Extra Lecture: Number Systems

- Objectives - To understand:
* Base of number systems: decimal, binary, octal and hexadecimal
* Textual information stored as ASCII
* Binary addition/subtraction, multiplication
* Binary logical operations
* Unsigned and signed binary number systems
* Fixed point binary representations
* Floating point representations
- By the end of the lecture, you should be able to:
* Convert between numbers represented in different bases
* Convert between fixed point and floating point numbers
* Perform simple binary arithmetic and logical operations
* Read and interpret hexadecimal numbers with reasonable speed

Decimal number system

- We are familiar with decimal number representation. For example:

Hundreds	Tens	Ones	Tenths	Hundredths
10^{2}	10^{1}	10^{0}	10^{-1}	10^{-2}
$\mathbf{4}$	$\mathbf{6}$	$\mathbf{2}$.	$\mathbf{1}$
$\mathbf{5}$				

- The value of this number is calculated as:

$4 * 10^{2}$	$=$	$4 * 100$	$=$
	400		
$6 * 10^{1}$	$=6 * 10$	$=$	60.
$2 * 10^{0}=$	$2 * 1$	$=$	2.
$1 * 10^{-1}=$	$1 * .1=$	0.1	
$5 * 10^{-2}=$	$5 * .01$	$=$	+0.05

- In general, the relationship between the contribution of a digit, its position, and the base of the system is given by:
- Usually, we restrict $0 \leq$ DIGIT \leq BASE - 1

The bases of a number system

- There is no reason why one should be restricted to using base-10 (decimal) numbers only.
- Digital computers use a binary number system where the base (or radix) is 2: DIGIT * 2 POSIIIION \#

Fours	Twos	Ones	Halves	Fourths
2^{2}	2^{1}	2^{0}	2^{-1}	2^{-2}
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	\cdot	$\mathbf{1}$
$\mathbf{1}$				

- For example, the value of this binary number is:

$1 * 2^{2}$	$=$	$1 * 4$	$=$
	4.		
$1 * 2^{1}=$	$1 * 2$	$=$	2.
$0 * 2^{0}=$	$0 * 1$	$=$	0.
$1 * 2^{-1}=$	$1 * .5$	$=$	0.5
$1 * 2^{-2}=$	$1 * .25$	$=$	+0.25

Converting decimal integers to binary

Repeatedly divide the decimal number by 2 (the base of the binary system).

- Division by 2 will either give a remainder of 1 or 0 .
- Collecting the remainders (LSB first!) gives the binary answer.
- Convert 11_{10} into binary

Answer: 1011

Binary	Octal	Decimal	Hexadecimal	
0000	0	0	0	
0001	1	1	1	
0010	2	2	2	
0011	3	3	3	
0100	4	4	4	
0101	5	5	5	
0110	6	6	6	
0111	7	7	7	
1000	10	8	8	
1001	11	9	9	
1010	12	10	A	
1011	13	11	B	run out of
1100	14	12	C	"normal"
1101	15	13	D	normal
1110	16	14	E	digit symbols
1111	17	15	F	∇,
Base-2	Base-8	Base-10	Base-16	

Nibbles, Bytes, Words

- Internal datapaths inside computers could be different width - for example 4-bit, 8-bit, 16-bit or 32-bit.
- For example: ARM processor uses 32-bit internal datapath
- WORD = 32-bit for ARM (byte and nibble are architecture independent)

- Convenient to divide any size of binary numbers into nibbles
- Represent each nibble as hexadecimal - think of the human!
- Example:

01001101011010111000001100001111

4
D 6
B
8
3
0
F

- This is possible because 16 is a power of 2
- Converting from decimal to hexadecimal is the same as converting to binary, except, divide by 16 instead of 2 :

16	237	
16	14 r 13 0 r	14

Answer: E D ${ }_{h}$

Representing Text in ASCII

- Textual information must also be stored as binary numbers.
- Each character is represented as a 7-bit number known as ASCII codes (American Standard Code for Information Interchange)
- For example, ' A ' is represented by 41_{h} and 'a' by 61_{h}

	$\mathrm{b}_{3}-\mathrm{b}_{0}$																
	0	1	2	3	4	5				9	A	в	c	D			
	NuL	sor	stx	етх\|	Eot	Eno	ACK	bel	BS	HT	Lf	vt	fF	CR	5		
	OLE	001	DC2	ocz	Oca	NAK		ETB	can	EM	sue	Esc	Fs	65	R		
2	SPC	!		\#	\$	\%	8		(J	*	+		-			
	0	1	2	3	4	5	6	7	8	9	:	;	<	$=$?
	@	A	B	C	D	E	F	G	H	1	J	K	L	M	N		0
5	P	0	R	5	T	U	U	W	4	Y	Z	I	1]			
6		a	b	c	d	e	1	9	h	i	J	K	1	m			
	p	9	r	s	t	U	U	w	4	y	z	1		\}	\sim		

Signed numbers

- So far, numbers are assumed to be unsigned (i.e. positive)
- How to represent signed numbers?
- Solution 1: Sign-magnitude - Use one bit to represent the sign, the remain bits to represent magnitude

	7		
$0=+v e$	S	magnitude	$-27=10011011_{b}$

* Advantage: easy human reasoning - it's what we use
* Problem: addition and subtraction require quite complex circuits

Two's complement

- Solution 2: Two's complement - represent a negative number x by the number $2^{\wedge} N+x$, in an n-bit representation:
- Example: Encode -27 in 8 bit two's complement -

$$
\begin{aligned}
& 256-27=229 \\
& 229_{10}=11100101_{b}
\end{aligned}
$$

- So long as we only want to represent numbers with magnitude less than $2^{\wedge}(\mathrm{N}-1)$, the MSB is still the sign bit
- Example: Encode 27 in 8 bit two's complement -

$$
27_{10}=00011011_{b}
$$

Two's complement

- Another view of two's complement is to represent a negative number by taking its magnitude, inverting all bits and adding one:

Positive number $\quad+27=00011011^{\text {b }}$
Invert all bits $\quad 11100100^{\text {b }}$
Add $1 \quad-27=11100101_{b}$

- Why is this the same?
- Inverting all bits is the same as subtracting the number from 11....1:
"All ones"
Positive number Subtraction

1111 1111b $+27=00011011_{b}$
11100100^{b}

- So inverting and then adding one is the same as subtracting from $11 \ldots .1+1=100 \ldots . .0=2^{\wedge} \mathrm{N}$
"All ones" 1111 1111 ${ }^{\text {b }}$
Add $1 \quad 00000001^{\text {b }}$

Two's complement

- A third (and final!) way to view two's complement is that the weight of position i is $2^{\wedge} i$ except the MSB, which has negative weight

$$
\begin{gathered}
x=-b_{N-1} 2^{N-1}+b_{N-2} 2^{N-2}+\bullet \bullet \bullet+b_{1} 2^{1}+b_{0} 2^{0} \\
-27=11100101_{\mathrm{b}}=-128+64+32+4+1
\end{gathered}
$$

- Why is this the same?
- If we interpreted this as an unsigned number, it would be

$$
y=b_{N-1} 2^{N-1}+b_{N-2} 2^{N-2}+\bullet \bullet \bullet+b_{1} 2^{1}+b_{0} 2^{0}
$$

- If x is negative, sign bit b_{N-1} is 1 , so difference is $y-x=2^{\wedge} N$, i.e. $y=2^{\wedge} N+x$

Why 2's complement representation?

- If we represent signed numbers in 2's complement form, subtraction is the same as addition to the (2's complemented) number (if we ignore any carry out)

27	00011011_{b}
-17	00010001_{b}
+10	00001010_{b}
$+\mathbf{+ 2 7}$	00011011_{b}
+-17	11101111_{b}
+10	00001010_{b}

- Note that the range for 8-bit unsigned and signed numbers are different.
* 8-bit unsigned:
0 +255
* 8-bit 2's complement signed number: -128 +127

Sign Extension

- How to translate an 8-bit 2's complement number to a 16-bit 2's

- This operation is known as sign extension.
- Result is the same: trivially so for positive numbers

Sign Extension

- For negative numbers, consider a 1-bit sign extension

difference
-256
difference
$128-(-128)=256$
Total difference $=0$
i.e. same number!

Fixed point representation

- So far, we have concentrated on integer representation with the fractional part.
- There is an implicit binary point to the right:

- In general, the binary point can be in the middle of the word (or off the end!)

Idea of floating point representation

- Although fixed point representation can cope with numbers with fractions, the range of values that can represented is still limited.
- Alternative: use the equivalent of "scientific notation", but in binary:

- For example:
10.5 in fixed point

Move binary point to left
$1010.1_{\text {b }}$
$1.0101_{\mathrm{b}} \times 2^{3}$

$$
10.5=1.3125 \times 8
$$

IEEE-754 standard floating point

-32-bit single precision floating point:

- MSB is sign-bit (same as fixed point)
- 8-bit exponent in bias-127 integer format (i.e. store 127+exponent)
- 23-bit to represent only the fractional part of the mantissa. The MSB of the mantissa is ALWAYS ' 1 ', therefore it is not stored

