Extra Lecture: Number Systems

4 Objectives - To understand:
+ Base of number systems: decimal, binary, octal and hexadecimal
Textual information stored as ASCI|I
Binary addition/subtraction, multiplication
Binary logical operations
Unsigned and signed binary number systems
Fixed point binary representations
Floating point representations

R/
L X4

X3

S

e

*¢

e

S

3

*¢

%

S

¢ By the end of the lecture, you should be able to:
+ Convert between numbers represented in different bases
+ Convert between fixed point and floating point numbers
% Perform simple binary arithmetic and logical operations
+ Read and interpret hexadecimal numbers with reasonable speed

gacl/pykc - 3-Oct-03 ISE1/EE2 Computing Extra Lecture - 1

Decimal number system

¢ We are familiar with decimal number representation. For example:

Hundreds Tens Ones Tenths Hundredths
102 10! 100 10-1 10-2
4 6 2 1 5
& The value of this number is calculated as: | 2+#102 - 4%*100 = 400.
6*101 = 6*10 = 60.
2%100 = 2%*1 = 2.
1*10-1 = 1*.1 = 0.1
5%10-2 = 5*.01 = + 0.05
. . 462.15
¢ In general, the relationship between the

contribution of a digit, its position, and the

base of the system is given by: & Usually, we restrict

0<DIGIT <BASE -1

DIGIT * BASE POSITION #

gacl/pykc - 3-Oct-03 ISE1/EE2 Computing Extra Lecture - 2

The bases of a number system

¢ There is no reason why one should be restricted to using

base-10 (decimal) numbers only.

¢ Digital computers use a binary number system where the base

(or radix) is 2: DIGIT * 2 POSITION #
Fours Twos Ones Halves Fourths
22 21 2-1 2-2
1 1 1 1
& For example, the value of this 1*2:2L - e = -
binary number is: ir27 = Ax2 = 2.
0*20 = 0*1 = .,
1*2-1 = 1*%.5 = 0155
1*2-2 = 1*.25 = + 0.25
6.75
gacl/pykc - 3-Oct-03 ISE1/EE2 Computing Extra Lecture - 3

Converting decimal integers to binary

¢ Repeatedly divide the decimal number by 2 (the base of

the binary system).

< Division by 2 will either give a remainder of 1 or 0.
¢ Collecting the remainders (LSB first!) gives the binary

answer.
¢ Convert 11,, into binary

2111
2 5
2| 2 r
2 1

2 O0r 1
1

1
1
0

Answer: 1 0 1 1

gacl/pykc - 3-Oct-03 ISE1/EE2 Computing

Extra Lecture - 4

Octal and hexadecimal number systems

Binary Octal Decimal Hexadecimal
0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 - 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 10 8 8
1001 11 9 9
1010 12 10 A
1011 13 1 B run out of
1100 14 12 C T ”
1101 15 13 D normal
1110 16 14 E digit symbols
1111 17 15 F g Sy
Base-2 Base-8 Base-10 Base-16
gacl/pykc - 3-Oct-03 ISE1/EE2 Computing Extra Lecture - 5

Nibbles, Bytes, Words

¢ Internal datapaths inside computers could be different width - for
example 4-bit, 8-bit, 16-bit or 32-bit.

¢ For example: ARM processor uses 32-bit internal datapath

¢ WORD = 32-bit for ARM (byte and nibble are architecture

independent)
32 24 23 16 15 8 7 0
MSB LSB
| I NlbbleI
Byte

|
Word

gacl/pykc - 3-Oct-03 ISE1/EE2 Computing Extra Lecture - 6

Hexadecimal representation

¢ Convenient to divide any size of binary numbers into nibbles
¢ Represent each nibble as hexadecimal — think of the human!
¢ Example:

0100 1101 0110 1011 1000 0011 0000 1111

4 D 6 B 8 3 0 F
¢ This is possible because 16 is a power of 2

¢ Converting from decimal to hexadecimal is the same as converting
to binary, except, divide by 16 instead of 2:

16 | 237

16 14 r 13
0O ri4
Answer: ED ,

gacl/pykc - 3-Oct-03 ISE1/EE2 Computing Extra Lecture - 7

Representing Text in ASCII

¢ Textual information must also be stored as binary numbers.

¢ Each character is represented as a 7-bit number known as ASCII
codes (American Standard Code for Information Interchange)

¢ For example, ‘A’ is represented by 41, and ‘a’ by 61,

bs - by

o 1 2 3 4 5 b 7 @ 9 A B C D E F

O |MUL|SOH:STHIETKIEQT {ENQ ;ACK|BEL | BS | HT | LF VT?FF?ER 50%5\

1 DLE (DCH1iDC2iDC3iDCA|MAK: SYMETE |CAN, EM SUB | | .
25PE!"#$%8-"[]*+,— /
be_b439123456789:;<=>?
s |@A:B:C:DOEEFGHI JKLMND
s/IPORSTUUWRY ZIT N1~ _

sl abcdefghijklmno
pqrstuvwyryz{ |} ~m

gacl/pykc - 3-Oct-03 ISE1/EE2 Computing Extra Lecture - 8

Signed numbers

¢ So far, numbers are assumed to be unsigned (i.e. positive)
¢ How to represent signed numbers?

¢ Solution 1: Sign-magnitude - Use one bit to represent the sign,
the remain bits to represent magnitude

7 6 0

+27 =0001 1011,

0=+ve S magnitude -27 = 1001 1011,

1=-ve

% Advantage: easy human reasoning — it's what we use
% Problem: addition and subtraction require quite complex circuits

gacl/pykc - 3-Oct-03 ISE1/EE2 Computing Extra Lecture - 9

Two’s complement

¢ Solution 2: Two’s complement — represent a negative number x
by the number 2*N + x, in an n-bit representation:

¢ Example: Encode —-27 in 8 bit two’s complement —

256 — 27 = 229
229,, = 1110 0101,

¢ So long as we only want to represent numbers with magnitude less
than 2”°(N-1), the MSB is still the sign bit

¢ Example: Encode 27 in 8 bit two’s complement —

27,, = 0001 1011,

gacl/pykc - 3-Oct-03 ISE1/EE2 Computing Extra Lecture - 10

Two’s complement

¢ Another view of two’s complement is to represent a negative
number by taking its magnitude, inverting all bits and adding one:

Positive number +27 = 0001 1011,
Invert all bits 1110 0100,
Add 1 -27 =11100101,
¢ Why is this the same?
¢ Inverting all bits is the same as subtracting the number from 11....1:

“All ones” 1111 1111,
Positive number +27 = 0001 1011,
Subtraction 1110 0100,

¢ So inverting and then adding one is the same as subtracting from
11....1+1=100....0=2"N

“All ones” 1111 1111,
Add 1 0000 0001,

gacl/pykc - 3-Oct-03 ISE1/EE2 Computing Extra Lecture - 11

Two’s complement

¢ A third (and final') way to view two’s complement is that the weight
of position i is 27 except the MSB, which has negative weight

x=—by_ 2V +by .2V ? +eee+b 2" +1)2°

-27 =11100101,=-128+64+32+4 +1

¢ Why is this the same?
¢ If we interpreted this as an unsigned number, it would be

y=b,_ 2" +b ,2" " +eee+p 2" +b 2°

& If x is negative, sign bit b, is 1, so difference is y — x = 2"N,
i.e.y=2"N + x

gacl/pykc - 3-Oct-03 ISE1/EE2 Computing Extra Lecture - 12

Why 2’s complement representation?

¢ If we represent signed numbers in 2's complement form,

subtraction is the same as addition to the (2's complemented)
number (if we ignore any carry out)

27 0001 1011,
- 17 0001 0001,
+10 0000 1010,
+27 0001 1011,
+ - 17 1110 1111,
+10 0000 1010,
¢ Note that the range for 8-bit unsigned and signed numbers are
different.
+ 8-bit unsigned: 0...... +255
% 8-bit 2’'s complement signed number: -128 +127

gacl/pykc - 3-Oct-03 ISE1/EE2 Computing Extra Lecture - 13

Sign Extension

¢ How to translate an 8-bit 2’'s complement number to a 16-bit 2's
complement number?

-27 26 20
S

o5 O esign bit - -

T S

¢ This operation is known as sign extension.
¢ Result is the same: trivially so for positive numbers

gacl/pykc - 3-Oct-03 ISE1/EE2 Computing Extra Lecture - 14

Sign Extension

¢ For negative numbers, consider a 1-bit sign extension

27 26 20
1
d£f5f6er ence difference
128-(-128) = 256
v
.28 27 20
111

Total difference =0

i.e. same number!

gacl/pykc - 3-Oct-03

ISE1/EE2 Computing

Extra Lecture - 15

Fixed point representation

P ey .

et

¢ So far, we have concentrated on integer representation with the

fractional part.

& There is an implicit binary point to the right:

N-1

S

implicit binary point J

¢ In general, the binary point can be in the middle of the word (or off

the end!)

N-1

S

[]
binary point _T

gacl/pykc - 3-Oct-03

ISE1/EE2 Computing

Extra Lecture - 16

|dea of floating point representation

¢ Although fixed point representation can cope with numbers with
fractions, the range of values that can represented is still limited.

¢ Alternative: use the equivalent of “scientific notation”, but in binary:

number= s x m x 2¢

/NN

sign mantissa exponent

¢ For example:

10.5 in fixed point 1010.1,
Move binary point to left 1.0101, x 23

10.5= 1.3125 x 8

gacl/pykc - 3-Oct-03 ISE1/EE2 Computing Extra Lecture - 17

IEEE-754 standard floating point

¢ 32-bit single precision floating point:

31 30 23 22 0

single

e S 8-bit exp 23-bit frac
precision

A= B3 bl ifrae

il iy loE b <AL T U

¢ MSB is sign-bit (same as fixed point)
¢ 8-bit exponent in bias-127 integer format (i.e. store 127+exponent)

¢ 23-bit to represent only the fractional part of the mantissa. The MSB
of the mantissa is ALWAYS ‘1’, therefore it is not stored

gacl/pykc - 3-Oct-03 ISE1/EE2 Computing Extra Lecture - 18

