nearest projection, or a general projec-
tion, i.e., the latest critical results presented in [1,3,4] cannot be
applied.

In what follows, we will show the results established in this paper

can be successfully applied here. By setting G¼ I, we have ð2L�BÞG�
ðGAWþWT AGÞ=2Z0. For any vARðGÞ ¼ ½�1,1�2, define TðvÞ ¼ G

ðWvþqÞ. It is easy to see that FðTÞ ¼ fð1,1ÞT g. Let D¼ ðð2L�BÞGÞ1=2.

For any vnAFðTÞ, we can verify that LJ�J2
ðT ,D,vn,RðGÞÞr1. In fact,

LJ�J2
ðT ,D,vn,RðGÞÞ ¼ sup

vavn ,vARðGÞ

JDTv�DTvnJ2

JDv�DvnJ2
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Fig. 1. Transient behaviors of RNN in system
¼ sup
vavn ,vARðGÞ

JGðWvþqÞ�vnJ2

Jv�vnJ2
ð23Þ

On noting that for any vARðGÞ, w21v1þw22v2þq2Z
ffiffiffi
2
p

, then, by

the definition of g2, we have g2ðw21v1þw22v2þ q2Þ ¼ 1 and

JGðWvþqÞ�vnJ 2
2 ¼ ðg1ðw11v1þw12v2þq1Þ�vn

1Þ
2
¼ ð1�g1ð

ffiffiffi
2
p
ðv1þ

v2ÞÞÞ
2. Meanwhile, since Jv�vnJ2

2 ¼ ð1�v1Þ
2
þð1�v2Þ

2
Z ð2�ðv1þ

v2ÞÞ
2=2, so, if for any vARðGÞ, ð1�g1ð

ffiffiffi
2
p
ðv1þv2ÞÞÞ

2r ð2�ðv1þ

v2ÞÞ
2=2 always holds, then we can get that LJ� J2ðT ,D,vn,RðGÞÞr1.

Since g1ðv1þv2Þr1 and v1þ v2r2, which equals to prove

1�g1ð
ffiffiffi
2
p
ðv1þv2ÞÞrð2�ðv1þv2ÞÞ=

ffiffiffi
2
p

ð24Þ

We prove it in the following three cases.

(a) When
ffiffiffi
2
p

r
ffiffiffi
2
p
ðv1þv2Þr2

ffiffiffi
2
p

, then g1ð
ffiffiffi
2
p
ðv1þv2ÞÞ ¼ 1, and

(24) holds obviously;

(b) When �
ffiffiffi
2
p

r
ffiffiffi
2
p
ðv1þv2Þr

ffiffiffi
2
p

, then g1ð
ffiffiffi
2
p
ðv1þv2ÞÞ ¼ v1þ

v2 and 1�ðv1þv2Þr
ffiffiffi
2
p
�ð1=

ffiffiffi
2
p
Þðv1þv2Þ, i.e. (24) is true;

(c) When �2
ffiffiffi
2
p

r
ffiffiffi
2
p
ðv1þv2Þr�

ffiffiffi
2
p

, then it is clear that

g1ð
ffiffiffi
2
p
ðv1þv2ÞÞ ¼ �1 and 2r

ffiffiffi
2
p
�ð1=

ffiffiffi
2
p
Þðv1þv2Þ, and (24)

holds, too.

From the discussion above, it can be deduced that LJ�J2

ðT ,D,vn,RðGÞÞr1. Then by Corollary 3.1, we get that xn ¼ ð1,

1ÞT AOe is globally asymptotically stable on RðGÞ. Simulation

results with several random initial points starting from RðGÞ are

depicted in Fig. 1.
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Fig. 2. Transient behaviors of RNN in system (25) with random initial point

x0 A ½�1,1�6.
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Example 4.2. Consider a UPPAM RNN in a 6-dimensional array of
neurons

dx1ðtÞ

dt
¼�x1ðtÞþg1ð0:9x1ðtÞ�0:15

ffiffiffi
2
p

x2ðtÞþ0:3Þ

dx2ðtÞ

dt
¼�x2ðtÞþg2ð0:15

ffiffiffi
2
p

x1ðtÞþ0:4x2ðtÞ�0:05
ffiffiffi
6
p

x3ðtÞÞ

dx3ðtÞ

dt
¼�x3ðtÞþg3ð0:05

ffiffiffi
6
p

x2ðtÞþ8=30x3ðtÞ�0:05
ffiffiffi
3
p

x4ðtÞÞ

dx4ðtÞ

dt
¼�x4ðtÞþg4ð0:05

ffiffiffi
3
p

x3ðtÞþ0:2x4ðtÞ�0:03
ffiffiffi
5
p

x5ðtÞÞ

dx5ðtÞ

dt
¼�x5ðtÞþg5ð0:03

ffiffiffi
5
p

x4ðtÞþ0:18x5ðtÞÞ

dx6ðtÞ

dt
¼�x6ðtÞþg6ð1=6x6ðtÞþ0:1Þ

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð25Þ

where each gi (i¼ 1,2, . . . ,6) is defined as

giðsÞ ¼

1, s41=i

ins, sA ½�1=i,1=i�

�1, so�1=i

8><
>: ð26Þ

In this case, L¼ B¼ diagf1,1=2,1=3,1=4,1=5,1=6g, A¼ I. For any

positive diagonal matrix G, MðGÞ ¼ ð2L�BÞG�ðGAWþWT AGÞ=2 is

not positive, but by taking G¼ I, it is clear that MðGÞ is positive

semi-definite. That is, the dynamics behaviors of system (25)

should be considered under the critical conditions. For this

example, there does not exist a result to ensure the convergence

of it. On noting that JDL�1AWD�1J2 ¼ 1, where D¼ ðð2L�BÞGÞ1=2,

then by Corollary 3.1, it is quite easy to achieve the global

convergence of system (25) on RðGÞ ¼ ½�1,1�6. The following Fig. 2

depicts the time responses of neural state variables of the system

starting randomly from ½�1,1�6.

5. Conclusion

RNNs have been attracting great interest in many fields, such
as optimization solvers, associative memories, system simulators
in science and engineering, etc. There exist lots of RNN individuals
and corresponding mathematical foundations, but the results are
very often redundant with similarity.

In the present paper, based on the uniformly pseudo-
projection anti-monotone property of common activation opera-
tors, the generic continuous-time UPPAM RNNs model has been
introduced to unify the existing continuous-time RNNs indivi-
duals. Most important, the critical global convergence as well as
asymptotic stability of the UPPAM net in general setting has also
been proven. The established model and dynamics results not
only unify but also jointly generalize and extend the most known
conclusions of RNNs, and the approach has lunched a visible step
towards establishment a general mathematical method of study-
ing recurrent neural networks.
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