嵌入式系统设计与应用 第一章 绪论

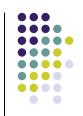
西安交通大学电信学院 孙宏滨

自我介绍

•	孙宏滨,	副教授,	博士生导师。	
	2003 年	西安交大	电力系统及其自动化专业	学士学位
	• 2009年	西安交大	控制科学与工程专业	博士学位
	 2011年 	西安交大	计算机科学与技术流动站	博士后出站
	• 至今	西安交大	电信学院自动化系人机所	

• 主要研究领域:视频处理SoC芯片、计算机体系结构和 计算存储系统。

课件、助教与答疑



- 课件下载: http://gr.xjtu.edu.cn/web/hsun/
- 助教:赵晓青、王欣伟、赵恒宇,硕士研究生, 18629359302, zhao.xiaoqing@stu.xjtu.edu.cn
- 答疑联系方式:
 - Mobile : 13571861726
 - Email : hsun@mail.xjtu.edu.cn
 - Office:曲江校区西4楼3楼 提前预约

课程要求

- 面向自动化专业或信息专业的高年级本科生
- 自动化和信息专业的学生为什么要学嵌入式系统?
- 前期课程要求
 - 数字逻辑(数字电子技术)
 - 微机原理
 - C程序语言

教学用书

6

- Wayne Wolf, 《嵌入式计算系统设计原理》, 机械工业出版社, 2002年
- Steve Furber, 《ARM SoC体系结构》,北京航空航天大学出版社
- 邵贝贝等,《嵌入式实时操作系统uC/OS-II》,北京航空航天 大学出版社,2003年

什么是嵌入式计算系统?

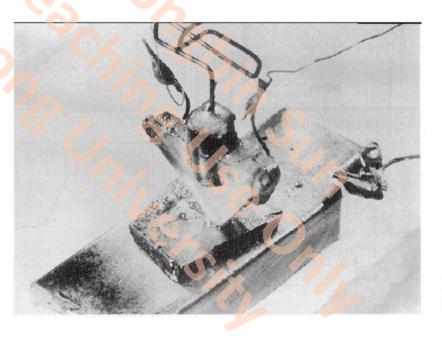
- 宽泛地说,是指任何包括一个可编程计算机的设备,但本 身并未被刻意设计为一台通用计算机。
- PC本身不是嵌入式系统。
- 嵌入式系统的典型范例
 - 智能手机
 - 数字电视
 - 汽车
 - 打印机
 - 电冰箱

第一台计算机 **Difference engine**

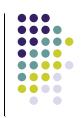
差分机(Difference engine)

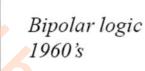
- Charles Babbage于1822-1832年之间研究设计。
- 计算到印刷全自动化,使 用25,000个零件,组合成 为一部重4吨的计算机。
- 英国政府出资,共支出了 £17,500。

第一台电子计算机 ENIAC


- 二次世界大战末,美国陆军委托宾州大学,以电子计算机 来计算弹道资料,1946年完成人类第一台电子计算机。
- 包含了17468个真空管,重量达27吨,耗资50万美元。

第一台嵌入式系统雏形Whirlwind


- 二次世界大战末,美国海军U.S. Navy委托MIT开发一套 能实时模拟飞行器的系统来训练轰炸机飞行员。
- 受ENIAC的启发, MIT开发了旋风计算机, 由4000多个真空管组成。



First transistor Bell Labs, 1948

第一块集成电路

ECL 3-input Gate Motorola 1966

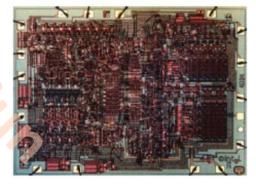
第一颗商用微处理器Intel 4004

ORa ORa

٧.,

0

٧2


Intel 4004 (1971)

- Application: calculators
- Technology: 10000 nm
- 2300 transistors
- 13 mm²

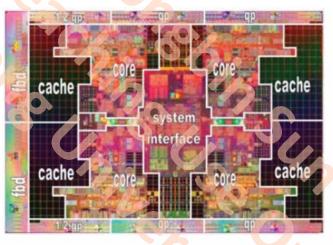
V.bb

GROUND

- 108 KHz
- 12 Volts
- 4-bit data
- Single-cycle datapath

嵌入式处理器:计算器,可编程, 单芯片集成计算机所有逻辑

单核微处理器的顶峰


- Intel Pentium4 (2003)
 - Application: desktop/server
 - Technology: 90nm (1/100x)
 - 55M transistors (20,000x)
 - 101 mm² (10x)
 - 3.4 GHz (10,000x)
 - 1.2 Volts (1/10x)
 - 32/64-bit data (16x)
 - 22-stage pipelined datapath
 - 3 instructions per cycle (superscalar)
 - Two levels of on-chip cache
 - data-parallel vector (SIMD) instructions, hyperthreading

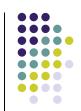
四核处理器Itanium

Quad Core itanium 2GHz, 30 MB cache 2 Billion transistors, 170W [Intel ISSCC 2008]

	FET count	Voltage	Power
Core logic	430M	0.9-1.15V	100W
Sys Int	157M	0.9-1.15V	30W
L3 cache	1,420M	1.10V	20W
IO logic	39M	1.10V	20W
Chip Total	2.046B		170W

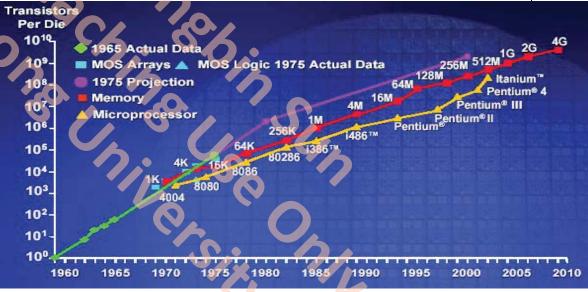
八核处理器Xeon

- Shown on ISSCC09
 - 2.3 10⁹ transistors
 - 8x 64b dual thread Nehalem core
 - 45nm 9 Metals, High-K CMOS technology
 - 130 W
 - Large L3 cache


	QPI (0)	QPI (1)	QPI (2)	QPI (3)
	Čore3	LLC Slice3	LLC Slice4	Core4
	Core2	LLC Slice2	LLC Silce5	Core5
<	MCO	Hubo DFx	uter Hubi	iMC1
	Core1	LLC Slice1	LLC Slice6	Core6
	CoreO	LLC Slice0	LLC Slice7	Core7
		MI	М	

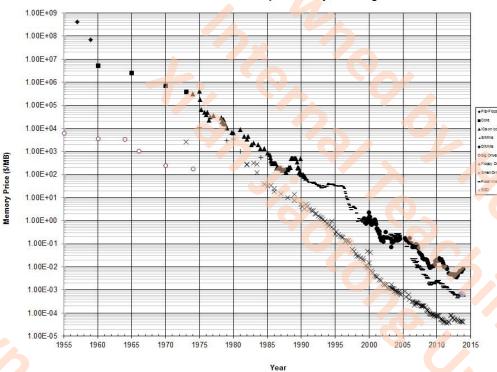
15

The Future: Processor becomes a Transistor?

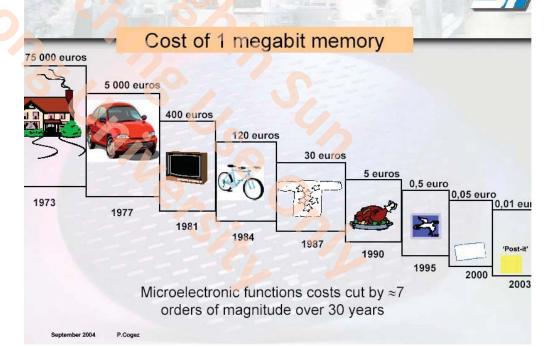

Intel 48 cores single chip cloud computing

半导体技术推动计算机飞速发展

- Prehistory: Generations
 - 1st Tubes
 - 2nd Transistors
 - 3rd Integrated Circuits
 - 4th VLSI....
 - 5th Nanotubes? Optical? Quantum?
 - Discrete advances in each generation
 - Faster, smaller, more reliable, easier to utilize
- Modern computing: Moore's Law
 - Continuous advance, fairly homogeneous technology

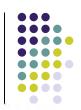

The Moore's Law 摩尔定律

- "Cramming More Components onto Integrated Circuits"
 Gordon Moore, Electronics, 1965
- # on transistors on cost-effective integrated circuit double every 18 months



存储器成本下降

当代计算机系统的分类


- 桌面计算机 Desktop computer
- 服务器 Server
- 嵌入式计算机 Embedded computer
- 仓库规模计算机 Warehouse-scale computer

1981年最高性能的便携计算机

- 4MHz Z80 Processor
- 64KB memory
- Floppy drives
- 5" screen
- 24.5 lbs
- \$1,795
- 11,000 units sold

Osbourne 1 image courtesy of www.oldcomputers.net

1983年的移动电话

- Motorola DynaTAC
- **\$3995**
- 30 minutes talk time
- 10 hours charge time
- No texting or Bluetooth

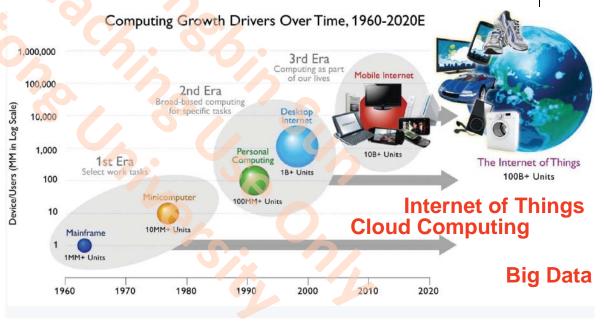
30年后...

- MacBook Air
- 1.7GHz Processor
- 8GB memory
- 256GB storage
- 13" screen
- 2.96 lbs
- **\$1,599**

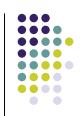
我们的手机...

- Samsung Galaxy S-II
- Android 2.3
- 4.3" screen
- 32GB memory
- Web, weather, Angry Birds
- ~1/20th the DynaTAC cost

Warehouse-scale computer


Google在Oregon建设的data center,靠近Dalles水电站, 耗资\$1.2 billion。其每天的发电量与日内瓦相当(2008)。₂₆

25


The nature of applications also changed!

Source: Morgan Stanley, 2009

微处理器按字长分类

- •8位微处理器:8051单片机
- 16位微处理器: MSP430单片机
- 32位微处理器
 - 高性能微处理器,用于构建复杂电子系统,一般运行嵌入式操作系统。
 - ARM
 - MIPS
 - TI DSP

一辆宝马车中有超过100颗微处理器!

嵌入式计算系统的特点

- 功能复杂
 - 复杂的算法
 - 丰富的用户接口
- 截止时限问题(deadline)
 - 实时性
 - 多速率
- 成本控制
 - 制造成本
 - 功耗与能耗

嵌入式系统一般由小 规模团队在有限的时 间开发,便于软硬件 的调试和修改。

嵌入式微处理器 PK ASIC&FPGA

- ASIC:专用集成电路,为特定用户或特定电子系统开发的集成电路。特点:专用性,成本低,性能高,功耗低,可编程能力差。
- FPGA: 现场可编程门阵列,是一种半定制集成电路。特点:一定的通用性,具备一定的可编程能力,功耗和成本适中,性能较高。
- 微处理器:依靠指令级编程的通用处理器。特点:通用性,可编程能力强,性能一般,功耗和成本较高。

为何不使用PC?

- 物理空间限制
- 实时性能的需求
- 低功耗和低成本
- 移动终端

小米手机 2

软件物理 (Physics of Software)

- 嵌入式系统硬件提供计算和控制的基础平台,软件的性能和能耗也是非常重要的特性。
 - 软件的优化和效率决定系统的性能
 - 软件的优化和效率决定系统的成本
 - 软件的优化和效率决定系统的能耗
- 即使是软件工程师,也需要了解嵌入式硬件,这 样才能编写高效的嵌入式软件。
- 软件的重要性!

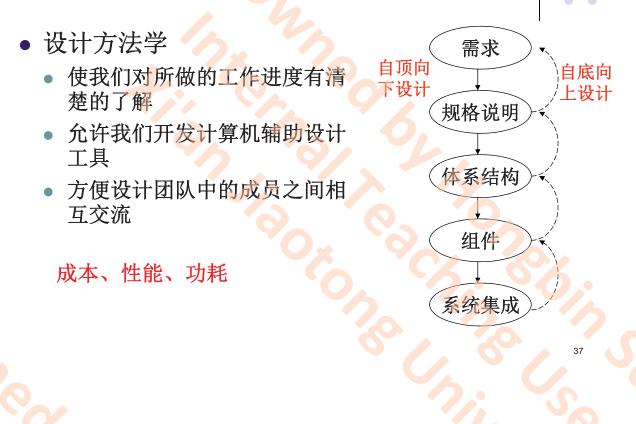
嵌入式计算系统设计的挑战

- 需要多少硬件?
- 如何满足截止时限?
- 如何将系统的功耗减至最小?
- 如何设计以保证系统可升级?
- 它们是否能工作?
 - 测试复杂
 - 可视性和可控制性有限
 - 开发环境受限

电池容量挑战

- 在过去,电池供电量每年以约10%或11%的幅度增长; 遗憾的是,它与摩尔定律很不匹配。
- 在未来,我们只能寄希望于新的硅合金或碳纳米管材 料来保持11%的增长速度。

₩ ₩ ₩	4.5 kCa 30g	al DAIRY	2	255 kCal 49g
	<35倍		2011	2020
	Capacity	mWH	5,700	13,135
x2.2	Power	1-day life	475	1,059
Capacity	Budget mW	3-day life	159	365
				35


Assuming 12 hours of use per day

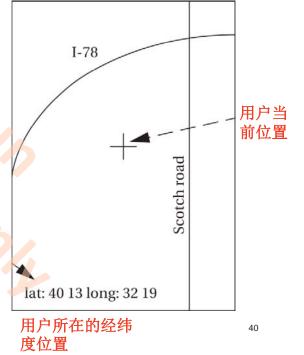
嵌入式计算的性能

- 通用计算对性能的概
 念比较模糊。
- 嵌入式计算必须满足 截止时限(Deadline),
 实时性是嵌入式计算的核心。
 - 需要工具
 - 需要遵循代码风格,利
 于分析

嵌入式系统的设计过程

嵌入式系统的设计过程 – 需求

- 1. 需求
 - 功能需求 functional requirement
 - 非功能需求 nonfunctional requirement
 - 性能
 - 成本
 - 生产成本
 - 不可再生的工程成本(NRE, Non-Recurring Engineering)
 - 物理尺寸和重量
 - 功耗

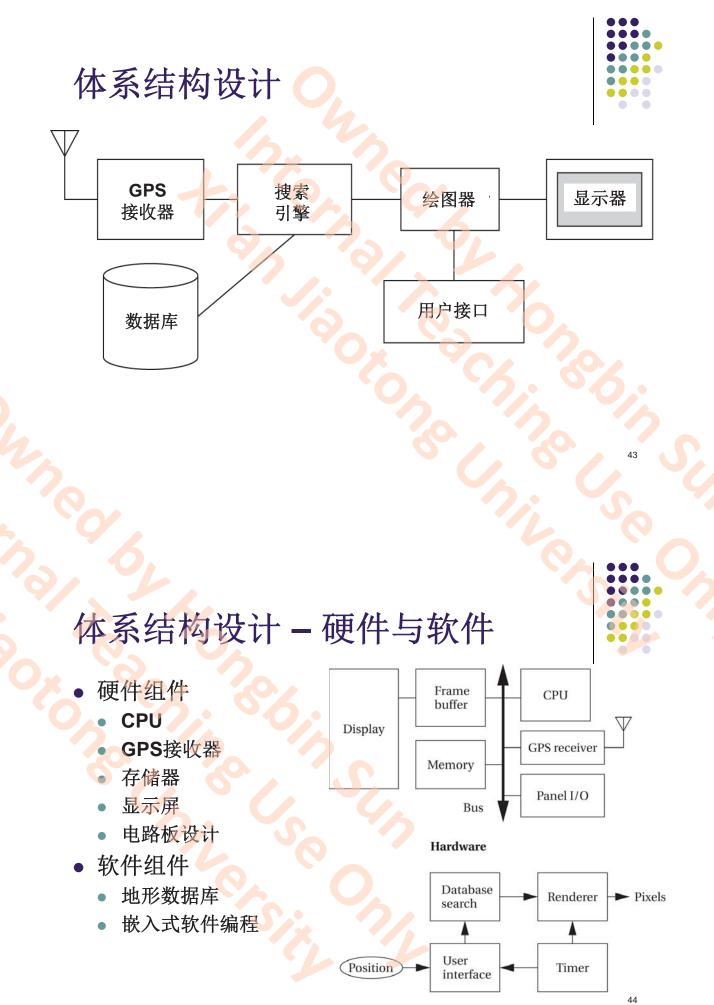


需求表格

名称	b
目的	
输入	
输出	
功能	
性能	
生产成本	
功耗	
物理尺寸和重量	

GPS移动地图系统的需求分析

- 功能性:
- 用户接口:
- 性能:
- 成本:
- 物理尺寸和重量:
- 功耗:


GPS移动地图的需求表格

名称	GPS移动地图
目的	为驾驶员提供的用户级移动地图
输入	一个电源按钮,两个控制按钮
输出	背光LCD显示器400x600
功能	使用5种接收器的GPS系统;三种用户可选分辨率; 总是显示当前的经纬度
性能	移动时,0.25秒即可更新一次屏幕
生产成本	30美元(销售价四五倍于商品的成本)
功耗	100mW
物理尺寸和重量	不大于2英寸x16英寸,12盎司

规格说明

- 规格说明必须小心编写,以便精确地反映客户的 需求并且作为设计时必须明确遵循的要求。
- 规格说明应该足够清晰,以便别人可以验证它是
 否符合系统需求并且完全满足客户的期望。
- GPS系统的规格说明:
 - 从GPS卫星接收到的数据
 - 地图数据
 - 用户接口
 - 必须执行的满足客户需求的操作
 - 保持系统运行所需的后备处理,如操作GPS接收器

Software

- 系统集成过程中通常可以发现错误。
- 按阶段组装系统和相对独立地测试系统功能。
- 嵌入式系统使用的调试工具比在桌面系统中用 到的工具有限得多。
- 确定系统为何不能正确的工作以及如何进行修复是一种挑战!

高端汽车导航系统 HITACHI

Navigation

Driver friendly user interface and graphics

Object recognition Passive/Active safety

Amusement

Audio playback

Advanced car navigation systems will supply multi applications assisting and entertaining our driving

Safety

Integrated 1-Chip Solution46

高端汽车导航系统需求分析

Navigation

High Performance and various graphic processing technology

GPS technology

High performance embedded image recognition technology

Connection with vehiclecontrol technology

Amusement

Multimedia interface technology

Audio / video processin<mark>g</mark> technology

fundamental technology

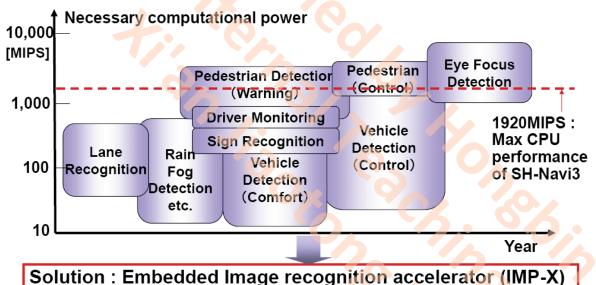
 High-performance processor
 High speed bus and data I/O technology
 Multi-application support technology

导航系统SoC芯片发展

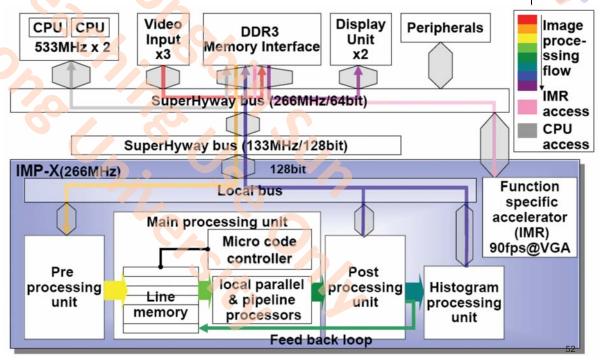
导航SoC系统框图 SH-Navi3 For multi-core system Core1 Core2 Support AMP and SMP SH-4A 533MHz SH-4A 533MH ■ EXREAL Platform[™] 1. ExVisor : inter-OS prevention technology 2D/3DVideo graphic accelerator (Domain Separation) input (3ch) 2. ExARIA : inter-OS In-Car Cameras communication interface Image Display recognition (Domain interoperation) processing unit (2ch) engine Domain1 Domain2 DDR3-SDRAM External App1 App2 memory XARI peripheral Memory interface (2ch) interfaces **OS1** OS2 (DDR3) USB2.0, CAN, Exviso CPU1 CPU₂ PCI Express ATA, etc... SuperHyway bus Memory

图像识别处理的需求

Current demands



These applications have to be processed in real-time


图像识别计算的功耗增长

Real time application with image recognition consumes a lot of computational power

图像识别处理的流程与框图

嵌入式系统设计方法

- 任何一个复杂的嵌入式系统都是按照严格的设 计流程,经过无数设计细节而最终完成的。
- 不积跬步,无以至千里;
- 不积小流,无以成江河。