
Extra Lecture - 1gac1/pykc - 3-Oct-03 ISE1/EE2 Computing

Extra Lecture: Number Systems

� Objectives - To understand:
� Base of number systems: decimal, binary, octal and hexadecimal

� Textual information stored as ASCII
� Binary addition/subtraction, multiplication
� Binary logical operations

� Unsigned and signed binary number systems
� Fixed point binary representations
� Floating point representations

� By the end of the lecture, you should be able to:
� Convert between numbers represented in different bases
� Convert between fixed point and floating point numbers

� Perform simple binary arithmetic and logical operations
� Read and interpret hexadecimal numbers with reasonable speed

Extra Lecture - 2gac1/pykc - 3-Oct-03 ISE1/EE2 Computing

Decimal number system

� We are familiar with decimal number representation. For example:

� The value of this number is calculated as:

� In general, the relationship between the
contribution of a digit, its position, and the
base of the system is given by: � Usually, we restrict

0 ≤ DIGIT ≤ BASE - 1

Extra Lecture - 3gac1/pykc - 3-Oct-03 ISE1/EE2 Computing

The bases of a number system

� There is no reason why one should be restricted to using
base-10 (decimal) numbers only.

� Digital computers use a binary number system where the base
(or radix) is 2:

� For example, the value of this
binary number is:

Extra Lecture - 4gac1/pykc - 3-Oct-03 ISE1/EE2 Computing

Converting decimal integers to binary

� Repeatedly divide the decimal number by 2 (the base of
the binary system).

� Division by 2 will either give a remainder of 1 or 0.
� Collecting the remainders (LSB first!) gives the binary

answer.
� Convert 1110 into binary

Answer: 1 0 1 1

2 11

2 5 r 1

2 2 r 1
2 1 r 0

2 0 r 1

Extra Lecture - 5gac1/pykc - 3-Oct-03 ISE1/EE2 Computing

Octal and hexadecimal number systems

run out of
“normal”
digit symbols

Extra Lecture - 6gac1/pykc - 3-Oct-03 ISE1/EE2 Computing

Nibbles, Bytes, Words

� Internal datapaths inside computers could be different width - for
example 4-bit, 8-bit, 16-bit or 32-bit.

� For example: ARM processor uses 32-bit internal datapath
� WORD = 32-bit for ARM (byte and nibble are architecture

independent)

MSB LSB

0781516232432

Word

Byte

Nibble

Extra Lecture - 7gac1/pykc - 3-Oct-03 ISE1/EE2 Computing

Hexadecimal representation

� Convenient to divide any size of binary numbers into nibbles

� Represent each nibble as hexadecimal – think of the human!

� Example:

0100 1101 0110 1011 1000 0011 0000 1111
4 D 6 B 8 3 0 F

� This is possible because 16 is a power of 2

� Converting from decimal to hexadecimal is the same as converting
to binary, except, divide by 16 instead of 2:

16 237

16 14 r 13

0 r 14
Answer: E D h

Extra Lecture - 8gac1/pykc - 3-Oct-03 ISE1/EE2 Computing

Representing Text in ASCII

� Textual information must also be stored as binary numbers.

� Each character is represented as a 7-bit number known as ASCII
codes (American Standard Code for Information Interchange)

� For example, ‘A’ is represented by 41h and ‘a’ by 61h

b6 - b4

b3 - b0

Extra Lecture - 9gac1/pykc - 3-Oct-03 ISE1/EE2 Computing

Signed numbers

� So far, numbers are assumed to be unsigned (i.e. positive)

� How to represent signed numbers?

� Solution 1: Sign-magnitude - Use one bit to represent the sign,
the remain bits to represent magnitude

� Advantage: easy human reasoning – it’s what we use

� Problem: addition and subtraction require quite complex circuits

s magnitude

067

0 = +ve
1 = -ve

+27 = 0001 1011b
-27 = 1001 1011b

Extra Lecture - 10gac1/pykc - 3-Oct-03 ISE1/EE2 Computing

Two’s complement

� Solution 2: Two’s complement – represent a negative number x
by the number 2^N + x, in an n-bit representation:

� Example: Encode –27 in 8 bit two’s complement –

� So long as we only want to represent numbers with magnitude less
than 2^(N-1), the MSB is still the sign bit

� Example: Encode 27 in 8 bit two’s complement –

256 – 27 = 229
22910 = 1110 0101b

2710 = 0001 1011b

Extra Lecture - 11gac1/pykc - 3-Oct-03 ISE1/EE2 Computing

Two’s complement

� Another view of two’s complement is to represent a negative
number by taking its magnitude, inverting all bits and adding one:

� Why is this the same?

� Inverting all bits is the same as subtracting the number from 11….1:

� So inverting and then adding one is the same as subtracting from
11….1 + 1 = 100….0 = 2^N

Positive number +27 = 0001 1011b
Invert all bits 1110 0100b
Add 1 -27 = 1110 0101b

“All ones” 1111 1111b
Positive number +27 = 0001 1011b
Subtraction 1110 0100b

“All ones” 1111 1111b
Add 1 0000 0001b

Extra Lecture - 12gac1/pykc - 3-Oct-03 ISE1/EE2 Computing

Two’s complement

� A third (and final!) way to view two’s complement is that the weight
of position i is 2^i except the MSB, which has negative weight

� Why is this the same?

� If we interpreted this as an unsigned number, it would be

� If x is negative, sign bit bN-1 is 1, so difference is y – x = 2^N,
i.e. y = 2^N + x

0
0

1
1

2
2

1
1 2222 bbbbx N

N
N

N ++•••++−= −
−

−
−

0
0

1
1

2
2

1
1 2222 bbbby N

N
N

N ++•••++= −
−

−
−

-27 = 1110 0101b = -128 + 64 + 32 + 4 + 1

Extra Lecture - 13gac1/pykc - 3-Oct-03 ISE1/EE2 Computing

Why 2’s complement representation?

� If we represent signed numbers in 2’s complement form,
subtraction is the same as addition to the (2’s complemented)
number (if we ignore any carry out)

� Note that the range for 8-bit unsigned and signed numbers are
different.
� 8-bit unsigned: 0 …… +255
� 8-bit 2’s complement signed number: -128 …… +127

27 0001 1011b
- 17 0001 0001b

+ 10 0000 1010b

+27 0001 1011b
+ - 17 1110 1111b

+10 0000 1010b

Extra Lecture - 14gac1/pykc - 3-Oct-03 ISE1/EE2 Computing

Sign Extension

� How to translate an 8-bit 2’s complement number to a 16-bit 2’s
complement number?

� This operation is known as sign extension.

� Result is the same: trivially so for positive numbers

s

2026-27

s ………………………...

2026-215

s

duplicate sign bit

Extra Lecture - 15gac1/pykc - 3-Oct-03 ISE1/EE2 Computing

Sign Extension

� For negative numbers, consider a 1-bit sign extension

1

2026-27

1

2027-28

1

difference
128-(-128) = 256

difference
-256

Total difference = 0

i.e. same number!

Extra Lecture - 16gac1/pykc - 3-Oct-03 ISE1/EE2 Computing

� So far, we have concentrated on integer representation with the
fractional part.

� There is an implicit binary point to the right:

� In general, the binary point can be in the middle of the word (or off
the end!)

Fixed point representation

S

0N-1

 implicit binary point

S

0N-1

binary point

Extra Lecture - 17gac1/pykc - 3-Oct-03 ISE1/EE2 Computing

Idea of floating point representation

� Although fixed point representation can cope with numbers with
fractions, the range of values that can represented is still limited.

� Alternative: use the equivalent of “scientific notation”, but in binary:

number = s x m x 2e

� For example:

sign mantissa exponent

10.5 in fixed point 1010.1b
Move binary point to left 1.0101b x 23

10.5 = 1.3125 x 8

Extra Lecture - 18gac1/pykc - 3-Oct-03 ISE1/EE2 Computing

IEEE-754 standard floating point

� 32-bit single precision floating point:

� MSB is sign-bit (same as fixed point)

� 8-bit exponent in bias-127 integer format (i.e. store 127+exponent)

� 23-bit to represent only the fractional part of the mantissa. The MSB
of the mantissa is ALWAYS ‘1’, therefore it is not stored

S 8-bit exp

31 0

23-bit frac

222330

single
precision

3838

127

107.110175.1

.121

×<<×

××−=
−

−

x

fracx exps

