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Abstract

Compressed sensing (CS) states that a sparse signal can exactly be recovered from very few linear measurements.
While in many applications, real-world signals also exhibit additional structures aside from standard sparsity. The
typical example is the so-called block-sparse signals whose non-zero coefficients occur in a few blocks. In this article,
we investigate the mixed l2/lq(0 < q ≤ 1) norm minimization method for the exact and robust recovery of such
block-sparse signals. We mainly show that the non-convex l2/lq(0 < q < 1) minimization method has stronger
sparsity promoting ability than the commonly used l2/l1 minimization method both practically and theoretically. In
terms of a block variant of the restricted isometry property of measurement matrix, we present weaker sufficient
conditions for exact and robust block-sparse signal recovery than those known for l2/l1 minimization. We also
propose an efficient Iteratively Reweighted Least-Squares (IRLS) algorithm for the induced non-convex optimization
problem. The obtained weaker conditions and the proposed IRLS algorithm are tested and compared with the mixed
l2/l1 minimization method and the standard lq minimization method on a series of noiseless and noisy block-sparse
signals. All the comparisons demonstrate the outperformance of the mixed l2/lq(0 < q < 1) method for block-sparse
signal recovery applications, and meaningfulness in the development of new CS technology.
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1 Introduction
According to the Shannon/Nyquist sampling theorem
[1,2], if we would like to avoid lose of information when
capturing a signal, we must sample the signal at the so-
called Nyquist rate, which means twice the highest fre-
quency of the signal. Since the theorem only exploits the
bandlimitedness of a signal and most real-world signals
are sparse or compressible, the process of massive data
acquisition based on Shannon/Nyquist sampling theorem
usually samples too many useless information and even-
tually we have to compress to store or encode a very few
essential information of the signal. Obviously, this process
is extremely wasteful and therefore, a more effective sam-
pling way to directly acquire the essential information of a
signal has been expected.
Compressed sensing (CS) [3-5] was motivated by this

purpose and it can completely acquire the essential
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information of a signal by exploiting its compressibil-
ity. In a word, the main contribution of CS is that it
presents a new efficient scheme to capture and recover
the compressible or sparse signals at a reduced sampling
rate far below the Nyquist rate. The basic principle of
CS is that it first employs non-adaptive linear projec-
tions to preserve the structure of the signal; then one
can exactly recover these signals from a surprisingly small
number of random linear measurements through a non-
linear optimization procedure (such as l1-minimization) if
the measurement matrix satisfies some suitable sufficient
conditions in terms of restricted isometry property (RIP,
[6]). Consequently, CS implies that it is indeed possible
to acquire the data in already compressed form. Nowa-
days, driven by a wide range of applications, CS and other
related problems have attracted much interest in vari-
ous communities, such as in signal processing, machine
learning, and statistics.
Different from general sparse signals in conventional

sense, some real-world signals may exhibit some addi-
tional structures, i.e., the non-zero coefficients appear in
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a few fixed blocks, we refer to these signals as block-
sparse signals in this article. Such block-sparse signals
arise in various application problems, say, DNA microar-
rays [7,8], equalization of sparse communication channels
[9], source localization [10], wideband spectrum sensing
[11], and color imaging [12].
Using standard convex relaxation (l1-minimization) as

conventional CS framework for recovering the block-
sparse signal does not exploit the fact that the non-
zero elements of the signal appear in consecutive
positions. Therefore, one natural idea is considering the
block version of l1-minimization, i.e., the mixed l2/l1-
minimization, to exploit the block-sparsity. Many previ-
ous works have shown that the mixed l2/l1-minimization
is superior to standard l1-minimization when dealing with
such block-sparse signals [13-15]. Huang and Zhang [13]
developed a theory for the mixed l2/l1-minimization by
using a concept called strong group sparsity and they
demonstrated that the mixed norm minimization is very
efficient for recovering strongly group-sparse signals. Sto-
jnic et al. [15] obtained an optimal number of Gaussian
measurements for uniquely recovering a block-sparse sig-
nal through the mixed l2/l1 norm minimization. By gen-
eralizing the conventional RIP notion to the block-sparse
case, Eldar and Mishali [14] showed that if the measure-
ment matrix D has the same restricted isometry constant
as that in the l1 case, then the mixed norm method is
guaranteed to exactly recover any block-sparse signals in
the noiseless case. Furthermore, they also showed that
the block-sparse signal recovery would be robust in the
noisy case under the same recovery condition. Another
common approach to deal with the block-sparsity prob-
lem is by suitably extending the standard greedy meth-
ods, such as orthogonal matching pursuit, iterative hard
thresholding (IHT), and compressive sampling matching
pursuit (CoSaMP), to the block-sparse case. In [16], the
CoSaMP algorithm and the IHT algorithm were extended
to the model-based setting, treating the block-sparsity as
a special case. It was also shown that the new recovery
algorithms demonstrate provable performance guarantees
and robustness properties. Eldar et al. [17] generalized
the notion of coherence to the block-sparse setting and
proved that a block-version of the orthogonal matching
pursuit (BOMP) algorithm can exactly recover any block-
sparse signal if the block-coherence is sufficiently small.
In addition, the mixed l2/l1-minimization approach was
certified to guarantee successful recovery with the same
condition on block-coherence. Ben-Haim and Eldar [18]
examined the ability of greedy algorithms to estimate
a block-sparse signal from noisy measurements. They
derived some near-oracle results for the block-sparse ver-
sion of greedy pursuit algorithms both in the adversar-
ial noise and the Gaussian noise cases. Majumdar and
Ward [19] used BOMP to deal with the block-sparse

representation-based classification problem. The validity
and robustness of these new methods were theoretically
proved.
In recent years, several studies [20-27] have showed that

the non-convex lq (0 < q < 1) minimization allows the
exact recovery of sparse signals from fewer linear mea-
surements than that by l1-minimization. Chartrand and
Staneva [21] provided a weaker condition to guarantee
perfect recovery for the non-convex lq (0 < q < 1)
minimization method using a lq variant of the RIP. They
obtained the number of random Gaussian measurements
necessary for the successful recovery of sparse signals via
lq (0 < q < 1) minimization with high probability. Sun
[27] used the conventional RIP as in the l1 case to prove
that whenever q is chosen to be about 0.6796 × (1 − δ2k),
every k-sparse signal can exactly be recovered via lq min-
imization, here δ2k is the restricted isometry constant for
the measurement matrix. Xu et al. [24-26] considered a
specially important case (q = 1/2) of lq minimization.
They developed a thresholding representation theory for
l1/2 minimization and conducted a phase diagram study
to demonstrate the merits of l1/2 minimization.
This article presents an ongoing effort to extend the

non-convex lq(0 < q < 1) minimization methodology
to the setting of block-sparsity. Specifically, we will study
the performance of the block-sparse signal recovery via
the mixed l2/lq (0 < q < 1) norm minimization by
means of the block RIP (block-RIP). We first exhibit that
under similar RIP conditions with that in the standard lq
case, the mixed l2/lq recovery method can assuredly to
recover any block-sparse signal, irrespective to the loca-
tions of non-zero blocks. In addition, the method is robust
in the presence of noise. Our formulated recovery con-
ditions will show that the non-convex l2/lq(0 < q < 1)
minimization is superior to the convex l2/l1 minimiza-
tion within block-RIP framework. Furthermore, we will
compare the sparse signal recovery ability of the non-
convex l2/lq(0 < q < 1) method to the convex l2/l1
method and the standard lq method by conducting a series
of simulation studies. To the best of the authors’ knowl-
edge, although Majumdar and Ward [12] first proposed
the non-convex l2/lq(0 < q < 1) method in CS literature
for color imaging and showed that the l2/l0.4 minimization
has the best performance on some imaging experiments,
their works were experimental in feature and lack of con-
vincing theoretical assessment. As compared, our work
not only highlights theoretical merits of the non-convex
block optimization method, but also makes a more inten-
sive study on the block-sparse signal recovery capabilities
for some different values of q via numerical experiments.
We begin with our study in Section 2,3 and 4 by pre-

senting the problem setting. In Section 5, we establish
the sufficient conditions for the mixed l2/lq(0 < q <

1) optimization approach to guarantee exact and robust
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recovery of block-sparse signals in terms of block-RIP.
We also develop an efficient Iteratively Reweighted Least-
Squares (IRLS) algorithm to recover block-sparse signals
from given fewer measurements, which generalizes the
algorithm of [28] to the unconstrained l2/lq(0 < q ≤ 1)
norm minimization case in Section 6. In Section 7, we
show that the non-convex l2/lq(0 < q < 1) method has
stronger block-sparsity promoting ability than the convex
l2/l1 method and the standard lq method through a series
of simulations. Finally, we conclude the article in Section
8 with some useful remarks.

2 Block-sparsity
The conventional CS only consider the sparsity that the
signal x has at most k non-zero elements, and it does not
take into account any further structure. However, in many
practical scenarios, the non-zero elements are aligned to
blocks, meaning that they appear in regions. These signals
are referred to the block-sparse signals. Mathematically
speaking, a block-sparse signal x ∈ R

N over block index
set I = {d1, . . . , dm} can be modeled as follows:

x =[ x1 · · · xd1︸ ︷︷ ︸
x[1]

xd1+1 · · · xd1+d2︸ ︷︷ ︸
x[2]

· · · xN−dm+1 · · · xN︸ ︷︷ ︸
x[m]

]T .

(1)

Here, x[ i] denotes the ith block of x and di is the block
size for the ith block. The block-sparsity we consider in
this article means that there are at most k < m non-zero
blocks. Obviously, if d1 = · · · = dm = 1, the block-sparse
signals degenerate to the conventional sparse signals well
studied in CS.

Definition 1. ([14]). A block k-sparse signal over index
set I = {d1, . . . , dm} is a signal of the form (1) in which x[ i]
is non-zero for at most k indices i, i ∈ {1, 2, . . . ,m}.

The main focus of this study is to recover a block-
sparse signal x from random linear measurement y = �x
(noiseless case) or y = �x + z (noisy case). Here, y ∈
R
M is a vector, � ∈ R

M×N is a measurement matrix,
whose entries are usually randomly drawn from a Gaus-
sian or a Bernoulli distribution, and z is an unknown
bounded noise. We represent � as a concatenation of
column-blocks �[ i] of sizeM × di, that is,

� =[φ1 · · ·φd1︸ ︷︷ ︸
�[1]

φd1+1 · · ·φd1+d2︸ ︷︷ ︸
�[2]

· · ·φN−dm+1 · · ·φN︸ ︷︷ ︸
�[m]

] .

(2)

Then we are interested in formulating sufficient condi-
tions on the measurement matrix � under which a block-
sparse signal x can assuredly be and stably recovered from

its fewer noiseless measurements y = ∑m
i=1 �[ i] x[ i] or

noisy measurements y = ∑m
i=1 �[ i] x[ i]+z. Denote

‖x‖2,0 =
m∑
i=1

I(‖x[ i] ‖2 > 0), (3)

where I(‖x[ i] ‖2 > 0) is an indicator function, we then
notice that a block k-sparse signal x can be defined as
a vector that satisfies ‖x‖2,0 ≤ k. In the remainder of
the article, we will restrict our attention to how and in
what conditions these block-sparse signals can be recov-
ered exactly and stably in noiseless and noisy scenarios
respectively.

3 Block-RIP
Candes and Tao [6] first introduced the notion of RIP
of a matrix to characterize the condition under which
the sparsest solution of an underdetermined linear sys-
tem exists and can be found. And then the RIP was used
as a powerful tool to study CS in several previous works
[4,5,21,29]. Let� be amatrix of sizeM×N , whereM < N ,
we say thatmatrix� satisfies RIP of order k if there exists a
constant δk ∈[ 0, 1) such that for every x ∈ R

N (‖x‖0 ≤ k),

(1 − δk)‖x‖22 ≤ ‖�x‖22 ≤ (1 + δk)‖x‖22 (4)

Obviously, δk quantifies how close to isometric the all
M × k submatrices of � should be. Since the block-sparse
signals exhibit additional structure, Eldar andMishali [14]
extended the standard RIP to the block-sparse setting
and showed that the new block-RIP constant is typically
smaller than the standard RIP constant. Now we state the
new definition in block-sparse setting.

Definition 2. ([14]). Let � : RN → R
M be a M × N

measurement matrix. Then � is said to have the block-RIP
over I = {d1, . . . , dm} with constant δk|I if for every vector
x ∈ RN that is block k-sparse over I , it satisfies

(1 − δk|I)‖x‖22 ≤ ‖�x‖22 ≤ (1 + δk|I)‖x‖22. (5)

For convenience, in the remainder of the article, we still
use δk , instead of δk|I , to represent the block-RIP constant
whenever the confusion is not caused.
With the new notion, Eldar and Mishali [29] general-

ized the sufficient recovery conditions to the block-sparse
signals both in noiseless and noisy settings. They showed
that if � is taken random as conventional CS, it satisfies
the block-RIP with overwhelming probability. All these
results illustrated that one can recover a block-sparse
signal exactly and stably via the convex mixed l1/l2 min-
imization method whenever the measurement matrix �

is constructed from a random ensemble (i.e., Gaussian
ensemble).
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4 Non-convex recovery method
It is known from [14] that whenever � satisfies the block-
RIP with δ2k < 1, there is a unique block-sparse signal x
which can be recovered by solving the following problem:

min
x

‖x‖2,0
s.t. y = �x.

(6)

Unfortunately, the problem (6) is an NP-hard problem
and finding the optimal solution of (6) has exponential
complexity. In principle, one only can solve the prob-
lem exactly by searching over all possible sets of k blocks
whether there exists a vector consistent with the mea-
surements. Obviously, this approach is unable to deal with
high-dimensional signals.
One natural idea to find x more efficiently is to employ

a convex relaxation technique, namely, to replace the l2/l0
norm by its closest convex surrogate l2/l1 norm, thus
resulting in the following model:

min
x

‖x‖2,1
s.t. y = �x,

(7)

where ‖x‖2,1 = ∑m
i=1 ‖x[ i] ‖2. This model can be treated

as a second-order cone program (SOCP) problem and
many standard software packages can be used for the
solutions very efficiently. In many practical cases, the
measurements y are corrupted by bounded noise, then we
can apply themodified SOCP or the group version of basis
pursuit denoising [30] program as the following:

min
x

‖y − �x‖22 + λ‖x‖2,1, (8)

where λ is a tuning parameter, which controls the tol-
erance of the noise term. There are also many methods
to solve this optimization problem efficiently, such as the
block-coordinate descent technique [31] and the Landwe-
ber iterations technique [32].
As mentioned before, recent studies on non-convex CS

have indicated that one can reduce the number of required
linear measurements for successful recovery of a general
sparse signal by replacing the l0 norm by a non-convex
surrogate lq(0 < q < 1) quasi-norm, which moti-
vates us to generalize the better recovery capability of the
non-convex CS to the block-sparse setting. Therefore, we
suggest the use of the following non-convex optimization
model for recovery of block-sparse signals, that is,

min
x

‖x‖q2,q
s.t. ‖y − �x‖22 ≤ ε,

(9)

where ε ≥ 0 controls the noise error term (ε = 0 means
noiseless case) and ‖x‖2,q = (

∑m
i=1 ‖x[ i] ‖q2)1/q is a gen-

eralization of standard lq quasi-norm for 0 < q < 1.
Wewill show that this new non-convex recovery approach
can achieve better block-sparse recovery performance

both practically and theoretically when compared with
the commonly used convex l2/l1 minimization approach.
In the following section, we will provide some sufficient
conditions for exact and stable recovery of block-sparse
signals through the mixed l2/lq(0 < q < 1) norm mini-
mization, and further develop a similar IRLS algorithm as
in [28,33] for solutions of such non-convex optimization
problem.

5 Sufficient block-sparse recovery conditions
In this section, we first consider the recovery problem of
a high-dimensional signal x ∈ R

N in the noiseless set-
ting. Thus, we propose the constrained mixed l2/lq norm
minimization with 0 < q < 1:

min
x

‖x‖q2,q
s.t. y = �x,

(10)

where y ∈ R
M are available measurements, � is a known

M × N measurement matrix.
To state our main results, we need more notations. We

first consider the case where x is exactly block k-sparse.
We use Null(�) to denote the null space of � and
T to denote the block index set of non-zero blocks of the

signal x. Let x∗ be a solution of the minimization problem
(10). From [15], it is known that x∗ is the unique sparse
solution of (10) being equal to x if and only if

‖hT‖2,q < ‖hTc‖2,q
for all non-zero vector h in the null space of �. This is
called the null space property (NSP). In order to charac-
terize more accurately the NSP, one can consider the fol-
lowing equivalent form: There exists a smallest constant ρ
satisfying 0 < ρ < 1 such that

‖hT‖2,q ≤ ρ‖hTc‖2,q. (11)

When x is not exactly block sparse, Aldroubi et al. [34]
also showed that NSP actually guarantees stability. Pre-
cisely, if we use T to denote the block index set over the k
blocks with largest l2 norm of x, then the NSP (11) gives

‖x − x∗‖2 ≤ C‖xTc‖2,q
k1/q−1/2 (12)

hereC is a constant. Indeed, from (11), it is easy to see that
the following equality holds

sup
h∈Null(�),h �=0

(
∑

i∈T ‖h[ i] ‖q2)1/q
(
∑

i∈Tc ‖h[ i] ‖q2)1/q

= max
h∈Null(�),‖h‖2=1

(
∑

i∈T ‖h[ i] ‖q2)1/q
(
∑

i∈Tc ‖h[ i] ‖q2)1/q
which is denoted by ρ. In general, for h = x∗ − x, we let

‖hT‖2,q = γ (h, q)‖hTc‖2,q.



Wang et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:76 Page 5 of 17
http://asp.eurasipjournals.com/content/2013/1/76

Therefore, Our main point of the study is to show how
to make γ (h, q) < 1 for all non-zero vector h in the null
space of �. Our first conclusion is the following theorem.

Theorem 1. (Noiseless recovery). Let y = �x be mea-
surements of a signal x. If the matrix � satisfies the block
RIP (5) with

δ2k < 1/2,

then there exists a number q0(δ2k) ∈ (0, 1] such that for
any q < q0, the solution x∗ to themixed l2/lq problem (10)
obeys to

‖x − x∗‖2,q ≤ C0(q, δ2k)‖x − xT0‖2,q
‖x − x∗‖2 ≤ C1(q, δ2k)k1/2−1/q‖x − xT0‖2,q (13)

where C0(q, δ2k) and C1(q, δ2k) are positive constants
dependent on q and δ2k , T0 is the block index set over the
k blocks with largest l2 norm of the original signal x. In
particular, if x is block k-sparse, the recovery is exact.

Remark 1. Theorem 1 provides a sufficient condition
for the recovery of a signal x via l2/lq minimization with
0 < q < 1 in the noiseless setting. Focusing on the
case where x is block k-sparse, it is known [14] that
when the l2/l1 minimization scheme (7) is employed to
recover x, the sufficient condition on the block-RIP is that
δ2k < 0.414. As compared, Theorem 1 says that, when-
ever the non-convex l2/lq minimization scheme (10) is
used, this constant can be relaxed to δ2k < 0.5 for some
q < 1. This shows that similar as the standard sparse
signal recovery, when compared with the convex mini-
mization method, the non-convex minimization method
can enhance performance of block-sparse signal recovery.

To prove Theorem 1, we need the following Lemmas:

Lemma 1. ([14]).

|〈�x,�x′〉| ≤ δk+k′ ‖x‖2‖x′‖2 (14)

for all x, x′ supported on disjoint subsets T ,T ′ ⊆
{1, 2, . . . ,N} with |T | < k and |T ′| < k′.

Lemma 2. ([35]). For any fixed q ∈ (0, 1) and x ∈ R
N ,

‖x‖2 ≤ ‖x‖q
N1/q−1/2 + √

N( max
1≤i≤N

|xi| − min
1≤i≤N

|xi|). (15)

Proof of Theorem 1. Set x∗ = x + h be a solution
of (10), where x is the original signal we need to recon-
struct. Throughout the article, xT will denote the vector
equal to x on an index set T and zero elsewhere. Let T0
be the block index set over the k blocks with largest l2

norm of x. And we decompose h into a series of vectors
hT0 ,hT1 ,hT2 , . . . ,hTJ , such that

h =
J∑
i
hTi .

Here hTi is the restriction of h to the set Ti and each Ti
consists of k blocks (except possibly TJ ). Rearranging the
block indices such that ‖hTj [ 1] ‖2 ≥ ‖hTj [ 2] ‖2 ≥ · · · ≥
‖hTj [ k] ‖2 ≥ ‖hTj+1 [ 1] ‖2 ≥ ‖hTj+1 [ 2] ‖2 ≥ · · · , for any
j ≥ 1.
Note that

‖h‖2=‖hT0
⋃

T1 +h(T0
⋃

T1)c‖2 ≤ ‖hT0
⋃

T1‖2+‖h(T0
⋃

T1)c‖2.
(16)

For any j ≥ 2, if we let dj = (‖hTj [ 1] ‖2, ‖hTj [ 2] ‖2, . . . ,
‖hTj [ k] ‖2), then we have

‖dj‖2 =
⎛
⎝ k∑

i=1
‖hTj [ i] ‖22

⎞
⎠1/2

= ‖hTj‖2,

‖dj‖q =
⎛
⎝ k∑

i=1
‖hTj [ i] ‖q2

⎞
⎠1/q

= ‖hTj‖2,q,

max
1≤i≤k

|dj(i)| = max
1≤i≤k

‖hTj [ i] ‖2 = ‖hTj‖∞,T , (17)

min
1≤i≤k

|dj(i)| = min
1≤i≤k

‖hTj [ i] ‖2.

From Lemma 2, it follows that

‖dj‖2 ≤ ‖dj‖q
k1/q−1/2 + k1/2(max

1≤i≤k
|dj(i)| − min

1≤i≤k
|dj(i)|),

that is,

‖hTj‖2 ≤ ‖hTj‖2,q
k1/q−1/2 +k1/2(‖hTj‖∞,T − min

1≤i≤k
‖hTj [ i] ‖2).

(18)

From Equation (18), we obtain

k1/q−1/2
∑
j≥2

‖hTj‖2 ≤
∑
j≥2

‖hTj‖2,q + k1/q(‖hTj‖∞,T

− min
1≤i≤k

‖hTj [ i] ‖2)

≤
∑
j≥2

‖hTj‖2,q + k1/q‖hT2‖∞,T

≤
∑
j≥2

‖hTj‖2,q + k1/q‖hT1‖2,q/k1/q

=
∑
j≥1

‖hTj‖2,q

≤
⎛
⎝∑

j≥1
‖hTj‖q2,q

⎞
⎠1/q

,

(19)
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where we have used the fact that (a + b)q ≤ aq + bq for
non-negative a and b. Therefore, we have

∑
j≥2

‖hTj‖2 ≤ 1
k1/q−1/2

⎛
⎝∑

j≥1
‖hTj‖q2,q

⎞
⎠1/q

. (20)

On the other hand, let
‖hT0‖2,q = γ (h, q)‖hTc

0
‖2,q,

‖hT1‖q2,q = t
∑
i≥1

‖hTi‖q2,q, t ∈[ 0, 1] . (21)

Since ‖hT2 [ 1] ‖2 ≥ ‖hT2 [ 2] ‖2 ≥ · · · ≥ ‖hT2 [ k] ‖2 ≥
‖hT3 [ 1] ‖2 ≥ ‖hT3 [ 2] ‖2 ≥ · · · , it is easy to see that∑

i≥2
‖hTi‖22 ≤ ‖hT2 [ 1] ‖2−q

2
∑
j≥2

‖hTj‖q2,q

≤ ((‖hT1 [ 1] ‖q2 + ‖hT1 [ 2] ‖q2 + · · ·
+ ‖hT1 [ k] ‖q2)/k)(2−q)/q

∑
j≥2

‖hTj‖q2,q

= (‖hT1‖q2,q/k)
2−q
q

∑
j≥2

‖hTj‖q2,q

= (‖hT1‖q2,q/k)
2−q
q

⎛
⎝∑

j≥1
‖hTj‖q2,q − ‖hT1‖q2,q

⎞
⎠

= (‖hT1‖q2,q/k)
2−q
q

(
1
t
‖hT1‖q2,q − ‖hT1‖q2,q

)

= 1 − t

tk
2−q
q

‖hT1‖22,q

= 1 − t

t1−2/qk
2−q
q

⎛
⎝∑

j≥1
‖hTj‖q2,q

⎞
⎠2/q

.

(22)

By the definition of the block-RIP, Lemma 1, (20) and (22),
it then implies that

‖�(
∑
j≥2

hTj)‖22

=
∑
i,j≥2

〈�(hTi),�(hTj)〉

=
∑
j≥2

〈�(hTj),�(hTj)〉 + 2
∑

i,j≥2,i<j
〈�(hTi),�(hTj)〉

≤ (1 + δk)
∑
j≥2

‖hTj‖22 + 2δ2k
∑
j>i≥2

‖hTi‖2‖hTj‖2

≤
∑
j≥2

‖hTj‖22 + δ2k

⎛
⎝∑

j≥2
‖hTj‖2

⎞
⎠2

≤
(

1 − t

t1−2/qk
2−q
q

+ δ2kk1−2/q
) ⎛

⎝∑
j≥1

‖hTj‖q2,q
⎞
⎠2/q

.

(23)

Since �x = �x∗, we have �h = 0, thus �(hT0 + hT1) = −
�

(∑
j≥2

hTj

)
. Therefore,

‖�(hT0 + hT1)‖22 ≤
(

1 − t

t1−2/qk
2−q
q

+ δ2kk1−2/q
)

×
⎛
⎝∑

j≥1
‖hTj‖q2,q

⎞
⎠2/q

,

(24)

By the definition of δ2k and using Hölder’s equality, we
then further have

‖�(hT0 + hT1)‖22
≥ (1 − δ2k)‖hT0 + hT1‖22
= (1 − δ2k)(‖hT0‖22 + ‖hT1‖22) (25)
≥ (1 − δ2k)(k1−2/q‖hT0‖22,q + k1−2/q‖hT1‖22,q)
= (1 − δ2k)k1−2/q

×
⎛
⎜⎝γ (h, q)2‖hTc

0
‖22,q + t2/q

⎛
⎝∑

i≥1
‖hTi‖q2,q

⎞
⎠2/q

⎞
⎟⎠

= (1 − δ2k)k1−2/q(γ (h, q)2 + t2/q)

⎛
⎝∑

i≥1
‖hTi‖q2,q

⎞
⎠2/q

.

By Equations (24) and (25),

γ (h, q)2 ≤
(

1 − t
t1−2/q

) /
(1 − δ2k)

/ − t2/q .= f (t).

Through a straightforward calculation, it is easy to get that
the maximum of f (t) occurs at t0 = 1−q/2

2−δ2k
and

f (t0) = δ2k
2−q
2−δ2k

+ q( 1−q/2
2−δ2k

)2/q

2−q
2−δ2k

(1 − δ2k)
.

If f (t0) < 1, then we have γ (h, q) < 1. However, f (t0) <

1 amounts to

δ2k
2 − q
2 − δ2k

+ q
(
1 − q/2
2 − δ2k

)2/q
<

2 − q
2 − δ2k

(1 − δ2k).

or, equivalently,

δ2k + q
22/q+1

(
2 − q
2 − δ2k

)2/q−1
<

1
2

(26)

Since the second term on the left-hand side of (26) goes to
zero as q → 0+ whenever q ≤ 1, δ2k < 1, and

q
22/q+1

(
2 − q
2 − δ2k

)2/q−1
≤ q

(
2 − q
2

)2/q
≈ q

e
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We thus obtain that for δ2k < 1/2, there exists a value
q0 = q0(δ2k) ∈ (0, 1] such that for all q ∈ (0, q0) the above
inequality (26) is true.
From the definition of γ (h, q), we have

‖hT0‖22,q ≤ δ2k
2−q
2−δ2k

+ q( 1−q/2
2−δ2k

)2/q

2−q
2−δ2k

(1 − δ2k)
‖hTc

0
‖22,q.

As ‖x∗‖q = ‖x+h‖q is theminimum, using the equation
x∗ = x + hT0 + hTc

0
, we get

‖x‖q2,q = ‖xT0‖q2,q + ‖xTc
0
‖q2,q

≥ ‖x∗‖q2,q = ‖x + hT0 + hTc
0
‖q2,q

= ‖(x + hT0 + hTc
0
)T0‖q2,q + ‖(x + hT0 + hTc

0
)Tc

0
‖q2,q

= ‖x + hT0‖q2,q + ‖hTc
0
‖q2,q

≥ ‖x‖q2,q − ‖hT0‖q2,q + ‖hTc
0
‖q2,q

≥ ‖xT0‖q2,q − ‖hT0‖q2,q + ‖hTc
0
‖q2,q − ‖xTc

0
‖q2,q.

(27)
Since ‖x‖q2,q = ‖xT0‖q2,q + ‖xTc

0
‖q2,q, this then implies

‖hTc
0
‖q2,q ≤ ‖hT0‖q2,q + 2‖xTc

0
‖q2,q

≤
⎛
⎝δ2k

2−q
2−δ2k

+ q( 1−q/2
2−δ2k

)2/q

2−q
2−δ2k

(1 − δ2k)

⎞
⎠q/2

‖hTc
0
‖q2,q

+ 2‖xTc
0
‖q2,q,

That is,

‖hTc
0
‖q2,q ≤ 2

1 −
(

δ2k
2−q

2−δ2k
+q( 1−q/2

2−δ2k
)2/q

2−q
2−δ2k

(1−δ2k)

)q/2 ‖xTc
0
‖q2,q.

(28)
Thus, we have

‖h‖q2,q = ‖hT0‖q2,q + ‖hTc
0
‖q2,q

≤
⎛
⎜⎝

⎛
⎝ δ2k

2−q
2−δ2k

+ q( 1−q/2
2−δ2k

)2/q

2−q
2−δ2k

(1 − δ2k)

⎞
⎠q/2

+ 1

⎞
⎟⎠ ‖hTc

0
‖q2,q

≤
2

((
δ2k

2−q
2−δ2k

+q( 1−q/2
2−δ2k

)2/q

2−q
2−δ2k

(1−δ2k)

)q/2
+ 1

)

1 −
(

δ2k
2−q

2−δ2k
+q( 1−q/2

2−δ2k
)2/q

2−q
2−δ2k

(1−δ2k)

)q/2 ‖xTc
0
‖q2,q

= Cq
q‖xTc

0
‖q2,q.

(29)
This justifies that the first equality of (13) is proved. In the
following, we further prove the second equality of (13).
In effect, from (24) and (25), we have

‖hT0∪T1‖22 ≤

(
1−t

t1−2/qk
2−q
q

+ δ2kk1−2/q
) (∑

j≥1
‖hTj‖q2,q

)2/q

1 − δ2k
(30)

which, together with (22) and (30), then implies

‖h‖2 ≤
√

‖hT0
⋃

T1‖22 + ‖h(T0
⋃

T1)c‖22

≤

√√√√√√√
(

1−t

t1−2/qk
2−q
q

+ δ2kk1−2/q
) (∑

j≥1
‖hTj‖q2,q

)2/q

1 − δ2k
+ 1 − t

t1−2/qk
2−q
q

⎛
⎝∑

j≥1
‖hTj‖q2,q

⎞
⎠2/q

=

√√√√√√
⎛
⎜⎝

1−t

t1−2/qk
2−q
q

+ δ2kk1−2/q

1 − δ2k
+ 1 − t

t1−2/qk
2−q
q

⎞
⎟⎠

⎛
⎝∑

j≥1
‖hTj‖q2,q

⎞
⎠2/q

=
√
k1−2/q( 1−t

t1−2/q + δ2k + (1 − δ2k)
1−t
t1−2/q )

1 − δ2k

⎛
⎝∑

j≥1
‖hTj‖q2,q

⎞
⎠1/q

= k1/2−1/q

√
(2 − δ2k)(1 − t)t2/q−1 + δ2k

1 − δ2k

⎛
⎝∑

j≥1
‖hTj‖q2,q

⎞
⎠1/q

≤ k1/2−1/q

√
(2 − δ2k)q(2 − q)2/q−1 + 22/qδ2k

(1 − δ2k)22/q

⎛
⎝∑

j≥1
‖hTj‖q2,q

⎞
⎠1/q

(31)
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where we have used the fact that

max
t∈[0,1]

(1 − t)t2/q−1 = (1 − t)t2/q−1|t=1−q/2

= q
2

(
1 − q

2

)2/q−1

By (28), we further have⎛
⎝∑

j≥1
‖hTj‖q2,q

⎞
⎠1/q

≤ 21/q‖xTc
0
‖2,q

(1 − (f (t0))q/2)1/q

≤ 22/q−1‖xTc
0
‖2,q

(1 − (f (t0))q/2)1/q

(32)

Thus, it follows from (31) and (32) that

‖h‖2 ≤ k1/2−1/q

√
(2 − δ2k)q(2 − q)2/q−1 + 22/qδ2k

(1 − δ2k)22/q

22/q−1‖xTc
0
‖2,q

(1 − (f (t0))q/2)1/q
(33)

= C1(q, δ2k)‖xTc
0
‖2,q

k1/q−1/2

That is, the second inequality in (13) holds. With this, the
proof of Theorem 1 is completed.
We further consider the recovery problem of any high-

dimensional signals in the presence of noise. In this
situation, the measurement can be expressed as

y = �x + z,

where z ∈ R
N is an unknown noise term. In order

to reconstruct x, we adopt the unconstraint mixed l2/lq
minimization scheme with 0 < q < 1:

min
x

‖x‖q2,q
s.t. ‖y − �x‖2 ≤ ε,

(34)

where ε > 0 is a bound on the noisy level. We below show
that one can also recover x stably and robustly under the
same assumption as those in Theorem 1.

Theorem 2. (Noisy recovery). Let y = �x + z(‖z‖2 ≤
ε) be noisy measurements of a signal x. If the matrix �

satisfies the block RIP (5) with

δ2k < 1/2,

then there exists a number q0(δ2k) ∈ (0, 1] such that for
any q < q0, the mixed l2/lq method (34) can stably and
robustly recover the original signal x. More precisely, the
solution x∗ of (34) obeys to

‖x − x∗‖2 ≤ C1(q, δ2k)‖xTc
0
‖2,q

k1/q−1/2 + C2(q, δ2k)ε (35)

where C1(q, δ2k) and C2(q, δ2k) are positive constants
dependent on q and δ2k , T0 is the block index set over the
k blocks with largest l2 norm of the original signal x.

Remark 2. The inequality (35) in Theorem 2 offers an
upper bound estimation on the recovery of themixed l2/lq
minimization (q ∈ (0, q0)). In particular, this estimation
shows that the recovery accuracy of the mixed l2/lq min-
imization can be controlled by the degree of sparsity of
the signal and the exponential number q. It reveals also
the close connections among the recovery precision of the
mixed l2/lq minimization method may achieve, the spar-
sity of the signal and the index q used in the recovery
procedure. In addition, the estimation (35) shows that the
recovery precision of the method (34) can be bounded by
the noise level. In this sense, Theorem 2 shows that under
certain conditions, a block k-sparse signal can be robustly
recovered by the method (34).

Proof of Theorem 2. The proof of Theorem 2 is similar
to the procedure of the proof of Theorem 1 with minor
differences.
To be more detail, we also set x∗ = x + h. Due to the

existence of noise, in this case, h is not necessarily in the
null space of � any more. But we can still prove Theorem
2 under the same assumption.
We still denote by T0 the block index set over the k

blocks with largest l2 norm of x, and hT0 the restriction
of h onto these blocks. We also denote hTj(j ≥ 1) similar
to the proof of Theorem 1. By ‖z‖2 ≤ ε and the triangle
inequality, we first have

‖�h‖2 = ‖�(x−x∗)‖2 ≤ ‖�x−y‖2+‖�x∗ −y‖2 ≤ 2ε.
(36)

Since�(hT0+hT1) = �(h)−�

(∑
j≥2

hTj

)
, from definition

of the block-RIP, we get

(1 − δ2k)‖hT0
⋃

T1‖22 = (1 − δ2k)(‖hT0‖22 + ‖hT1‖22)
≤ ‖�(hT0

⋃
T1)‖22

= ‖�h −
∑
j≥2

�(hTj)‖22

≤
⎛
⎝‖�h‖2 + ‖

∑
j≥2

�(hTj)‖2
⎞
⎠2

≤
⎛
⎝2ε + ‖

∑
j≥2

�(hTj)‖2
⎞
⎠2

(37)

Hence,

‖hT0‖22 + ‖hT1‖22 ≤

(
2ε + ‖ ∑

j≥2
�(hTj)‖2

)2

1 − δ2k
(38)
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On the other hand,

‖hT0‖22 + ‖hT1‖22 ≥ k1−2/q‖hT0‖22,q + k1−2/q‖hT1‖22,q
(39)

From (38) and (39), we thus have

‖hT0‖22,q

≤
k2/q−1(2ε + ‖ ∑

j≥2
�(hTj)‖2

)2 − (1 − δ2k)‖hT1‖22,q
1 − δ2k

≤
(2ε(2k)1/q−1/2)2 + 4(2k)1/q−1/2ε · (k/2)1/q−1/2‖ ∑

j≥2
�(hTj)‖2 + k2/q−1‖ ∑

j≥2
�(hTj)‖22 − (1 − δ2k)‖hT1‖22,q

1 − δ2k
(40)

Let ‖hT1‖q2,q = t
∑
i≥1

‖hTi‖q2,q, t ∈[ 0, 1] and we also have

(23), thus

(k/2)1/q−1/2‖
∑
j≥2

�(hTj )‖2

≤
√

(1 − t)t2/q−1 + δ2k
22/q−1

⎛
⎝∑

j≥1
‖hTj‖q2,q

⎞
⎠1/q (41)

If we denote

g(t) .= (1 − t)t2/q−1 + δ2k
22/q−1 ,

then, by a easy calculation, we can easily obtain that the
maximum of g(t) occurs at t1 = 2−q

2 and

g(t1) = δ2k + q
2 (

2−q
2 )2/q−1

22/q−1 ≤ δ2k+ q
22/q

(
2 − q
2 − δ2k

)2/q−1

Therefore, we have

(k/2)1/q−1/2‖
∑
j≥2

�(hTj )‖2

≤
√

δ2k + q
22/q

(
2 − q
2 − δ2k

)2/q−1
⎛
⎝∑

j≥1
‖hTj‖q2,q

⎞
⎠1/q (42)

By (23) and the condition of f (t) in the proof of Theorem
1, we also have

k2/q−1‖
∑
j≥2

�(hTj )‖22 − (1 − δ2k)‖hT1‖22,q

≤ (1 − δ2k)f (t)
( ∑
j≥1

‖hTj‖q2,q
)2/q

≤ (1 − δ2k)f (t0)
( ∑
j≥1

‖hTj‖q2,q
)2/q

=
(
δ2k + q

22/q
( 2 − q
2 − δ2k

)2/q−1
)( ∑

j≥1
‖hTj‖q2,q

)2/q
(43)

Plugging (42) and (43) into (40), it is easy to see that

‖hT0‖2,q ≤ 2(2k)1/q−1/2ε√
1 − δ2k

+ √
f (t0)

⎛
⎝∑

j≥1
‖hTj‖q2,q

⎞
⎠1/q

Consequently, we obtain

‖hT0‖q2,q ≤ (2(2k)1/q−1/2ε)q

(1 − δ2k)q/2
+ (f (t0))q/2

⎛
⎝∑

j≥1
‖hTj‖q2,q

⎞
⎠

(44)

In the following, we further prove that f (t0) < 1 one can
obtain the conclusion of Theorem 2. Precisely, under the
same condition on δ2k , we can prove Theorem 2.
Note that from (27), we also have

∑
j≥1

‖hTj‖q2,q ≤ ‖hT0‖q2,q + 2‖xTc
0
‖q2,q

Plugging (44) into the above inequality and by f (t0) < 1,
one can show that

∑
j≥1

‖hTj‖q2,q ≤ (2(2k)1/q−1/2ε)q

(1 − δ2k)q/2(1 − (f (t0))q/2)

+ 2‖xTc
0
‖q2,q

1 − (f (t0))q/2

Since ‖v‖q ≤ 21/q−1‖v‖1 for v ∈ R
2, we further have

⎛
⎝∑

j≥1
‖hTj‖q2,q

⎞
⎠1/q

≤ 22/q−1/2k1/q−1/2ε√
1 − δ2k(1 − (f (t0))q/2)1/q

+ 22/q−1‖xTc
0
‖2,q

(1 − (f (t0))q/2)1/q

(45)
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and by (37), (22), and (23), we also have

‖h‖22 = ‖hT0
⋃

T1‖22 + ‖h(T0
⋃

T1)c‖22 ≤
(2ε + ‖ ∑

j≥2
�(hTj)‖2)2

1 − δ2k
+

∑
j≥2

‖hTj‖22

≤

⎛
⎝2ε + ( 1−t

t1−2/qk
2−q
q

+ δ2kk1−2/q)1/2

(∑
j≥1

‖hTj‖q2,q
)1/q

⎞
⎠2

1 − δ2k
+ 1 − t

t1−2/qk
2−q
q

⎛
⎝∑

j≥1
‖hTj‖q2,q

⎞
⎠2/q

(46)

since
√

(a + √
b)2 + c ≤ a + √

b + c(a, b, c > 0), it gives

‖h‖2 ≤

√√√√√√√√
⎛
⎝2ε +

(
1−t

t1−2/qk
2−q
q

+ δ2kk1−2/q
)1/2

(∑
j≥1

‖hTj‖q2,q
)1/q

⎞
⎠2

1 − δ2k
+ 1 − t

t1−2/qk
2−q
q

⎛
⎝∑

j≥1
‖hTj‖q2,q

⎞
⎠2/q

≤ 2ε√
1 − δ2k

+

√√√√√√√
(

1−t

t1−2/qk
2−q
q

+ δ2kk1−2/q
) (∑

j≥1
‖hTj‖q2,q

)2/q

1 − δ2k
+ 1 − t

t1−2/qk
2−q
q

⎛
⎝∑

j≥1
‖hTj‖q2,q

⎞
⎠2/q

= 2ε√
1 − δ2k

+

√√√√k1−2/q
(

1−t
t1−2/q + δ2k + (1 − δ2k)

1−t
t1−2/q

)
1 − δ2k

⎛
⎝∑

j≥1
‖hTj‖q2,q

⎞
⎠1/q

= 2ε√
1 − δ2k

+ k1/2−1/q

√
(2 − δ2k)(1 − t)t2/q−1 + δ2k

1 − δ2k

⎛
⎝∑

j≥1
‖hTj‖q2,q

⎞
⎠1/q

≤ 2ε√
1 − δ2k

+ k1/2−1/q

√
(2 − δ2k)q(2 − q)2/q−1 + 22/qδ2k

(1 − δ2k)22/q

⎛
⎝∑

j≥1
‖hTj‖q2,q

⎞
⎠1/q

(47)

where we have used the fact that

max
t∈[0,1]

(1 − t)t2/q−1 ≤ (1 − t)t2/q−1|t=1−q/2 = q
2

(
1 − q

2

)2/q−1

Thus, it then follows from (45) and (47) that
‖h‖2

≤ 2ε√
1 − δ2k

+ k1/2−1/q

√
(2 − δ2k)q(2 − q)2/q−1 + 22/qδ2k

(1 − δ2k)22/q

×
(

22/q−1/2k1/q−1/2ε√
1 − δ2k(1 − (f (t0))q/2)1/q

+ 22/q−1‖xTc
0
‖2,q

(1 − (f (t0))q/2)1/q

)

= k1/2−1/q

√
(2 − δ2k)q(2 − q)2/q−1 + 22/qδ2k

(1 − δ2k)

21/q−1‖xTc
0
‖2,q

(1 − (f (t0))q/2)1/q

+ 2ε√
1 − δ2k

⎛
⎝1 + k1/2−1/q

√
(2 − δ2k)q(2 − q)2/q−1 + 22/qδ2k

(1 − δ2k)

21/q−3/2

(1 − (f (t0))q/2)1/q

⎞
⎠

= C1(q, δ2k)‖xTc
0
‖2,q

k1/q−1/2 + C2(q, δ2k)ε

(48)

This arrives to the conclusion of Theorem 2.
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6 An IRLS algorithm
Inspired by the ideas of [28,33], in this section, we present
an efficient IRLS algorithm for the solution of the mixed
l2/lq norm minimization problem (34). We first rewrite
the problem as the following regularized version of the
unconstrained smoothed l2/lq minimization:

min
x

‖x‖ε,q
2,q + 1

2τ
‖y − �x‖22, (49)

where τ is an regularization parameter and

‖x‖ε,q
2,q =

m∑
i=1

(‖x[ i] ‖22 + ε2)q/2.

Let J2,q(x, ε, τ) be the objective function associated with
(49), that is,

J2,q(x, ε, τ) =
m∑
i=1

(‖x[ i] ‖22 + ε2)q/2 + 1
2τ

‖y − �x‖22.

(50)

Then, the first-order necessary optimality condition for
the solution of x is[

qx[ i]
(ε2 + ‖x[ i] ‖22)1−q/2

]
1≤i≤m

+ 1
τ

�T (�x − y) = 0.

Hence, we define the diagonal weighting matrix W as
Wi = diag(q1/2(ε2 + ‖x[ i] ‖22)q/4−1/2) for ith block, and
after simple calculations, we can obtain the following
necessary optimality condition:

(τW 2 + �T�)x = �Ty. (51)

Due to the nonlinearity, there is no straightforward
method to solve the above system of equations. But if we
fixW = W (t) to be that determined already in the tth iter-
ation step, the solution of (51), set as the (t + 1)th iterate,
then can be found to be

x(t+1) = (W (t))−1(�(W (t))−1)T

× (�(W (t))−1 + τ I)−1(�(W (t))−1)Ty.
(52)

This defines a nature iterative method for solution of
(49). We formalize such reweighted algorithm as the
following:

Algorithm 1. An IRLS algorithm for the unconstrained
smoothed l2/lq (0 < q <≤ 1)minimization problem

Step 1. Initializex(0) = argminx ‖y − �x‖22 and k̂ be
the estimated block-sparsity. Set ε0 = 1, t = 0.

Step 2. while loop do

W (t) ← diag(q1/2(ε2t + ‖x(t)[ i] ‖22)q/4−1/2),
i = 1, . . . ,m

A(t) ← �(W (t))−1

x(t+1) ← (W (t))−1((A(t))T (A(t)) + τ I)−1(A(t))Ty
εt+1 ← min{εt ,αr(x(t+1))k̂+1/N}

t ← t + 1

untilεt+1 = 0 otherwise repeat the above
computation within a reasonable time
Step 3. Output x(t+1) to be an approximation solution.

In Algorithm 1, r(x)k̂+1 is the (k̂ + 1)th largest l2 norm
value of the block of x in the decreasing order, α ∈ (0, 1)
is a number such that αr(x(1))/N < 1, and τ is an appro-
priately chosen parameter which controls the tolerance of
noise term. Although the best τ may change continuously
with respect to noise level, we used the fixed value of τ in
our numerical implementations.
Obviously, from the update equation (52), we can see

that x(t) can be understood as the minimizer of
1
2τ

‖y − �x‖22 + 1
2
‖W (t)x‖22.

Due to the iteratively fixing feature of W (t), this gives
the name IRLS. Majumdar and Ward [12] first adopted
the IRLS methodology to solve a non-convex l2/lq block-
sparse optimization problem. But their algorithm is
unsuitable for noisy block-sparse recovery. Lai et al. [28]
proposed an IRLS algorithm for the unstrained lq(0 <

q ≤ 1) minimization problem and they made an detailed
analysis which includes convergence, local convergence
rate and error bound of the algorithm. To some extent,
our proposed algorithms can be considered as a gener-
alization of their algorithm to the setting of block-sparse
recovery.
Note that {εt} in Algorithm 1 is a bounded non-

increasing sequence, which must converge to some ε∗ ≥
0. Then using a similar argument as that in [28], we can
prove that x(t) must have a convergent subsequence and
the limit of the subsequence is a critical point of (50)
whenever ε∗ > 0. In addition, there exists a conver-
gent subsequence whose limit x∗ is a sparse vector with
block-sparsity ‖x∗‖2,0 ≤ k̂ when ε∗ = 0. Furthermore,
we can also verify the super-linear local convergence
rate for the proposed Algorithm 1. Due to space limi-
tations, we leave the detailed analysis to the interested
reader.

7 Numerical experiments
In this section, we conduct two numerical experiments
to compare the non-convex l2/lq(0 < q < 1) mini-
mization method with the l2/l1 minimization method and
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the standard lq(0 < q ≤ 1) method in the context of
block-sparse signal recovery. Note that this is possible
because Algorithm 1 can apply to the standard lq(0 <

q ≤ 1) minimization method too. For all compared
methods, we use the same starting point x(0) = argminx
‖y − �x‖22.
In our experiments, the measurement matrix � was

generated by creating an M × N matrix with i.i.d draws
from a standard Gaussian distribution N(0, 1). We con-
sidered four different values of q = 0.1, 0.5, 0.7, 1 for both
the l2/lq minimization method and the lq minimization
method. The purpose of experiments was to compare the
recovery performance of the mixed l2/lq method and the
lq method for block-sparse signals without noise and with
noise respectively.

7.1 Noiseless recovery
In this set of experiments, we considered the case that
the signals were perfectly measured without noise. We
first randomly generated the block-sparse signal x with
values chosen from a Gaussian distribution of mean 0
and standard deviation 1 and then randomly drew a
measurement matrix � from Gaussian ensemble. Then
we observed the measurements y from the model y =
�x. In all the experiment cases, if εt+1 < 10−7 or

‖x(t+1) − x(t)‖2 < 10−8, the iteration terminates and out-
puts x(t+1) as an approximation solution of original signal
x; otherwise, we let the algorithms run to the maxi-
mum number of iterations max = 2000. We also set
parameters τ and α to 10−5 and 0.7. We tested Algo-
rithm 1 for different initial block-sparsity estimates and
did find that any overestimated k̂ of k would yield simi-
lar results. A typical simulation result is shown in Figure 1.
Therefore, for simplicity, we set k̂ = k + 1 in our
implementation.
Figure 2a depicts an instance of the generated block-

sparse signal with signal length N = 512. There are
128 blocks with uneven block size and 16 active blocks
with the sparsity: k0 = ‖x‖0 = 101. Figure 2b–d shows
that the recovery results by the standard lq method with
q = 1, the standard lq method with q = 0.5, and the
mixed l2/l1 method, respectively, when M = 225. Since
the sample size M is only around 2.2 times the signal
sparsity k0, the standard l1 method does not yield good
recovery results, whereas the mixed l2/l1 method and
the non-convex lq(q = 0.5) method achieve near perfect
recovery of the original signal. The results illustrate that
if one incorporates the block-sparsity structure into the
recovery procedure, the block version of convex l1 min-
imization does also reduce the number of measurement
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Figure 1 A typical simulation result with different estimated block-sparsity. The randomly generated signals have length N = 256,m = 64
uneven size blocks, and k = 9 active blocks with total sparsity k0 = 22. We observedM = 64 measurements and the average RMSE over 100
independent random trails in the logarithmic scale is shown.
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Figure 2 Recovery results withM = 225. (a) Original signal; (b) results with l1 minimization (RMSE = 0.1301); (c) results with lq(q = 0.5)
minimization (RMSE = 0.000061); (d) results with l2/l1 minimization(RMSE = 0.000033).

as the standard non-convex lq minimization with some
q < 1.
We further compared the recovery performance of the

standard lq method and the mixed l2/lq method for dif-
ferent values of q. Figure 3 shows a similar instance as
Figure 2. We generated a block-sparse signal with the
same non-zero block locations as in Figure 2a, and we
observed M = 144 measurements that is only around
1.4 times the signal sparsity k0. From Figure 3, we can see
that only the non-convex l2/lq method with q = 0.5, 0.1
achieve near optimal recovery results while other meth-
ods fail. The results illustrate that for any q ≤ 0.5, the
mixed l2/lq method can exactly recover the original signal.
In addition, the results also demonstrate the outperfor-
mance of the non-convex mixed l2/lq(0 < q < 1)
method over the standard non-convex lq(0 < q < 1)
method.
Figure 4a shows the effect of sample size, where we

report the average root mean squares error (RMSE) over
100 independent random trails in the logarithmic scale
for each sample size. In this case, we set signal length
N = 256, and there are 64 blocks with uneven block size
and the k = 4 active blocks were randomly extracted
from the 64 blocks. The figure indicates the decay in

recovery error as a function of sample size for all the algo-
rithms. We can observe that both the lq and the mixed
l2/lq methods improve the recovery performance as q
decreases, and for a fixed q, the mixed l2/lq method is
clearly superior to the standard lq method in this block-
sparse setting. To further study the effect of the active
block number k (with k0 fixed), we drew a matrix �

of size 128 × 256 from Gaussian ensemble. We also set
the signal x with the even block size and the total spar-
sity k0 = 64. The block size was changed while keeping
other parameters unchanged. Figure 4b shows the aver-
age RMSE over 100 independent random runs in the
logarithmic scale. One can easily see that the recovery
performance for the standard lq method is independent
to the active block number, while the recovery errors
for the mixed l2/lq method are significantly better when
the active block number k is far smaller than the total
signal sparsity k0. As expected, the performance of the
mixed l2/lq method becomes identical to the standard lq
method when k = k0. This illustrates that the mixed
method favors large sized block when the total sparsity
k0 is fixed. Moreover, similar to the standard lq method,
the mixed l2/lq method performs better and better as
q decreases.
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Figure 3 Recovery results withM = 144. (a) Original signal; (b) results with lq(q = 0.7) minimization (RMSE = 0.3589); (c) results with lq(q = 0.5)
minimization (RMSE = 0.3857); (d) results with lq(q = 0.1) minimization (RMSE = 0.4124); (e) results with l2/l1 minimization (RMSE = 0.1688); (f) results
with l2/lq(q = 0.7) minimization (RMSE = 0.1164); (g) results with l2/lq(q = 0.5) minimization (RMSE = 4.21 × 10−7); (h) results with l2/lq(q = 0.1)
minimization (RMSE = 8.23 × 10−8).

7.2 Noisy recovery
In this experiment, we considered the case of recover-
ing the block-sparse signals in the presence of noise. We
observed the measurements y from the model y = �x+z,
here � and x were generated as the last subsection and
z was zero-mean Gaussian noise with standard deviation
σ . In our implementation of this experiment, we set τ =
10−1 max |�Ty| and kept other parameters unchanged.
Table 1 lists the comparison results of the relative

errors of the true solutions and the approximate solu-
tions yielded, respectively, by the mixed l2/lq method
and the lq method with active block number k varying
in {4, 12}, sample size r = M/k0 in{3, 4}, and the noise
level σ in {0.02, 0.05, 0.10}. Here, the relative errors are
defined as ‖x − x∗‖2/‖x‖2. It is reported in Table 1 that
the average relative errors and the standard deviations
over 100 random trails. From the table, it is seen that,
for a fixed q, the mixed l2/lq method always get better
results than the standard lq method. And in the low-noisy
cases (say, σ = 0.02, 0.05), as q decreases, the mixed
l2/lq method improves the recovery performance. How-
ever, when σ = 0.10, the mixed l2/lq method is not always
able to improve the recovery results when q ≤ 0.7. Thus,

we may reasonably infer that there exits a q0 ≤ 0.1 such
that for any q < q0, all the l2/lq minimization can obtain
similar recovery results when the noise level is low (σ =
0.02, 0.05); while there exits a q0 ≤ 0.7 such that as q < q0
decreases, the mixed l2/lq method is unable to improve
the recovery results when σ = 0.10.

8 Conclusion
In this article, we have investigated the block-sparse
recovery performance of the mixed l2/lq minimization
approach, especially for the non-convex case of 0 <

q < 1. Under the assumption that the measurement
matrix � has the RIP with δ2k < 1/2, we have proved
that the non-convex l2/lq(0 < q < 1) method can
exactly and stably recover original block-sparse signals
in noiseless case and noisy case, respectively. The suf-
ficient recovery condition we obtained is weaker than
those of l2/l1 method (δ2k < 0.414), which implies
the better block-sparse recovery ability of the mixed
l2/lq(0 < q < 1) method. We have conducted a
series of numerical experiments to support the correct-
ness of the theory and the outperformance of the mixed
method.
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Figure 4 Recovery performance: (a) average RMSE (log-scale) versus sample size ratioM/k0; (b) average RMSE (log-scale) versus active
block number k.

Our study so far is only concerned with the block-
sparse signal recovery without overlapping blocks. While
inmany real applications, such as the gene expression data
in bioinformatics, the blocks of elements could potentially
be overlapped. Rao et al. [36] derived some tight bounds
for the number of measurements required for exact and
stable recovery of block-sparse signals with overlapping
blocks by the mixed l2/l1 minimization method. Their
analysis can naturally be extended to the non-convex
l2/lq(0 < q < 1) method. All these extensions will be part
of our future research.
Although our simulation studies in this article demon-

strate clearly that the recovery ability of the mixed l2/lq
method would be better and better as q decreases, there
is still lack of further theoretical analysis to support for
such observation. The works of [37,38] addressed the
block-sparse recovery ability by an accurate analysis of the
breakdown behavior of the mixed l2/l1 method. One could
then have an interest in extending these results to the case
of the mixed l2/lq(0 < q < 1) method as well. It is noted
that since the resultant mixed minimization problem is

Table 1 Comparison results (‖x − x∗‖2/‖x‖2) of randomly
generated signals with lengthN = 256 andm = 64
uneven size blocks bymixed l2/lq method and lq method
with four different values of q and two different sampling
sizes r = M/k0

σ = 0.02 σ = 0.05 σ = 0.10

k = 4, r = 3

Lasso 0.535 ± 0.153 0.543 ± 0.153 0.572 ± 0.153

lq(q = 0.7) 0.467 ± 0.184 0.458 ± 0.177 0.504 ± 0.209

lq(q = 0.5) 0.472 ± 0.185 0.469 ± 0.206 0.507 ± 0.225

lq(q = 0.1) 0.355 ± 0.243 0.364 ± 0.251 0.461 ± 0.253

Group Lasso 0.283 ± 0.149 0.332 ± 0.175 0.426 ± 0.208

l2/lq(q = 0.7) 0.159 ± 0.125 0.189 ± 0.173 0.312 ± 0.268

l2/lq(q = 0.5) 0.145 ± 0.095 0.168 ± 0.117 0.313 ± 0.201

l2/lq(q = 0.1) 0.064 ± 0.042 0.118 ± 0.103 0.324 ± 0.263
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Table 1 Comparison results (‖x − x∗‖2/‖x‖2) of randomly
generated signals with lengthN = 256 andm = 64
uneven size blocks bymixed l2/lq method and lq method
with four different values of q and two different sampling
sizes r = M/k0 (Continued)
k = 4, r = 4

Lasso 0.363 ± 0.093 0.397 ± 0.106 0.421 ± 0.105

lq(q = 0.7) 0.308 ± 0.112 0.327 ± 0.112 0.332 ± 0.102

lq(q = 0.5) 0.307 ± 0.115 0.309 ± 0.105 0.320 ± 0.095

lq(q = 0.1) 0.179 ± 0.083 0.177 ± 0.093 0.240 ± 0.112

Group Lasso 0.193 ± 0.078 0.222 ± 0.064 0.306 ± 0.130

l2/lq(q = 0.7) 0.126 ± 0.060 0.130 ± 0.048 0.182 ± 0.061

l2/lq(q = 0.5) 0.112 ± 0.059 0.120 ± 0.063 0.156 ± 0.052

l2/lq(q = 0.1) 0.041 ± 0.032 0.062 ± 0.024 0.178 ± 0.099

k = 12, r = 3

Lasso 0.419 ± 0.063 0.434 ± 0.059 0.444 ± 0.058

lq(q = 0.7) 0.382 ± 0.064 0.397 ± 0.065 0.399 ± 0.062

lq(q = 0.5) 0.359 ± 0.064 0.372 ± 0.063 0.374 ± 0.057

lq(q = 0.1) 0.162 ± 0.040 0.183 ± 0.047 0.221 ± 0.051

Group Lasso 0.244 ± 0.046 0.264 ± 0.052 0.291 ± 0.046

l2/lq(q = 0.7) 0.164 ± 0.036 0.182 ± 0.048 0.198 ± 0.036

l2/lq(q = 0.5) 0.129 ± 0.039 0.148 ± 0.048 0.168 ± 0.034

l2/lq(q = 0.1) 0.042 ± 0.018 0.073 ± 0.018 0.154 ± 0.048

k = 12, r = 4

Lasso 0.350 ± 0.040 0.362 ± 0.054 0.373 ± 0.048

lq(q = 0.7) 0.330 ± 0.048 0.336 ± 0.053 0.333 ± 0.051

lq(q = 0.5) 0.309 ± 0.049 0.313 ± 0.051 0.308 ± 0.050

lq(q = 0.1) 0.138 ± 0.033 0.149 ± 0.023 0.189 ± 0.037

Group Lasso 0.202 ± 0.030 0.214 ± 0.069 0.242 ± 0.038

l2/lq(q = 0.7) 0.143 ± 0.029 0.153 ± 0.028 0.175 ± 0.030

l2/lq(q = 0.5) 0.109 ± 0.029 0.124 ± 0.026 0.155 ± 0.027

l2/lq(q = 0.1) 0.038 ± 0.014 0.069 ± 0.013 0.157 ± 0.041

non-convex, it seems very difficult to make such similar
theoretical analysis and perhaps we need more powerful
tools of geometric functional analysis for the extension.
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