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Visual classification method has been proposed as a learning strategy for pattern classifi-
cation problem. In this paper, we show the strong convergence property of this method.
In particular, the method is shown to converge to the Bayesian estimator, i.e., the learning
error of the method is convergent to the posterior expected minimal value. The perfor-
mance of the method has also been theoretically evaluated to comply with the human
visual sensation and perception principle. The method is successfully used to some practi-
cal remote sensing and disease diagnosis applications. The experimental results all verify
the validity and effectiveness of the theoretical conclusions.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Pattern classification is one of the fundamental problems in pattern recognition. It aims at finding a discriminant rule
from a set of experiential data with multiple classes generated from an unknown but fixed distribution, and employing it
to categorize any new-coming input datum. Pattern classification has attracted much attention in recent decades due to
its wide-spread applications in human, engineering and medical sciences [1,10,24].

Visual classification method (VCM) is one of the latest methods for pattern classification [12,26]. The method is con-
structed by simulating the human sensation and perception principle. It is capable of implementing effective heuristic pat-
tern categorization similar to the mechanism of human eyes to a certain extent. The main aim of this research is to further
propose the theoretical convergence property of the VCM, and make applications in remote sensing and disease diagnosis. In
particular, it is proved that the classification discriminant achieved by the VCM is convergent to the Bayesian estimator. That
is, the learning error of the VCM tends to attain the Bayesian error. This strong convergence property of the VCM is superior
to other pattern classification methods, such as the well-known support vector classification (SVC [18]), which only ensures
the convergence of the learning error of the obtained result to the minimal value of a pre-specified learning machine (i.e., a
function set). The performance of the VCM in remote sensing and disease diagnosis problems confirm the theoretical
conclusions.

In what follows, the general mathematical formulation of the classification problem and a short review of the VCM are
first made in Section 2. The theoretical results on the convergence property of the VCM are then proposed in Section 3.
The simulation results and the applications in remote sensing and disease diagnosis are discussed in Section 4. We finish
with the conclusion in Sections 5.
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2. Visual classification method

We first give the general mathematical formulation of the classification problem. Since a multi-classification problem can be
transformed into a series of two-classification problems, it is generally sufficient to discuss the two-classification problem. Let
Dl ¼ fxi; yig

l
i¼1 be the given two-label training data set, i.i.d. generated from an unknown but fixed distribution F(x,y) = F(yjx)F(x)

defined on Z, where Z = X � Y, X # Rn is the input (attribute) space, and Y = {0,1} is the output (label) space. Given a family of
preset indicator functions (i.e., the learning machine) F ¼ ffrðxÞ;r 2 Kg, the learning problem aims to select an appropriate
discriminant function fr� from F based on the training set Dl so that fr� so selected can well implement the underlying classi-
fication task. The classification capability of fr� can be quantitatively evaluated in a mathematical way as follows.

The loss function L(y1,y2) (y1,y2 � Y) is defined as:
Lðy1; y2Þ ¼
0; if y1 ¼ y2;

1; if y1 – y2:

�
ð1Þ
The risk functional (or risk) of fr 2 F is defined as
RðfrÞ ¼
Z

Z
Lðy; frðxÞÞdFðx; yÞ ¼

Z
Z
jy� frðxÞjdFðx; yÞ; ð2Þ
which is the expectation of L(y, fr(x)) over Z. A discriminant function fr� in F is of the optimal classification capability if R(fr)
attains its minimum at r = r⁄ over the entire learning machine F . In these terms, the learning problem can be precisely de-
fined as: finding the optimal discriminant function fr� in F such that
Rðfr� Þ ¼minfRðfrÞ : fr 2 Fg :¼ OPTFðFÞ: ð3Þ
The quantity OPTFðFÞ is called the minimal risk of the learning machine F (with respect to F). Any implementation scheme
aiming to find (or approximate) the optimal discriminant function of F is called a learning strategy. Since a learning strategy
L is designed on the basis of the given training data Dl, it can thus be viewed as a mapping from the sample set Dl into the
learning machine F . A learning strategy L is a learning algorithm if for any e 2 (0,1) and d 2 (0,1), there exists an integer l0(e,d)
such that for any l > l0(e,d), it holds that
PfRðLðDlÞÞ < OPTFðFÞ þ egP 1� d; ð4Þ
where LðDlÞ is the discriminant function generated from the learning strategy L. In this case, we also say that the learning
strategy is convergent. For instance, the SVC is one of the typical convergent learning strategies [18].

It should be noted that OPTFðFÞ, as defined in (3), is not the essential minimal risk of all nontrivial discriminant functions.
The real one is the Bayesian risk, i.e.,
OPTF ¼minfRðf Þ : f 2 Rg;
where R denotes the collection of all Lebesgue measurable indicator functions defined on X. The Bayesian risk is an intrinsic
quantity underlying the learning problem, irrespective of the given learning machine, and no larger than OPTFðFÞ for any
nontrivial learning machine F . Correspondingly, a learning strategy L is strongly convergent if the estimation in (4) holds
for the Bayesian risk OPTF instead of the minimal risk OPTFðFÞ. Evidently, such a strategy is of better convergence than
the aforementioned convergent learning strategy, and hence is always the expected one in real applications.

Accordingly, the learning machine and the learning strategy play a significant role in the final success of pattern classi-
fication. Intrinsically speaking, the learning machine utilized in the VCM can be expressed as [26]:
F VCM ¼ fr;Dl
ðxÞ ¼ sgn

1
l

Xl

i¼1

yigðx� xi;rÞ
 !

: r P 0

( )
: ð5Þ
Actually, this learning machine can be formulated under the framework of the scale space theory and understood by the vi-
sual sensation and perception principle: given a primary image f(x) at the distance r, the observed blurry image f(x,r) can be
mathematically expressed by the following partial differential equation [3,23]:
@f ðx;rÞ
@r ¼ @2 f ðx;rÞ

@x2

f ðx;0Þ ¼ f ðxÞ

(
: ð6Þ
The solution of the above equation can be explicitly expressed as
f ðx;rÞ ¼ f ðxÞ � gðx;rÞ ¼
Z

gðx� yÞf ðyÞdy;
where ‘�’ denotes the convolution operation and g(x,r) the Gaussian function
gðx;rÞ ¼ 1ffiffiffiffiffiffiffi
2p
p

r
� �n e�kxk

2=2r2
: ð7Þ



Fig. 1. (a) Observing the data very closely, a discriminant function which exactly separates each point, including involved noises and outliers, can be
perceived; (b) Observing the data from a proper distance, the intrinsic discriminant function can be appropriately perceived; and (c) Observing the data
from far away, all data are mixed up and no discriminant function can be perceived.
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If the training samples are treated as an imaginary image with expression:
f ðx;DlÞ ¼
1
l

Xl

i¼1

yidðx� xiÞ; ð8Þ
then the corresponding blurred image at scale r can be specified as
f ðx;r;DlÞ ¼ f ðx;DlÞ � gðx;rÞ ¼ 1
l

Xl

i¼1

yigðx� xi;rÞ: ð9Þ
The learning machine F VCM as (5) can then be obtained. In fact, the performance of the discriminant function fr;Dl
ðxÞ under

different scales r highly accords with the visual phenomenon of observing the classification image by varying its observing
distances, as illustrated in Fig. 1.

Then the learning strategy of the VCM can be easily constructed on the basis of the learning machine F VCM . In fact, any
cross validation method, e.g., the k-fold cross-validation method, can be employed [2,17,25] for this task. In this method, the
given data set is first partitioned into k subsets. Among these k sets, a single subset is taken as the testing data for measuring
the learning error of the related discriminant function, and the remaining k � 1 sets are utilized as the training data. The
cross-validation process is then repeated k times, by taking each of the k subsets as the testing data, respectively. The k re-
sults are then averaged to get a single learning error. The appropriate candidates for the scale parameter can then be properly
specified through minimizing the cross-validation learning error.

The above strategy defines a mapping LVCM from the input data Dl to the learning machine F VCM . We will show in the next
section that the mapping LVCM so defined achieves a strongly convergent learning algorithm by properly specifying the scale
parameter.

Remark 1. Actually, by applying the Parzen window method [7] to estimate the densities underlying the positive data and
the negative data, respectively, and by comparing the estimated densities at each input datum, a classification discriminant
can then be obtained. When the method adopts the Gaussian window, the obtained discriminant is very similar to the
discriminant function generated from the VCM. We introduce the VCM in the visual perspective since this will make the
following theoretical conclusions more natural and understandable.
3. Theoretical conclusions on the VCM

In this section, we will show that the learning strategy LVCM converges to the Bayesian estimator. Before presenting the
main theorem, we first distinguish two notations of probability.

Denote X = (X � Y) as the input data space of the classification problem determined by the unknown but fixed distribu-
tion Fðx; yÞ ¼ FðxÞFðyjxÞ; F ¼ MðXÞ � SðYÞ as the r-algebra of X defined by its power set, and P as the probability defined by
PðA� BÞ ¼
Z

A�B
dFðx; yÞ; A� B 2 F:
Then, P1 ¼ ðX; F; PÞ constitutes a probability space [6]. Likewise, let XX = X be the attribute space, FX ¼ MðXÞ be the r-algebra
of XX conducted by all the measurable subset X, and the probability PX be defined by
PXðAÞ ¼
Z

A
dFðxÞ; A 2 MðXÞ;
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and P2 ¼ ðXX ; FX ; PXÞ also composes of a probability space.
For any function fr;Dl

ðxÞ in F VCM , the upper bound for the deviation of its learning risk from the Bayesian risk can be the-
oretically estimated, as stated in the following theorem.

Theorem 1. Let P1 ¼ ðX; F; PÞ and P2 ¼ ðXX ; FX ; PXÞ be the probability spaces, Dl be the training sample set generated from P,
Ey(x) be the average of y at x, and p(x) be the density function of x. Assume that X is open and bounded in Rn and Ey(x)P(x) is
continuous on X (the closure of X). Then for any fixed r > 0, d 2 (0,1), and e > 0, there exist positive constants c1, c2, c3, c4,
independent of l and r, such that
PfjRðfr;Dl
Þ � OPTF j < eþ PXf0 < jEyðxÞpðxÞj < Boundðe; d; l;rÞgg > 1� d
where Bound(e,d, l,r) is of the form:
Boundðe; d; l;rÞ ¼ 2eþ c1

l
1
2
þ c2rnþ2 þ c3rþ

c4

l
1
2ðrÞn

: ð10Þ
Proof. We only list the main steps of the proof due to the page limitation. The entire proof can refer to the Supplementary
material of this paper.

Step 1: If Dl ¼ fxi; yig
l
i¼1 is generated from P, g(x,r) is the Gaussian function defined in (7), then for any z 2 Rn and d 2 (0,1),

it holds that:
P
1
l

Xl

i¼1

yigðz� xi;rÞ �
Z

ygðz� x;rÞdFðx; yÞ
 !�����

�����P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ln 2
d

l
ffiffiffiffiffiffiffi
2p
p

r
� �2n

vuuut
0
BB@

1
CCA < d:

Step 2: For any e > 0, there exits a constant re > 0 such that for any r 2 (0,re] and z 2 X, it holds thatZ
ygðz� x;rÞdFðx; yÞ � EyðzÞPðzÞ

Z
X

gðz� x;rÞdx
����

���� < e:

Step 3: For any r1, r2 > 0, it holds thatZ
ygðz�x;r1ÞdFðx;yÞ�

Z
ygðz�x;r2ÞdFðx;yÞ

����
����< 1

ð2pÞ
n
2 minfr1;r2gðnþ1Þ nþ 2B2

minfr1;r2g2

 !
maxfr1;r2g; 8z2X:

Step 4: For any d 2 (0,1) and e > 0, it holds that

P
1
l

Xl

i¼1

yigðz� xi;rÞ � EyðzÞPðzÞArðzÞ
 !�����

�����P aðdÞ
l

1
2ðrÞn

þ bðeÞrþ e ¼ Wðe; d;r; lÞ
( )

< d; 8r > 0; 8z 2 X;

where
ArðzÞ ¼
Z

X
gðz� x;rÞdx; aðdÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

dffiffiffiffiffiffiffi
2p
p� �2n

vuuut ; bðeÞ ¼ 1

ð2pÞ
n
2rðnþ1Þ

e
nþ 2B2

r2
e

 !
:

Step 5: Let

MðxÞ ¼
EyðxÞPðxÞArðxÞ; x 2 X and EyðxÞpðxÞ– 0

f ðx;r;DlÞ; x 2 X and EyðxÞpðxÞ ¼ 0

�
;

where f ðx;r;DlÞ ¼ 1
l

Pl
i¼1yigðx� xi;rÞ. Then R(sgn(M(x))) = OPTF.

Step 6: Let fr;Dl
ðxÞ ¼ sgnðf ðx;r;DlÞÞ. Then for any r > 0,a > 0 and z 2 X, we have
jRðfr;Dl
Þ � OPTF j 6 PXfjf ðx;r;DlÞ � EyðxÞPðxÞArðxÞjP aÞg þ PXf0 < jEyðxÞPðxÞArðxÞj < ag:

Step 7: It holds that

P PX jf ðx;r;DlÞ � EyðxÞPðxÞArðxÞjP W
e
2
;
ed
2
;r; l

� �� 	
P

e
2

� 	
< d:

Step 8: It holds that

PX 0 < jEyðxÞPðxÞArðzÞj < W e;
ed
2
;r; l

� �� 	
<

e
2
þ PXf0 < jEyðxÞPðxÞj < Boundðe; d;r; lÞg;
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where
Boundðe; d; l;rÞ ¼ 2eþ c1

l
1
2
þ c2rnþ2 þ c3rþ

c4

l
1
2ðrÞn

;

where c1 ¼
ð2pÞ

n
2a ed

2ð Þ

e
�2B2

r0e mðXÞ

, c2 ¼ ð2pÞ
n
2bðeÞ=r0eþð2pÞ

n
2e=r02e

e
�2B2

r0e mðXÞ

, c3 ¼ 2bðeÞ; c4 ¼ 2a ed
2


 �
. Here r0e > 0 is a constant independent of l and r, and m(X)

is the m-measure of X.

Step 9: It holds that
PfjRðfr;Dl
Þ � OPTF j < eþ PXf0 < jEyðxÞPðxÞArðxÞj < Boundðe; d; l;rÞgg > 1� d: �
The significance of Theorem 1 lies on that it provides the following upper bound estimation of the deviation of the learn-
ing function risk from the Bayesian risk in probability:
Rðfr;Dl
Þ � OPTF 6 eþ PXf0 < jEyðxÞPðxÞj < Boundðe; d; l;rÞg; ð11Þ
which also provides a measurement on the generalization capability of any discriminant function fr;Dl
in F VCM .

Formula (11) implies that the task of finding the optimal fr;Dl
from F VCM , where the minimal learning risk is attained, can

be easily realized by calculating the minimum of the upper bound Bound(e,d, l,r). This naturally leads to the following strat-
egy for proper scale parameter selection on F VCM .

Since e and d in (10) are arbitrarily valued, Bound(e,d, l,r) can be taken as a function with respect to l and r. Some useful
observations can then be made:

� Bound(e,d, l,r) ?1 when l is fixed and r ? 0, since c4

l
1
2ðrÞn
!1 in (10);

� Bound(e,d, l,r) ?1 when l is fixed and r ?1, since c2rn+2 + c3r ?1 in (10).

These observations show that whenever r is too large or too small, fr;Dl
cannot attain good generalization performance.

The good performance of the discriminant from the VCM can only occur when the scale parameter r is set as a moderate
value. This fully complies with human visual sensation and perception principle [4,8], as depicted in Fig. 1. This phenomenon
also tallies with the conclusion of the traditional statistical learning theory: For too small r, the classification discriminant
tends to be overfitted to the training samples while cannot predict well on new samples; contrarily, for too large r, the dis-
criminant tends to be configured very smoothly while cannot well fit input samples. Only at a moderate value of r, a good
compromise between empirical risk and generalization error of the VCM is expected to be achieved [19,20].

There remains another problem: Is there an optimal scale r⁄ and where is it? The following theorem provides an answer
to this problem:

Theorem 2. For any fixed l, the function Bound(e,d, l,r) is of the unique minimum, attained at:
r� ¼ Cl�
1

2nþ2; ð12Þ
where n is the dimension of the attribute space and
C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nc4

c3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

3 þ 4ðnþ 2Þc2
nc4

l
1
2

qnþ1

vuut ; ð13Þ
where c1, c2, c3, c4 are the constants as defined in Theorem 1.
Proof. From (10), it follows that
f ðrÞ ¼ @Boundðe; d; l;rÞ
@r

¼ ðnþ 2Þc2rnþ1 þ c3 �
nc4

l
1
2ðrÞnþ1

¼ 1

ðrÞnþ1 ðnþ 2Þc2ðrnþ1Þ2 þ c3rnþ1 � nc4

l
1
2

� �
: ð14Þ
It is easy to see that there are two solutions for f(r) = 0, and one is positive and the other negative. Denote the positive solu-
tion as r⁄. Then f(r) < 0 whenever 0 < r < r ⁄ and f(r) > 0 whenever r > r⁄ since f(0) is negative and f(+1) is positive. Con-
sequently r⁄ is the unique minimum of Bound(e,d, l,r) on [0,+1). From (14), we have
r� ¼
�c3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

3 þ 4ðnþ 2Þc2
nc4

l
1
2

q
2ðnþ 2Þc2

0
@

1
A

1
nþ1

¼ 1

c3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

3 þ 4ðnþ 2Þc2
nc4

l
1
2

q 4ðnþ 2Þc2
nc4

l
1
2

2ðnþ 2Þc2

0
B@

1
CA

1
nþ1

¼ 2nc4

c3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

3 þ 4ðnþ 2Þc2
nc4

l
1
2

q l�
1
2

0
B@

1
CA

1
nþ1

:
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The proof of Theorem 2 is completed. h

The above theorem implies that the preferred scale parameter of the VCM should be with the rank O l�
1

2nþ2

� �
. That is to say,

we can set the selected range of the scale as follows: first, specify the appropriate parameters a and b (say, a = 10�1 and

b = 102), and next, let el ¼ al�
1

2nþ2 and El ¼ bl�
1

2nþ2, and then, select the optimal scale in [el,El].
According to the above discussion, the mapping LVCM :

S
Dl ! F VCM can be formulated as
LVCMðDlÞ ¼ fr� ;Dl
ðxÞ; ð15Þ
where r⁄ is calculated by the following optimization:
r� ¼ arg minr2½el ;El �CVðrÞ; ð16Þ
where CV(r) is the cross validation error under the scale parameter r. To minimize the continuous function CV(r) and find
the optimal scale parameter r⁄ in (16), any one-dimensional global optimization method, such as the grid algorithm [15], the
simulated annealing [11] and the evolutionary method [14], can be employed.

The following theorem shows that the above learning strategy LVCM is a strongly convergent learning algorithm.

Theorem 3. Assume that the attribute space X is open and bounded in Rn and Ey(x)P(x) is continuous on X (the closure of X), then
for any e > 0 and d 2 (0,1), there exists l(e,d) such that for any l > l(e,d), it holds that
PfRðLVCMðDlÞ � OPTFÞP eg < d: ð17Þ
Proof. We prove Theorem 3 by the following four steps. The entire proof can refer to the Supplementary material of this
paper.

Step 1: Suppose X is an m-measurable subset in Rn, and {fn} is a sequence of measurable functions satisfying fn(x) ? f(x),
x 2 X, as n ?1. If there exists an m-measurable function g on X such that jfn(x)j 6 g(x), n = 1, 2, . . . , x 2 X, then
limn!1

Z
X

fnðxÞdx ¼
Z

X
f ðxÞdx:

Step 2: It holds that lime?0 PX{0 < jEy(x)P(x)j < e} = 0.
Step 3: It holds that liml!1Bound e; d; l;r�l


 �
¼ 2e, where r�l is specified by Formula (16).

Step 4: For any e > 0 and d 2 (0,1), there exists an integer l(e, d) such that for any l > l(e, d), it holds that

P R fr�
l
;Dl
ðxÞ

� �
� OPTF

� �
< e

n o
> 1� d: �

In the next section, we further verify these theoretical conclusions by experimental results.

4. Simulations and applications in remote sensing and disease diagnosis of the VCM

In this section we provide a series of synthetic and real experimental results to support the validity of the presented the-
oretical results. The optimization problem (16) was solved by the grid optimization method.

4.1. Synthetic simulations

The first set of simulations was designed to demonstrate the validity of using Bound(e,d, l,r) in Theorem 1 as the upper
bound for the deviation of the risk of a discriminant function fr;Dl

ðxÞ 2 F VCM from the Bayesian risk, i.e., the feasibility of
applying this estimated bound to quantitatively measure the classification capability of fr;Dl

ðxÞ. The simulations were imple-
mented by comparing the behavior of Bound(e,d, l,r) and the performance of the discriminant function fr;Dl

ðxÞ. The spiral

classification data D100 ¼ xþi ;þ1
� 
50

i¼1 [ x�i ;�1
� 
50

i¼1 were utilized, where
xþi ¼ ðexpðð�1:5pþ ip=30ÞÞ � 0:5Þ � cosð�1:5pþ ip=10Þ;
x�i ¼ ðexpðð�1:5pþ ip=30ÞÞ � 0:5Þ � sinð�1:5pþ ip=10Þ:
With the scale parameter r varying from small to large, the performance of the discriminant function fr;Dl
is demonstrated in

Fig. 2. It can be observed that fr;Dl
has very poor performance when r is too large or too small. Correspondingly, it is easy to

deduce that the value of the bound function Bound(e,d, l,r) varies from infinitely large to its minimum, and then to infinitely
large again, as r goes from 0 to infinity. The observed performance of fr;Dl

ðxÞ clearly accords with the behavior of Boun-
d(e,d, l,r). This verifies the rationality of the proposed upper bound estimation (Theorem 1).

The second set of simulations was designed to verify the reasonability of Theorem 2, that is, to show that there exists a
positive constant C such that the optimal scale r�l and the data size l obey the relation



Fig. 2. The classification performance of the discriminant function fr;Dl
with the scale parameter r varying from very small to very large. r⁄ is the optimal

scale parameter attained by VCM.

Fig. 3. The classification performance of the optimal discriminant function fr�
l
; Dl

obtained by VCM with varying data sizes. It can be observed that all

r�l ; l
� 1

2nþ2

� �
are nearly on a line, that is, l�

1
2nþ2=r�l is approximately a constant for any l.
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C ¼ l�
1

2nþ2=r�l : ð18Þ
The spiral data sets Dl ¼ xþi ;þ1
� 
l=2

i¼1 [ x�i ;�1
� 
l=2

i¼1 with varying sizes were employed to substantiate (18), where
xþi ¼ ðexpðð�1:5pþ ip=0:3lÞÞ � 0:5Þ � cosð�1:5pþ ip=0:1lÞ;
x�i ¼ ðexpðð�1:5pþ ip=0:3lÞÞ � 0:5Þ � sinð�1:5pþ ip=0:1lÞ:
By applying the VCM, the optimal scales r�l are calculated as 0.06, 0.05, 0.04, 0.035, and 0.025 corresponding to l = 30, 100,
500, 1000, and 5000, respectively, as shown in Fig. 3. In these simulations, C30 � 0.1057, C100 � 0.1077, C500 � 0.1126,
C1000 � 0.1107 and C5000 � 0.1134. All are approximately equal. This supports the validity of Theorem 2.



Table 1
The misclassification rates (%) of VCM, SVC, LMNN and KNN on the third series of simulation data with respect to varying data sizes. ⁄ Means the method is
infeasible on the corresponding data.

Method Training size

100 200 400 800 1600 4000 8000

VCM 25.46 25.44 24.52 23.58 22.34 21.38 20.60
SVC 28.02 25.02 23.88 23.74 22.40 21.78 21.28
LMNN 20.96 22.10 21.52 22.12 21.00 21.10 20.94
KNN 21.00 23.50 21.50 21.12 21.31 21.02 20.92

Method Training size

12,000 20,000 30,000 50,000 100,000

VCM 20.48 20.40 20.38 20.23 20.04
SVC 21.50 21.24 20.40 20.54 20.42
LMNN 20.90 ⁄ ⁄ ⁄ ⁄
KNN 20.97 20.67 20.80 ⁄ ⁄
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Fig. 4. The tendency curves of the misclassification rates obtained by VCM, SVC, LMNN and KNN on the third series of synthetic simulations.
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The third set of simulations was run to demonstrate the strong convergence property of the VCM (namely, Theorem 3). To

this aim, we applied the VCM to 12 groups of training data sets Dl ¼ xð1Þi ; xð2Þi

� �
; yi

n ol

i¼1
, with varying sizes l = 100, 200, 400,

800, 1600, 4000, 8000, 12,000, 20,000, 30,000, 50,000, 100,000, respectively. All data were generated from the distribution
F((x(1),x(2)),y) = F(yj(x(1),x(2)))F((x(1),x(2))) with F((x(1),x(2))) being the uniform distribution on [0,1] � [�1,1] and
1 Tw
respect
advanta
to be in
needs t
with m
Fð1jðxð1Þ; xð2ÞÞÞ ¼ 0:8; if xð2Þ P 0;
0:2; if xð2Þ < 0;

(
and Fð�1jðxð1Þ; xð2ÞÞÞ ¼ 0:2; if xð2Þ P 0;

0:8; if xð2Þ < 0:

(

The Bayesian risk of this classification problem can be easily calculated as OPTF = 0.2. To evaluate the performance of the
VCM, a set of 5000 data, which was i.i.d. generated from the distribution F((x(1),x(2)),y), was employed to compute the mis-
classification rate of the VCM in each case. For comparison, the support vector classification (SVC [18]), the large margin
nearest neighbor method (LMNN [21,22]) and the k-nearest-neighbor classification method (KNN [5]) have also been imple-
mented on all data. The 5-fold cross-validation method [2] was implemented on the corresponding training data for param-
eter selection in all simulations.

For each of the training sets, the VCM, SVC, LMNN and KNN attained four classifiers, respectively, and the misclassification
rates of the classifiers were then evaluated on the testing set. Table 1 lists the misclassification rates of these methods for
each training data set, and Fig. 4 shows the tendency curves to depict the convergence of the utilized methods. From Table 1
and Fig. 4, it is easy to see that the VCM monotonically converges to the Bayesian risk 0.2 as the data size l increases, while
the SVC, LMNN and KNN do not1. This verifies the rationality of Theorem 3.
o intrinsic properties of the LMNN and KNN can be observed from this simulation. The first is that both methods have a very stable performance with
to the training sizes. When data size is small, LMNN and KNN evidently outperform other methods, while when the data size becomes larger, the
ge of the VCM tends to gradually arise due to its strong convergence property. The second is that in large data cases, the LMNN and KNN methods tend
feasible (when l > 12,000 and l > 30,000, respectively, in this simulation). This is because in LMNN and KNN, a distance matrix between all data pairs
o be recorded based on the input data. This makes the computational complexity of each method relatively high. As a comparison, the VCM can deal
uch larger problems, as discussed in the conclusion of the paper.



Table 2
Information of the mangrove data. NTr2005, NTe2005, NTr2006, NTe2006 denote the numbers of training and testing data sets of
the mangrove data collected in 2005 and 2006, respectively.

Class Data

NTr2005 NTe2005 NTr2006 NTe2006

x1: Aegiceras corniculatum 215 89 527 222
x2: Acanthus ilicifolius 975 324 1370 530
x3: Avicennia marina 552 225 607 234
x4: Kandelia obovata 1397 522 1090 406
x5: Sonneratia caseolaris 918 329 463 198

Total 4057 1489 4057 1590

Table 3
Misclassification rates (%) of VCM, SVC, LMNN and KNN on mangrove data.

Method Data

2005data 2006data

VCM 4.50 7.55
SVC 5.57 8.68
LMNN 4.83 7.50
KNN 5.84 8.92
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4.2. Mangrove species identification with high resolution Quickbird images

This empirical study deals with the classification of the mangrove species in remotely sensed images. Two sets of high
resolution Quickbird images acquired in 2005 and 2006 were employed to empirically verify the aforementioned conver-
gence property of the VCM. Both sets contain the data of five known mangrove species. The data were collected from the
Inner Deep Bay Area of Mai Po (northwestern part of Hong Kong) in 2005 and 2006, respectively. A prime component of
the land cover is an extensive mangrove stand with five different mangrove species. Field data were collected and was ran-
domly partitioned for training and testing purposes, respectively. These data were acquired at 4 spectral bands (blue, green,
red and near-infrared) at 2.4 m spatial resolution. The basic information is listed in Table 2.

The SVC, LMNN, KNN and VCM were implemented on both data sets, and 5-fold cross-validation was utilized for param-
eter selection. The experimental results are listed in Table 3. From the table, it is evident that the VCM is of smaller misclassi-
fication rates than SVC and KNN on both data sets, and performs similarly good as the LMNN. Thus the theoretical advantage
of the VCM can be further substantiated.

4.3. Disease diagnosis

Recently, there arise multiple applications of data mining algorithms in the computer-aided diagnosis [9,13,27]. To fur-
ther verify the theoretical results on the VCM (especially its strong convergence property), we applied the VCM to some dis-
ease diagnosis problems. In particular, four sets of data were utilized, as introduced in the following:

� Breast cancer data. This data set was obtained from the University Medical Centre, Institute of Oncology, Ljubljana, Yugo-
slavia. The instances are described by 9 attributes: age, menopause, tumor-size, inv-nodes, node-caps, deg-malig, breast,
breast-quad and irradiat. The output classes are non-recurrence or recurrence of the event.
� Diabetes disease data. This data set was obtained from the National Institute of Diabetes and Digestive and Kidney Dis-

eases. There are 8 input attributes: number of times being pregnant, plasma glucose concentration a 2 h in an oral glucose
tolerance test, diastolic blood pressure, triceps skin fold thickness, 2-h serum insulin, body mass index, diabetes pedigree
function and age. The classes are the non-occurrence and occurrence of the disease.
� Heart disease data. This database contains 76 attributes, but all published experiments only need 14 of them. The 13 input

attributes used are age, sex, chest pain type, resting blood pressure, serum cholest-oral, fasting blood sugar, resting elec-
trocardiographic results, maximum heart rate achieved, exercise induced angina, oldpeak, the slope of the peak exercise
ST segment and number of major vessels. The classes are the absence or presence of heart disease.
� Thyroid disease data. This data set was collected by several laboratory tests used to predict whether or not a patient’s thy-

roid belongs to the class euthyroidism, hypothyroidism or hyperthyroidism. The 5 input attributes include: T3-resin
uptake test, total Serum thyroxin as measured by the isotopic displacement method, total serum triiodothyronine as mea-
sured by radioimmuno assay, basal thyroid-stimulating hormone as measured by radioimmuno assay and maximal abso-
lute difference of TSH value after injection of 200 micro grams of thyrotropin-releasing hormone as compared to the basal
value. The 3 output classes represent the euthyroidism, hypothyroidism and hyperthyroidism diagnosis result,
respectively.



Table 4
Statistics of the data for the 4 disease diagnosis classification problems used in simulations A1, A2, and A3.

Problems Dim Training data sizes (A1,A2, A3) Testing data sizes (A1,A2,A3)

Breast-cancer 9 200 � 100, 1000 � 20, 2000 � 10 77 � 100, 385 � 20, 770 � 10
Diabetes 8 468 � 100, 2340 � 20, 4680 � 10 300 � 100, 1500 � 20, 3000 � 10
Heart 13 170 � 100, 850 � 20, 1700 � 10 100 � 100, 500 � 20, 1000 � 10
Thyroid 5 140 � 100, 700 � 20, 1400 � 10 75 � 100, 375 � 20, 750 � 10

Table 5
Misclassification rates of SVC, LMNN, KNN and VCM on disease diagnosis data. The best results are highlighted in bold.

Problems SVC (%) Misclassification rate (A1) VCM (%) Misclassification rate (A2)

LMNN (%) KNN (%) SVC (%) LMNN (%)

Breast-cancer 25.48 ± 4.41 26.36 ± 0.19 28.27 ± 0.01 25.69 ± 3.38 2.89 ± 0.62 2.47 ± 0.01
Diabetes 23.51 ± 1.48 25.02 ± 0.02 27.19 ± 0.01 25.84 ± 1.61 0.48 ± 0.54 0.46 ± 0.02
Heart 15.62 ± 3.26 17.13 ± 0.08 17.88 ± 0.12 17.19 ± 3.00 0.30 ± 0.57 0.32 ± 0.02
Thyroid 5.07 ± 2.33 4.96 ± 0.05 6.40 ± 0.00 4.28 ± 1.87 0.07 ± 0.30 0.23 ± 0.03
Average 17.42 ± 2.87 18.37 ± 0.09 19.94 ± 0.03 18.25 ± 2.47 0.94 ± 0.51 0.87 ± 0.02

KNN (%) Misclassification rate (A2) SVC (%) Misclassification rate (A3)

VCM (%) LMNN (%) KNN (%) VCM (%)

Breast-cancer 4.03 ± 0.01 2.84 ± 0.51 2.84 ± 0.34 2.99 ± 0.02 2.99 ± 0.01 2.84 ± 0.30
Diabetes 0.48 ± 0.00 0.53 ± 0.56 0.07 ± 0.21 0.03 ± 0.01 0.03 ± 0.01 0.07 ± 0.12
Heart 0.28 ± 0.01 0.45 ± 0.60 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Thyroid 0.64 ± 0.00 0.27 ± 0.82 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Average 1.36 ± 0.01 1.02 ± 0.62 0.73 ± 0.14 0.75 ± 0.01 0.76 ± 0.01 0.73 ± 0.10
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To reasonably evaluate the classification capability of the utilized learning strategies, the following way is specifically de-
signed: first, multiple partitions of the training and testing sets were randomly generated from the original data sets. Second,
on each partition, a classifier was trained on the training set by using the learning strategy and its testing error was obtained
on the testing set, correspondingly; the mean and the variance of these testing errors were then taken as the final criterion
for evaluating the capability of the strategy. Following this line, we have implemented three series of simulations (denoted
as A1, A2 and A3, respectively). In series A1, 100 partitions of the training and testing sets were used, which can be directly
downloaded from the website: http://archive.ics.uci.edu/ml/. In series A2 and A3, there are 20 and 10 partitions of the train-
ing and testing sets, respectively, formed by combining each 5 and 10 training and testing sets of those used in A1. The sta-
tistics of all the utilized data are listed in Table 4. The SVC, LMNN and KNN were applied to these data for comparison. The
experimental results are summarized in Table 5. The 5-fold cross-validation method was employed as the parameter selec-
tion strategy in all experiments.

From Table 5, it is easy to see that when the training data size increases, the VCM gradually outperforms other utilized
methods. Particularly, in A1 simulations, the SVC performs better in 3 data, and the VCM only in 1. In A2 simulations, SVC,
LMNN and KNN show advantages in 1, 2, 1 cases, respectively, while the VCM is not the best in all cases. Yet in A3 simula-
tions where the data size is largest, the VCM tends to outperform SVC, LMNN and KNN. In specific, in 3 of 4 applications, the
misclassification rates of the VCM is no larger than those of the SVC, LMNN and KNN. Furthermore, the VCM is of the best
performance in average. This substantiates the strong convergence property of the VCM in disease diagnosis experiments.
5. Conclusion and discussion

In this paper, we have shown the strong convergence property of the VCM method, i.e., the method converges to the
Bayesian solution of the classification problem. The theoretical result has also been substantiated by a series of synthetic
simulations and applications in remote sensing and disease diagnosis. Compared with the current classification methods,
the VCM has been demonstrated to be effective and efficient.

It should be noted that only simple computations are involved in the implementation of the VCM, and it is easy to conduct
that it only needs O(dl) computational cost for training, where d and l denote the dimension and the size of the training data,
respectively. That is to say, the computational time of the VCM linearly increases with respect to both the dimension and the
size of the input data. Comparatively, the SVC and the LMNN need around O(dl2.2) [16] and O(dl2) [22] costs for training,
respectively. Especially, the LMNN needs to learn a Mahanalobis metric by the semidefinite programming technique in
the training process. This makes the method always unavailable to large data, as illustrated in the simulations of Section 4.1.

It should also be emphasized that for data sets with small or middle sized training samples, the VCM still cannot always
guarantee a better performance than other classification techniques. This phenomenon can be easily observed in cases of the
disease diagnosis experiments. How to further improve the capability of the VCM in small-sample cases thus needs to be

http://archive.ics.uci.edu/ml/
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more investigated in our future research. Besides, further effort needs to be made to investigate the influence of data quality,
such as data mixed with noises, outliers and artifacts, to the performance of the VCM theoretically and empirically.
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