
A recursive divide-and-conquer approach for sparse

principal component analysis

Qian Zhao, Deyu Meng∗, Zongben Xu

Institute for Information and System Sciences, School of Mathematics and Statistics,
Xi’an Jiaotong University, Xi’an 710049, PR China

Abstract

In this paper, a new method is proposed for sparse PCA based on the re-
cursive divide-and-conquer methodology. The main idea is to separate the
original sparse PCA problem into a series of much simpler sub-problems, each
having a closed-form solution. By recursively solving these sub-problems in
an analytical way, an efficient algorithm is constructed to solve the sparse
PCA problem. The algorithm only involves simple computations and is
thus easy to implement. The proposed method can also be very easily ex-
tended to other sparse PCA problems with certain constraints, such as the
nonnegative sparse PCA problem. Furthermore, we have shown that the
proposed algorithm converges to a stationary point of the problem, and its
computational complexity is approximately linear in both data size and di-
mensionality. The effectiveness of the proposed method is substantiated by
extensive experiments implemented on a series of synthetic and real data
in both reconstruction-error-minimization and data-variance-maximization
viewpoints.

Keywords: Face recognition, nonnegativity, principal component analysis,
recursive divide-and-conquer, sparsity.

∗Corresponding author. Tel.: +86 13032904180; fax: +86 2982668559.
Email addresses: zhao.qian@stu.xjtu.edu.cn (Qian Zhao),

dymeng@mail.xjtu.edu.cn (Deyu Meng), zbxu@mail.xjtu.edu.cn (Zongben Xu)

Preprint submitted to Elsevier December 3, 2012

ar
X

iv
:1

21
1.

72
19

v1
 [

cs
.C

V
]

 3
0

N
ov

 2
01

2

1. Introduction

Principal component analysis (PCA) is one of the most classical and
popular tools for data analysis and dimensionality reduction, and has a wide
range of successful applications throughout science and engineering [1]. By
seeking the so-called principal components (PCs), along which the data vari-
ance is maximally preserved, PCA can always capture the intrinsic latent
structure underlying data. Such information greatly facilitates many further
data processing tasks, such as feature extraction and pattern recognition.

Despite its many advantages, the conventional PCA suffers from the fact
that each component is generally a linear combination of all data variables,
and all weights in the linear combination, also called loadings, are typically
non-zeros. In many applications, however, the original variables have mean-
ingful physical interpretations. In biology, for example, each variable of gene
expression data corresponds to a certain gene. In these cases, the derived PC
loadings are always expected to be sparse (i.e. contain fewer non-zeros) so as
to facilitate their interpretability. Moreover, in certain applications, such as
financial asset trading, the sparsity of the PC loadings is especially expected
since fewer nonzero loadings imply fewer transaction costs.

Accordingly, sparse PCA has attracted much attention in the recent
decade, and a variety of methods for this topic have been developed [2–23].
The first attempt for this topic is to make certain post-processing transfor-
mation, e.g. rotation [2] by Jolliffe and simple thresholding [3] by Cadima
and Jolliffe, on the PC loadings obtained by the conventional PCA to en-
force sparsity. Jolliffe and Uddin further advanced a SCoTLASS algorithm
by simultaneously calculating sparse PCs on the PCA model with additional
l1-norm penalty on loading vectors [4]. Better results have been achieved
by the SPCA algorithm of Zou et al., which was developed based on it-
erative elastic net regression [5]. D’Aspremont et al. proposed a method,
called DSPCA, for finding sparse PCs by solving a sequence of semidefi-
nite programming (SDP) relaxations of sparse PCA [6]. Shen and Huang
developed a series of methods called sPCA-rSVD (including sPCA-rSVDl0 ,
sPCA-rSVDl1 , sPCA-rSVDSCAD), computing sparse PCs by low-rank ma-
trix factorization under multiple sparsity-including penalties [7]. Journée et
al. designed four algorithms, denoted as GPowerl0 , GPowerl1 , GPowerl0,m,
and GPowerl1,m, respectively, for sparse PCA by formulating the issue as
non-concave maximization problems with l0- or l1-norm sparsity-inducing
penalties and extracting single unit sparse PC sequentially or block units

2

ones simultaneously [8]. Based on probabilistic generative model of PCA,
some methods have also been attained [9–12], e.g. the EMPCA method
derived by Sigg and Buhmann for sparse and/or nonnegative sparse PCA
[9]. Sriperumbudur et al. provided an iterative algorithm called DCPCA,
where each iteration consists of solving a quadratic programming (QP) prob-
lem [13, 14]. Recently, Lu and Zhang developed an augmented Lagrangian
method (ALSPCA briefly) for sparse PCA by solving a class of non-smooth
constrained optimization problems [15]. Additionally, d’Aspremont derived
a PathSPCA algorithm that computes a full set of solutions for all target
numbers of nonzero coefficients [16].

There are mainly two methodologies utilized by the current research on
sparse PCA problem. The first is the greedy approach, including DSPCA [6],
sPCA-rSVD [7], EMPCA [9], PathSPCA [16], etc. These methods mainly
focus on the solving of one-sparse-PC model, and more sparse PCs can be
sequentially calculated on the deflated data matrix or data covariance [24].
Under this methodology, the first several sparse PCs underlying the data
can generally be properly extracted, while the computation for more sparse
PCs tends to be incrementally invalidated due to the cumulation of compu-
tational error. The second is the block approach. Typical methods include
SCoTLASS [4], GPowerl0,m, GPowerl1,m [8], ALSPCA [15], etc. These meth-
ods aim to calculate multiple sparse PCs at once by utilizing certain block
optimization techniques. The block approach for sparse PCA is expected to
be more efficient than the greedy one to simultaneously attain multiple PCs,
while is generally difficult to elaborately rectify each individual sparse PC
based on some specific requirements in practice (e.g. the number of nonzero
elements in each PC).

In this paper, a new methodology, called the recursive divide-and-conquer
(ReDaC briefly), is employed for solving the sparse PCA problem. The main
idea is to decompose the original large and complex problem of sparse PCA
into a series of small and simple sub-problems, and then recursively solve
them. Each of these sub-problems has a closed-form solution, which makes
the new method simple and very easy to implement. On one hand, as com-
pared with the greedy approach, the new method is expected to integratively
achieve a collection of appropriate sparse PCs of the problem by iteratively
rectifying each sparse PC in a recursive way. The group of sparse PCs at-
tained by the proposed method is further proved being a stationary solution
of the original sparse PCA problem. On the other hand, as compared with
the block approach, the new method can easily handle the constraints su-

3

perimposed on each individual sparse PC, such as certain sparsity and/or
nonnegative constraints. Besides, the computational complexity of the pro-
posed method is approximately linear in both data size and dimensionality,
which makes it well-suited to handle large-scale problems of sparse PCA.

In what follows, the main idea and the implementation details of the
proposed method are first introduced in Section 2. Its convergence and com-
putational complexity are also analyzed in this section. The effectiveness of
the proposed method is comprehensively substantiated based on a series of
empirical studies in Section 3. Then the paper is concluded with a summary
and outlook for future research. Throughout the paper, we denote matrices,
vectors and scalars by the upper-case bold-faced letters, lower-case bold-faced
letters, and lower-case letters, respectively.

2. The recursive divide-and-conquer method for sparse PCA

In the following, we first introduce the fundamental models for the sparse
PCA problem.

2.1. Basic models of sparse PCA

Denote the input data matrix as X = [x1,x2, . . . ,xn]T ∈ Rn×d, where
n and d are the size and the dimensionality of the given data, respectively.
After a location transformation, we can assume all {xi}ni=1 to have zero mean.
Let Σ = 1

n
XTX ∈ Rd×d be the data covariance matrix.

The classical PCA can be solved through two types of optimization models
[1]. The first is constructed by finding the r(≤ d)-dimensional linear subspace
where the variance of the input data X is maximized [25]. On this data-
variance-maximization viewpoint, the PCA is formulated as the following
optimization model:

max
V

Tr(VTΣV) s.t. VTV = I, (1)

where Tr(A) denotes the trace of the matrix A and V = (v1,v2, . . . ,vr) ∈
Rd×r denotes the array of PC loading vectors. The second is formulated by
seeking the r-dimensional linear subspace on which the projected data and
the original ones are as close as possible [26]. On this reconstruction-error-
minimization viewpoint, the PCA corresponds to the following model:

min
U,V

∥∥X−UVT
∥∥2
F

s.t. VTV = I, (2)

4

where ‖A‖F is the Frobenius norm of A, V ∈ Rd×r is the matrix of PC
loading array and U = (u1,u2, . . . ,ur) ∈ Rn×r is the matrix of projected
data. The two models are intrinsically equivalent and can attain the same
PC loading vectors [1].

Corresponding to the PCA models (1) and (2), the sparse PCA problem
has the following two mathematical formulations1:

max
V

Tr(VTΣV) s.t. vTi vi = 1, ‖vi‖p ≤ ti (i = 1, 2, . . . , r), (3)

and

min
U,V

∥∥X−UVT
∥∥2
F

s.t. vTi vi = 1, ‖vi‖p ≤ ti (i = 1, 2, . . . , r), (4)

where p = 0 or 1 and the corresponding ‖v‖p denotes the l0- or the l1-
norm of v, respectively. Note that the involved l0 or l1 penalty in the above
models (3) and (4) tends to enforce sparsity of the output PCs. Methods
constructed on (3) include SCoTLASS [4], DSPCA [6], DCPCA [13, 14],
ALSPCA [15], etc., and those related to (4) include SPCA [5], sPCA-rSVD
[7], SPC [19], GPower [8], etc. In this paper, we will construct our method
on the reconstruction-error-minimization model (4), while our experiments
will verify that the proposed method also performs well based on the data-
variance-maximization criterion.

2.2. Decompose original problem into small and simple sub-problems

The objective function of the sparse PCA model (4) can be equivalently
formulated as follows:∥∥X−UVT

∥∥2
F

=
∥∥∥X−∑r

j=1
ujv

T
j

∥∥∥2
F

=
∥∥Ei − uiv

T
i

∥∥2
F
,

where Ei = X −
∑

j 6=iujv
T
j . It is then easy to separate the original large

minimization problem, which is with respect to U and V, into a series of
small minimization problems, which are each with respect to a column vector
ui of U and vi of V for i = 1, 2, . . . , r, respectively, as follows:

min
vi

∥∥Ei − uiv
T
i

∥∥2
F

s.t. vTi vi = 1, ‖vi‖p ≤ ti, (5)

1It should be noted that the orthogonality constraints of PC loadings in (1) and (2)
are not imposed in (3) and (4). This is because simultaneously enforcing sparsity and
orthogonality is generally a very difficult (and perhaps unnecessary) task. Like most of
the existing sparse PCA methods [5–8], we do not enforce orthogonal PCs in the models.

5

and
min
ui

∥∥Ei − uiv
T
i

∥∥2
F
. (6)

Through recursively optimizing these small sub-problems, the recursive divide-
and-conquer (ReDaC) method for solving the sparse PCA model (4) can then
be naturally constructed.

It is very fortunate that both the minimization problems in (5) and (6)
have closed-form solutions. This implies that the to-be-constructed ReDaC
method can be fast and efficient, as presented in the following sub-sections.

2.3. The closed-form solutions of (5) and (6)

For the convenience of denotation, we first rewrite (5) and (6) as the
following forms:

min
v

∥∥E− uvT
∥∥2
F

s.t. vTv = 1, ‖v‖p ≤ t, (7)

and
min
u

∥∥E− uvT
∥∥2
F
, (8)

where u is n-dimensional and v is d-dimensional. Since the objective function∥∥E− uvT
∥∥2
F

can be equivalently transformed as:∥∥E− uvT
∥∥2
F

= Tr((E− uvT)T (E− uvT))

= ‖E‖2F − 2Tr(ETuvT) + Tr(vuTuvT)

= ‖E‖2F − 2uTEv + uTuvTv,

(7) and (8) are equivalent to the following optimization problems, respec-
tively:

max
v

(ETu)Tv s.t. vTv = 1, ‖v‖p ≤ t, (9)

and
min
u

uTu− 2(Ev)Tu. (10)

The closed-form solutions of (9) and (10), i.e. (7) and (8), can then be
presented as follows.

We present the closed-form solution to (8) in the following theorem.

Theorem 1. The optimal solution of (8) is u∗(v) = Ev.

6

The theorem is very easy to prove by calculating where the gradient of
uTu− 2(Ev)Tu is equal to zero. We thus omit the proof.

In the p = 0 case, the closed-form solution to (9) is presented in the follow-
ing theorem. Here, we denote w = ETu, and hardλ(w) the hard thresholding
function, whose i-th element corresponds to I(|wi| ≥ λ)wi, where wi is the
i-th element of w and I(x) (equals 1 if x is ture, and 0 otherwise) is the
indicator function. The proof of the theorem is provided in Appendix A.

Theorem 2. The optimal solution of

max
v

wTv s.t. vTv = 1, ‖v‖0 ≤ t, (11)

is given by:

v∗0(w, t) =

φ, t < 1,

hardθk (w)

‖hardθk (w)‖2 , k ≤ t < k + 1 (k = 1, 2, . . . , d− 1),
w
‖w‖2 t ≥ d,

where θk denotes the k-th largest element of |w|.

In the above theorem, φ denotes the empty set, implying that when t < 1,
the optimum of (11) does not exist.

In the p = 1 case, (7) has the following closed-form solution. In the

theorem, we denote fw(λ) = softλ(w)
‖softλ(w)‖2

, where softλ(w) represents the soft

thresholding function sign(w)(|w| − λ)+, where (x)+ represents the vec-
tor attained by projecting x to its nonnegative orthant, and (I1, I2, . . . , Id)
denotes the permutation of (1, 2, . . . , d) based on the ascending order of
|w| = (|w1|, |w2|, . . . , |wd|)T .

Theorem 3. The optimal solution of

max
v

wTv s.t. vTv = 1, ‖v‖1 ≤ t, (12)

is given by:

v∗1(w, t) =

φ, t < 1,

fw(λk), ‖fw(|wIk |)‖1 ≤ t < ‖fw(|wIk−1
|)‖1 (k = 2, 3, . . . , d− 1),

fw(λ1), ‖fw(|wI1|)‖1 ≤ t <
√
d,

fw(0), t ≥
√
d,

7

where for k = 1, 2, . . . , d− 1,

λk =
(m− t2)(

∑m
i=1 ai)−

√
t2(m− t2)(m

∑m
i=1 a

2
i − (

∑m
i=1 ai)

2)

m(m− t2)
,

where (a1, a2, . . . , am) = (|wIk |, |wIk+1
|, . . . , |wId|), m = d− k + 1.

It should be noted that we have proved that ‖fw(|wId−1
|)‖1 = 1 and

‖fw(λ)‖1 is a monotonically decreasing function with respect to λ in Lemma
1 of the appendix. This means that we can conduct the optimum v∗(w) of
the optimization problem (7) for any w based on the above theorem.

The ReDaC algorithm can then be easily constructed based on Theorems
1-3.

2.4. The recursive divide-and-conquer algorithm for sparse PCA

The main idea of the new algorithm is to recursively optimize each col-
umn, ui of U or vi of V for i = 1, 2, . . . , r, with other ujs and vjs (j 6= i)
fixed. The process is summarized as follows:

• Update each column vi of V for i = 1, 2, . . . , r by the closed-form
solution of (5) attained from Theorem 2 (for p = 0) or Theorem 3 (for
p = 1).

• Update each column ui of U for i = 1, 2, . . . , r by the closed-form
solution of (6) calculated from Theorem 1.

Through implementing the above procedures iteratively, U and V can be
recursively updated until the stopping criterion is satisfied. We summarize
the aforementioned ReDaC technique as Algorithm 1.

We then briefly discuss how to specify the stopping criterion of the algo-
rithm. The objective function of the sparse PCA model (4) is monotonically
decreasing in the iterative process of Algorithm 1 since each of the step 5
and step 6 in the iterations makes an exact optimization for a column vector
ui of U or vi of V, with all of the others fixed. We can thus terminate the
iterations of the algorithm when the updating rate of U or V is smaller than
some preset threshold, or the maximum number of iterations is reached.

Now we briefly analyze the computational complexity of the proposed
ReDaC algorithm. It is evident that the computational complexity of Algo-
rithm 1 is essentially determined by the iterations between step 5 and step

8

Algorithm 1 ReDaC algorithm for sparse PCA

Input: Data matrix X ∈ Rn×d, number of sparse PCs r, sparsity parameters
t = (t1, . . . , tr).

1: Initialize U = (u1,u2, . . . ,ur) ∈ Rn×r, V = (v1,u2, . . . ,vr) ∈ Rd×r.
2: repeat
3: for i = 1, . . . r do
4: Compute Ei = X−

∑
j 6=i ujv

T
j .

5: Update vi via solving (5) based on Theorem 2 (for p = 0) or
Theorem 3 (for p = 1).

6: Update ui via solving (6) based on Theorem 1.
7: end for
8: until stopping criterion satisfied.

Output: The sparse PC loading vectors V = (v1,v2, . . . ,vr).

6, i.e. the calculation of the closed-form solutions of vi and ui of V and U,
respectively. To compute ui, only simple operations are involved and the
computation needs O(nd) cost. To compute vi, a sorting for the elements
of the d-dimensional vector |w| = |ETu| is required, and the total compu-
tational cost is around O(nd log d) by applying the well-known heap sorting
algorithm [27]. The whole process of the algorithm thus requires around
O(rnd log d) computational cost in each iteration. That is, the computa-
tional complexity of the proposed algorithm is approximately linear in both
the size and the dimensionality of input data.

2.5. Convergence analysis

In this section we evaluate the convergence of the proposed algorithm.
The convergence of our algorithm can actually be implied by the mono-

tonic decrease of the cost function of (4) during the iterations of the al-
gorithm. In specific, in each iteration of the algorithm, step 5 and step 6
optimize the column vector ui of U or vi of V, with all of the others fixed,
respectively. Since the objective function of (4) is evidently lower bounded
(≥ 0), the algorithm is guaranteed to be convergent.

We want to go a further step to evaluate where the algorithm converges.
Based on the formulation of the optimization problem (4), we can construct

9

a specific function as follows:

f(u1, . . . ,ur,v1, . . . ,vr) = f0(u1, . . . ,ur,v1, . . . ,vr) +
r∑
i=1

fi(vi). (13)

where

f0(u1, . . . ,ur,v1, . . . ,vr) =
∥∥X−UVT

∥∥2
F

=
∥∥∥X−∑r

i=1
uiv

T
i

∥∥∥2
F
,

and for each of i = 1, . . . , r, fi(vi) is an indicator function defined as:

fi(vi) =

{
0, if ‖vi‖p ≤ ti and vTi vi = 1,

∞, otherwise.

It is then easy to show that the constrained optimization problem (4) is
equivalent to the unconstrained problem

min
{ui,vi}ri=1

f(u1, . . . ,ur,v1, . . . ,vr). (14)

The proposed ReDaC algorithm can then be viewed as a block coordinate
descent (BCD) method for solving (14) [28], by alteratively optimizing ui,vi,
i = 1, 2, . . . , r, respectively. Then the following theorem implies that our
algorithm can converge to a stationary point of the problem.

Theorem 4 ([28]). Assume that the level set X0 = {x : f(x) ≤ f(x0)}
is compact and that f is continuous on X0. If f(u1, . . . ,ur,v1, . . . ,vr) is
regular and has at most one minimum in each ui and vi with others fixed
for i = 1, 2, . . . , r, then the sequence (u1, . . . ,ur,v1, . . . ,vr) generated by
Algorithm 1 converges to a stationary point of f .

In the above theorem, the assumption that the function f , as defined in
(14), is regular holds under the condition that dom(f0) is open and f0 is
Gateaux-differentiable on dom(f0) (Lemma 3.1 under Condition A1 in [28]).
Based on Theorems 1-3, we can also easily see that f(u1, . . . ,ur,v1, . . . ,vr)
has unique minimum in each ui and vi with others fixed. The above theorem
can then be naturally followed by Theorem 4.1(c) in [28].

Another advantage of the proposed ReDaC methodology is that it can be
easily extended to other sparse PCA applications when certain constraints
are needed for output sparse PCs. In the following section we give one of the
extensions of our methodology — nonnegative sparse PCA problem.

10

2.6. The ReDaC method for nonnegative sparse PCA

The nonnegative sparse PCA [29] problem differs from the conventional
sparse PCA in its nonnegativity constraint imposed on the output sparse
PCs. The nonnegativity property of this problem is especially important in
some applications such as microeconomics, environmental science, biology,
etc. [30]. The corresponding optimization model is written as follows:

min
U,V

∥∥X−UVT
∥∥2
F

s.t. vTi vi = 1, ‖vi‖p ≤ ti, vi � 0 (i = 1, 2, . . . , r),

(15)
where vi � 0 means that each element of vi is greater than or equal to 0.

By utilizing the similar recursive divide-and-conquer strategy, this prob-
lem can be separated into a series of small minimization problems, each with
respect to a column vector ui of U and vi of V for i = 1, 2, . . . , r, respectively,
as follows:

min
vi

∥∥Ei − uiv
T
i

∥∥2
F

s.t. vTi vi = 1, ‖vi‖p ≤ ti, vi � 0 (16)

and
min
ui

∥∥Ei − uiv
T
i

∥∥2
F
, (17)

where p = 0 or 1. Since (17) is of the same formulation as (6), we only
need to discuss how to solve (16). For the convenience of denotation, we first
rewrite (16) as:

min
v

∥∥E− uvT
∥∥2
F

s.t. vTv = 1, ‖v‖p ≤ t, v � 0. (18)

The closed-form solution of (18) is given in the following theorem.

Theorem 5. The closed-form solution of (18) is v∗p((w)+, t) (p = 0, 1),

where w = ETu, and v∗0(·, ·) and v∗1(·, ·) are defined in Theorem 2 and The-
orem 3, respectively.

By virtue of the closed-form solution of (18) given by Theorem 5, we
can now construct the ReDaC algorithm for solving nonnegative sparse PCA
model (15). Since the algorithm differs from Algorithm 1 only in step 5 (i.e.
updating of vi), we only list this step in Algorithm 2.

We then substantiate the effectiveness of the proposed ReDaC algorithms
for sparse PCA and nonnegative sparse PCA through experiments in the next
section.

11

Algorithm 2 ReDaC algorithm for nonnegative sparse PCA

5: Update vi via solving (16) based on Theorem 5.

3. Experiments

To evaluate the performance of the proposed ReDaC algorithm on the
sparse PCA problem, we conduct experiments on a series of synthetic and
real data sets. All the experiments are implemented on Matlab 7.11(R2010b)
platform in a PC with AMD Athlon(TM) 64 X2 Dual 5000+@2.60 GHz
(CPU), 2GB (memory), and Windows XP (OS). In all experiments, the
SVD method is utilized for initialization. The proposed algorithm under
both p = 0 and p = 1 was implemented in all experiments and mostly have
a similar performance. We thus only list the better one throughout.

3.1. Synthetic simulations

Two synthetic data sets are first utilized to evaluate the performance
of the proposed algorithm on recovering the ground-truth sparse principal
components underlying data.

3.1.1. Hastie data

Hastie data set was first proposed by Zou et al. [5] to illustrate the
advantage of sparse PCA over conventional PCA on sparse PC extraction.
So far this data set has become one of the most frequently utilized benchmark
data for testing the effectiveness of sparse PCA methods. The data set is
generated in the following way: first, three hidden factors V1, V2 and V3 are
created as:

V1 ∼ N (0, 290), V2 ∼ N (0, 300), V3 = 0.3V1 + 0.925V2 + ε,

where ε ∼ N (0, 1), and V1, V2 and ε are independent; afterwards, 10 observ-
able variables are generated as:

Xi = V1 + ε1i , i = 1, 2, 3, 4,

Xi = V2 + ε2i , i = 5, 6, 7, 8,

Xi = V3 + ε3i , i = 9, 10,

where εji ∼ N (0, 1) and all εji s are independent. The data so generated
are of intrinsic sparse PCs [5]: the first recovers the factor V2 only using
(X5, X6, X7, X8), and the second recovers V1 only utilizing (X1, X2, X3, X4).

12

We generate 100 sets of data, each contains 1000 data generated in the
aforementioned way, and apply Algorithm 1 to them to extract the first two
sparse PCs. The results show that our algorithm can perform well in all
experiments. In specific, the proposed ReDaC algorithm faithfully delivers
the ground-truth sparse PCs in all experiments. The effectiveness of the
proposed algorithm is thus easily substantiated in this series of benchmark
data.

3.1.2. Synthetic toy data

As [7] and [8], we adopt another interesting toy data, with intrinsic sparse
PCs, to evaluate the performance of the proposed method. The data are gen-
erated from the Gaussian distribution N (0,Σ) with mean 0 and covariance
Σ ∈ R10×10, which is calculated by

Σ =
10∑
j=1

cjvjv
T
j .

Here, (c1, c2, ..., c10), the eigenvalues of the covariance matrix Σ, are pre-
specified as (250, 240, 50, 50, 6, 5, 4, 3, 2, 1), respectively, and (v1,v2, ...,v10)
are 10-dimensional orthogonal vectors, formulated by

v1 = (0.422, 0.422, 0.422, 0.422, 0, 0, 0, 0, 0.380, 0.380)T ,

v2 = (0, 0, 0, 0, 0.489, 0.489, 0.489, 0.489,−0.147, 0.147)T ,

and the rest being generated by applying Gram-Schmidt orthonormalization
to 8 randomly valued 10-dimensional vectors. It is easy to see that the data
generated under this distribution are of first two sparse PC vectors v1 and
v2.

Four series of experiments, each involving 1000 sets of data generated
from N (0,Σ), are utilized, with sample sizes 500, 1000, 2000, 5000, re-
spectively. For each experiment, the first two PCs, v̂1 and v̂2, are cal-
culated by a sparse PCA method and then if both |v̂T1 v1| ≥ 0.99 and
|v̂T2 v2| ≥ 0.99 are satisfied, the method is considered as a success. The
proposed ReDaC method, together with the conventional PCA and 12 cur-
rent sparse PCA methods, including SPCA [5], DSPCA [6], PathSPCA [16],
sPCA-rSVDl0 , sPCA-rSVDl1 , sPCA-rSVDSCAD [7], EMPCA [9], GPowerl0 ,
GPowerl1 , GPowerl0,m , GPowerl1,m [8] and ALSPCA [15], have been im-
plemented, and the success times for four series of experiments have been
recorded and summarized, respectively. The results are listed in Table 1.

13

Table 1: Comparison of success times of PCA and different sparse PCA methods in syn-
thetic toy experiments with sample size varying. The best results are highlighted in bold.

n = 500 n = 1000 n = 2000 n = 5000
PCA 0 0 0 0
SPCA 566 673 756 839

DSPCA 211 203 138 62
PathSPCA 189 187 186 171

sPCA-rSVDl0 646 702 797 906
sPCA-rSVDl1 649 715 806 909

sPCA-rSVDSCAD 649 715 806 909
EMPCA 649 715 806 909
GPowerl0 155 154 155 139
GPowerl1 122 127 126 126

GPowerl0,m 91 76 71 16
GPowerl1,m 90 92 88 82
ALSPCA 669 749 826 927
ReDaC 676 748 827 928

The advantage of the proposed ReDaC algorithm can be easily observed
from Table 1. In specific, our method always attains the highest or second
highest success times (in the size 1000 case, 1 less than ALSPCA) as com-
pared with the other utilized methods in all of the four series of experiments.
Considering that the ALSPCA method, which is the only comparable method
in these experiments, utilizes strict constraints on the orthogonality of out-
put PCs while the ReDaC method does not utilize any prior ground-truth
information of data, the capability of the proposed method on sparse PCA
calculation can be more prominently verified.

3.2. Experiments on real data

In this section, we further evaluate the performance of the proposed
ReDaC method on two real data sets, including the pitprops and colon
data. Two quantitative criteria are employed for performance assessment.
They are designed in the viewpoints of reconstruction-error-minimization and
data-variance-maximization, respectively, just corresponding to the original
formulations (4) and (3) for sparse PCA problem.

• Reconstruction-error-minimization criterion: RRE. Once sparse PC
loading matrix V is obtained by a method, the input data can then
be reconstructed by X̂ = ÛVT , where Û = XV(VTV)−1, attained by

14

the least square method. Then the relative reconstruction error (RRE)
can be calculated by

RRE =
‖X− X̂‖F
‖X‖F

,

to assess the performance of the utilized method in data reconstruction
point of view.

• Data-variance-maximization criterion: PEV. After attaining the sparse
PC loading matrix V, the input data can then be reconstructed by
X̂ = XV(VTV)−1VT , as aforementioned. And thus the variance of the
reconstructed data can be computed by Tr(1

n
X̂T X̂). The percentage

of explained variance (PEV, [7]) of the reconstructed data from the
original one can then be calculated by

PEV =
Tr(1

n
X̂T X̂)

Tr(1
n
XTX)

× 100% =
Tr(X̂T X̂)

Tr(XTX)
× 100%,

to evaluate the performance of the utilized method in data variance
point of view.

3.2.1. Pitprops data

The pitprops data set, consisting of 180 observations and 13 measured
variables, was first introduced by Jeffers [31] to show the difficulty of inter-
preting PCs. This data set is one of the most commonly utilized examples
for sparse PCA evaluation, and thus is also employed to testify the effec-
tiveness of the proposed ReDaC method. The comparison methods include
SPCA [5], DSPCA [6], PathSPCA [16], sPCA-rSVDl0 , sPCA-rSVDl1 , sPCA-
rSVDSCAD [7], EMPCA [9], GPowerl0 , GPowerl1 , GPowerl0,m , GPowerl1,m [8]
and ALSPCA [15]. For each utilized method, 6 sparse PCs are extracted
from the pitprops data, with different cardinality settings: 8-5-6-2-3-2 (al-
together 26 nonzero elements), 7-4-4-1-1-1 (altogether 18 nonzero elements,
as set in [5]) and 7-2-3-1-1-1 (altogether 15 nonzero elements, as set in [6]),
respectively. In each experiment, both the RRE and PEV values, as defined
above, are calculated, and the results are summarized in Table 2. Figure
1 further shows the the RRE and PEV curves attained by different sparse
PCA methods in all experiments for more illumination. It should be noted
that the GPowerl0,m, GPowerl1,m and ALSPCA methods employ the block
methodology, as introduced in the introduction of the paper, and calculate

15

Table 2: Performance comparison of different sparse PCA methods on pitprops data with
different cardinality settings. The best result in each experiment is highlighted in bold.

8-5-6-2-3-2(26) 7-4-4-1-1-1(18) 7-2-3-1-1-1(15)
RRE PEV RRE PEV RRE PEV

SPCA 0.4162 82.68% 0.4448 80.22% 0.4459 80.11%
DSPCA 0.4303 81.48% 0.4563 79.18% 0.4771 77.23%

PathSPCA 0.4080 83.35% 0.4660 80.11% 0.4457 80.13%
sPCA-rSVDl0 0.4139 82.87% 0.4376 80.85% 0.4701 77.90%
sPCA-rSVDl1 0.4314 81.39% 0.4427 80.40% 0.4664 78.25%

sPCA-rSVDSCAD 0.4306 81.45% 0.4453 80.17% 0.4762 77.32%
EMPCA 0.4070 83.44% 0.4376 80.85% 0.4451 80.18%
GPowerl0 0.4092 83.26% 0.4400 80.64% 0.4457 80.13%
GPowerl1 0.4080 83.35% 0.4460 80.11% 0.4457 80.13%

GPowerl0,m 0.4224 82.16% 0.5089 74.10% 0.4644 78.44%
GPowerl1,m 0.4187 82.46% 0.4711 77.81% 0.4589 78.94%
ALSPCA 0.4168 82.63% 0.4396 80.67% 0.4537 79.42%
ReDaC 0.4005 83.50% 0.4343 81.14% 0.4420 80.46%

all sparse PCs at once while cannot sequentially derive different numbers of
sparse PCs with preset cardinality settings. Thus the results of these meth-
ods reported in Table 2 are calculated with the total sparse PC cardinalities
being 26, 18 and 15, respectively, and are not included in Figure 1.

It can be seen from Table 2 that under all cardinality settings of the first
6 PCs, the proposed ReDaC method always achieves the lowest RRE and
highest PEV values among all the competing methods. This means that the
ReDaC method is advantageous in both reconstruction-error-minimization
and data-variance-maximization viewpoints. Furthermore, from Figure 1, it
is easy to see the superiority of the ReDaC method. In specific, for different
number of extracted sparse PC components, the proposed ReDaC method
can always get the smallest RRE values and the largest PEV values, as
compared with the other utilized sparse PCA methods, in the experiments.
This further substantiates the effectiveness of the proposed ReDaC method
in both reconstruction-error-minimization and data-variance-maximization
views.

3.2.2. Colon data

The colon data set [32] consists of 62 tissue samples with the gene ex-
pression profiles of 2000 genes extracted from DNA micro-array data. This
is a typical data set with high-dimension and low-sample-size property, and

16

1 2 3 4 5 6
0.4

0.5

0.6

0.7

0.8

0.9

Number of Sparse Principal Components

R
R

E

Cardinality Setting: 8−5−6−2−3−2

1 2 3 4 5 6
20%

30%

40%

50%

60%

70%

80%

90%

Number of Sparse Principal Components

P
E

V

1 2 3 4 5 6
0.4

0.5

0.6

0.7

0.8

0.9

Number of Sparse Principal Components

R
R

E

Cardinality Setting: 7−4−4−1−1−1

1 2 3 4 5 6
20%

30%

40%

50%

60%

70%

80%

90%

Number of Sparse Principal Components

P
E

V

1 2 3 4 5 6
0.4

0.5

0.6

0.7

0.8

0.9

Number of Sparse Principal Components

R
R

E

Cardinality Setting: 7−2−3−1−1−1

1 2 3 4 5 6
20%

30%

40%

50%

60%

70%

80%

90%

Number of Sparse Principal Components

P
E

V

SPCA

DSPCA

PathSPCA

sPCA−rSVD_l0

sPCA−rSVD_l1

sPCA−rSVD_scad

EMPCA

GPower_l0

GPower_l1

ReDaC

SPCA

DSPCA

PathSPCA

sPCA−rSVD_l0

sPCA−rSVD_l1

sPCA−rSVD_scad

EMPCA

GPower_l0

GPower_l1

ReDaC

SPCA

DSPCA

PathSPCA

sPCA−rSVD_l0

sPCA−rSVD_l1

sPCA−rSVD_scad

EMPCA

GPower_l0

GPower_l1

ReDaC

SPCA

DSPCA

PathSPCA

sPCA−rSVD_l0

sPCA−rSVD_l1

sPCA−rSVD_scad

EMPCA

GPower_l0

GPower_l1

ReDaC

SPCA

DSPCA

PathSPCA

sPCA−rSVD_l0

sPCA−rSVD_l1

sPCA−rSVD_scad

EMPCA

GPower_l0

GPower_l1

ReDaC

SPCA

DSPCA

PathSPCA

sPCA−rSVD_l0

sPCA−rSVD_l1

sPCA−rSVD_scad

EMPCA

GPower_l0

GPower_l1

ReDaC

Figure 1: The tendency curves of RRE and PEV with respect to the number of extracted
sparse PCs attained by different sparse PCA methods on pitprops data. Three cardinality
settings for the extracted sparse PCs are utilized, including 8-5-6-2-3-2, 7-4-4-1-1-1 and
7-2-3-1-1-1.

is always employed by sparse methods for extracting interpretable informa-
tion from high-dimensional genes. We thus adopt this data set for evalua-
tion. In specific, 20 sparse PCs, each with 50 nonzero loadings, are calcu-
lated by different sparse PCA methods, including SPCA [5], PathSPCA [16],
sPCA-rSVDl0 , sPCA-rSVDl1 , sPCA-rSVDSCAD [7], EMPCA [9], GPowerl0 ,
GPowerl1 , GPowerl0,m , GPowerl1,m [8] and ALSPCA [15], respectively. Their
performance is compared in Table 3 and Figure 2 in terms of RRE and PEV,
respectively. It should be noted that the DSPCA method has also been tried,
while cannot be terminated in a reasonable time in this experiment, and thus
we omit its result in the table. Besides, we have carefully tuned the parame-
ters of the GPower methods (including GPowerl0 , GPowerl1 , GPowerl0,m and
GPowerl1,m), and can get 20 sparse PCs with total cardinality around 1000,
similar as the total nonzero elements number of the other utilized sparse PCA
methods, while cannot get sparse PC loading sequences each with cardinality
50 as expected. The results are thus not demonstrated in Figure 2.

From Table 3, it is easy to see that the proposed ReDaC method achieves
the lowest RRE and highest PEV values, as compared with the other 11 em-
ployed sparse PCA methods. Figure 2 further demonstrates that as the num-
ber of extracted sparse PCs increases, the advantage of the ReDaC method

17

Table 3: Performance comparison of different sparse PCA methods on colon data. The
best results are highlighted in bold.

SPCA PathSPCA sPCA-rSVDl0 sPCA-rSVDl1

RRE. 0.7892 0.5287 0.5236 0.5628
PEV. 37.72% 72.05% 72.58% 68.32%

sPCA-rSVDSCAD EMPCA GPowerl0 GPowerl1
RRE. 0.5723 0.5211 0.5042 0.5076
PEV. 67.25% 72.84% 74.56% 74.23%

GPowerl0,m GPowerl1,m ALSPCA ReDaC
RRE. 0.4870 0.4904 0.5917 0.4737
PEV. 76.29% 75.95% 64.99% 77.56%

2 4 6 8 10 12 14 16 18 20
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Sparse Principal Components

R
R

E

2 4 6 8 10 12 14 16 18 20
0

15%

30%

45%

60%

75%

90%

Number of Sparse Principal Components

P
E

V

SPCA

PathSPCA

sPCA−rSVD_l1

sPCA−rSVD_l0

sPCA−rSVD_scad

EMPCA

ReDaC

SPCA

PathSPCA

sPCA−rSVD_l1

sPCA−rSVD_l0

sPCA−rSVD_scad

EMPCA

ReDaC

Figure 2: The tendency curves of RRE and PEV with respect to the number of extracted
sparse PCs, each with cardinality 50, attained by different sparse PCA methods on colon
data.

tends to be more dominant than other methods, with respect to both the
RRE and PEV criteria. This further substantiates the effectiveness of the
proposed method and implies its potential usefulness in applications with
various interpretable components.

3.3. Nonnegative sparse PCA experiments

We further testify the performance of the proposed ReDaC method (Algo-
rithm 2) in nonnegative sparse PC extraction. For comparison, two existing
methods for nonnegative sparse PCA, NSPCA [29] and Nonnegative EMPCA
(N-EMPCA, briefly) [9], are also employed.

18

Table 4: Performance comparison of success times attained by PCA, NSPCA, N-EMPCA
and ReDaC on synthetic toy experiments with different sample sizes. The best results are
highlighted in bold.

n = 500 n = 1000 n = 2000 n = 5000
PCA 0 0 0 0

NSPCA 739 948 933 993
N-EMPCA 620 655 631 639

ReDaC 835 949 978 1000

3.3.1. Synthetic toy data

As the toy data utilized in Section 3.2, we also formulate a Gaussian
distributionN (0,Σ) with mean 0 and covariance matrix Σ =

∑10
j=1 cjvjv

T
j ∈

R10×10. Both the leading two eigenvectors of Σ are specified as nonnegative
and sparse vectors as:

v1 = (0.474, 0, 0.158, 0, 0.316, 0, 0.791, 0, 0.158, 0)T ,

v2 = (0, 0.140, 0, 0.840, 0, 0.280, 0, 0.140, 0, 0.420)T ,

and the rest are then generated by applying Gram-Schmidt orthonormal-
ization to 8 randomly valued 10-dimensional vectors. The 10 corresponding
eigenvalues (c1, c2, ..., c10) are preset as (210, 190, 50, 50, 6, 5, 4, 3, 2, 1), respec-
tively. Four series of experiments are designed, each with 1000 data sets
generated from N (0,Σ), with sample sizes 500, 1000, 2000 and 5000, re-
spectively. For each experiment, the first two PCs are calculated by the
conventional PCA, NSPCA, N-EMPCA and ReDaC methods, respectively.
The success times, calculated in the similar way as introduced in Section
3.1.2, of each utilized method on each series of experiments are recorded, as
listed in Table 4.

From Table 4, it is seen that the ReDaC method achieves the highest
success rates in all experiments. The advantage of the proposed ReDaC
method on nonnegative sparse PCA calculation, as compared with the other
utilized methods, can thus been verified in these experiments.

3.3.2. Colon data

The colon data set is utilized again for nonnegative sparse PCA calcula-
tion. The NSPCA and N-EMPCA methods are adopted as the competing
methods. Since the NSPCA method cannot directly pre-specify the cardi-
nalities of the extracted sparse PCs, we thus first apply NSPCA on the colon

19

Table 5: Performance comparison of different nonnegative sparse PCA methods on colon
data. The best results are highlighted in bold.

NSPCA N-EMPCA ReDaC
RRE 0.3674 0.3399 0.2706
PEV 86.50% 88.45% 92.68%

5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Nonnegative Sparse Principal Components

R
R

E

5 10 15 20
30%

40%

50%

60%

70%

80%

90%

100%

Number of Nonnegative Sparse Principal Components

P
E

V

NSPCA
N−EMPCA
ReDaC

NSPCA
N−EMCPA
ReDaC

Figure 3: The tendency curves of RRE and PEV, with respect to the number of extracted
nonnegative sparse PCs, attained by NSPCA, N-EMPCA and ReDaC on colon data.

data (with parameters α = 1 × 106 and β = 1 × 107) and then use the car-
dinalities of the nonnegative sparse PCs attained by this method to preset
the N-EMPCA and ReDaC methods for fair comparison. 20 sparse PCs are
computed by the three methods, and the performance is compared in Table
5 and Figure 3, in terms of RRE and PEV, respectively.

Just as expected, it is evident that the proposed ReDaC method dom-
inates in both RRE and PEV viewpoints. From Table 5, we can observe
that our method achieves the lowest RRE and highest PEV on 20 extracted
nonnegative sparse PCs than the other two utilized methods. Furthermore,
Figure 3 shows that our method is advantageous, as compared with the other
methods, for any preset number of extracted sparse PCs, and this advantage
tends to be more significant as more sparse PCs are to be calculated. The
effectiveness of the proposed method on nonnegative sparse PCA calculation
can thus be further verified.

3.3.3. Application to face recognition

In this section, we introduce the performance of our method in face
recognition problem [29]. The proposed ReDaC method, together with the

20

PCA

ReDaC

N−EMPCA

NSPCA

Figure 4: From top row to bottom row: 10 PCs or nonnegative sparse PCs extracted by
PCA, NSPCA, N-EMPCA and ReDaC, respectively.

Table 6: Performance comparison of different nonnegative sparse PCA methods on MIT
CBCL Face Dataset #1. The best results are highlighted in bold.

NSPCA N-EMPCA ReDaC
RRE 0.6993 0.6912 0.6606
PEV 51.10% 52.22% 56.36%

conventional PCA, NSPCA and N-EMPCA methods, have been applied to
this problem and their performance is compared in this application. The
employed data set is the MIT CBCL Face Dataset #1, downloaded from
“http://cbcl.mit.edu/software-datasets/FaceData2.html”. This data set con-
sists of 2429 aligned face images and 4548 non-face images, each with reso-
lution 19× 19. For each of the four utilized methods, 10 PC loading vectors
are computed on face images, as shown in Figure 4, respectively. For easy
comparison, we also list the RRE and PEV values of three nonnegative sparse
PCA methods in Table 6.

As depicted in Figure 4, the nonnegative sparse PCs obtained by the
ReDaC method more clearly exhibit the interpretable features underlying
faces, as compared with the other utilized methods, e.g. the first five PCs
calculated from our method clearly demonstrate the eyebrows, eyes, cheeks,
mouth and chin of faces, respectively. The advantage of the proposed method
can further be verified quantitatively by its smallest RRE and largest PEV
values, among all employed methods, in the experiment, as shown in Table
6. The effectiveness of the ReDaC method can thus be substantiated.

To further show the usefulness of the proposed method, we apply it to face

21

http://cbcl.mit.edu/software-datasets/FaceData2.html

Table 7: Performance comparison of the classification accuracy obtained by different non-
negative sparse PCA methods. The best results are highlighted in bold.

Face (%) Non-face (%) Total (%)
LR 96.71 93.57 94.47

PCA + LR 96.64 94.17 94.88
NSPCA + LR 94.89 93.49 93.89

N-EMPCA + LR 96.71 94.39 95.06
ReDaC + LR 96.78 94.46 95.84

classification under this data set as follows. First we randomly choose 1000
face images and 1000 non-face images from MIT CBCL Face Dataset #1,
and take them as the training data and the rest images as testing data. We
then extract 10 PCs by utilizing the PCA, NSPCA, N-EMPCA and ReDaC
methods to the training set, respectively. By projecting the training data
onto the corresponding 10 PCs obtained by these four methods, respectively,
and then fitting the linear Logistic Regression (LR) [33] model on these
dimension-reduced data (10-dimensional), we can get a classifier for testing.
The classification accuracy of the classifier so obtained on the testing data
is then computed, and the results are reported in Table 7. In the table,
the classification accuracy attained by directly fitting the LR model on the
original training data and testing on the original testing data is also listed
for easy comparison.

From Table 7, it is clear that the proposed ReDaC method attains the
best performance among all implemented methods, most accurately recog-
nizing both the face images and the non-face images from the testing data.
This further implies the potential usefulness of the proposed method in real
applications.

4. Conclusion

In this paper we have proposed a novel recursive divide-and-conquer
method (ReDaC) for sparse PCA problem. The main methodology of the
proposed method is to decompose the original large sparse PCA problem into
a series of small sub-problems. We have proved that each of these decom-
posed sub-problems has a closed-form global solution and can thus be easily
solved. By recursively solving these small sub-problems, the original sparse
PCA problem can always be very effectively resolved. We have also shown
that the new method converges to a stationary point of the problem, and can

22

be easily extended to other sparse PCA problems with certain constraints,
such as nonnegative sparse PCA problem. The extensive experimental results
have validated that our method outperforms current sparse PCA methods
in both reconstruction-error-minimization and data-variance-maximization
viewpoints.

There are many interesting investigations still worthy to be further ex-
plored. For example, when we reformat the square L2-norm error of the
sparse PCA model as the L1-norm one, the robustness of the model can
always be improved for heavy noise or outlier cases, while the model is corre-
spondingly more difficult to solve. By adopting the similar ReDaC method-
ology, however, the problem can be decomposed into a series of much simpler
sub-problems, which are expected to be much more easily solved than the
original model. Besides, although we have proved the convergence of the
ReDaC method, we do not know how far the result is from the global op-
timum of the problem. Stochastic global optimization techniques, such as
simulated annealing and evolution computation methods, may be combined
with the proposed method to further improve its performance. Also, more
real applications of the proposed method are under our current research.

[1] I. T. Jolliffe, Principal Component Analysis, 2nd Edition, Springer, New
York, 2002.

[2] I. T. Jolliffe, Rotation of principal components - choice of normalization
constraints, Journal of Applied Statistics 22 (1) (1995) 29–35.

[3] J. Cadima, I. T. Jolliffe, Loadings and correlations in the interpretation
of principal components, Journal of Applied Statistics 22 (2) (1995)
203–214.

[4] I. T. Jolliffe, N. T. Trendafilov, M. Uddin, A modified principal com-
ponent technique based on the lasso, Journal of Computational and
Graphical Statistics 12 (3) (2003) 531–547.

[5] H. Zou, T. Hastie, R. Tibshirani, Sparse principal component analysis,
Journal of Computational and Graphical Statistics 15 (2) (2006) 265–
286.

[6] A. d’Aspremont, L. El Ghaoui, M. I. Jordan, G. Lanckriet, A direct for-
mulation for sparse pca using semidefinite programming, Siam Review
49 (3) (2007) 434–448.

23

[7] H. P. Shen, J. Huang, Sparse principal component analysis via regular-
ized low rank matrix approximation, Journal of Multivariate Analysis
99 (6) (2008) 1015–1034.

[8] M. Journée, Y. Nesterov, P. Richtarik, R. Sepulchre, Generalized power
method for sparse principal component analysis, Journal of Machine
Learning Research 11 (2010) 517–553.

[9] C. Sigg, J. Buhmann, Expectation-maximization for sparse and non-
negative pca, in: Proceedings of the 25th International Conference on
Machine Learning, ACM, 2008, pp. 960–967.

[10] Y. Guan, J. Dy, Sparse probabilistic principal component analysis, in:
Proceedings of 12th International Conference on Artificial Intelligence
and Statistics, 2009, pp. 185–192.

[11] K. Sharp, M. Rattray, Dense message passing for sparse principal com-
ponent analysis, in: Proceedings of 13th International Conference on
Artificial Intelligence and Statistics, 2010, pp. 725–732.

[12] C. Archambeau, F. Bach, Sparse probabilistic projections, in: D. Koller,
D. Schuurmans, Y. Bengio, L. Bottou (Eds.), Advances in Neural Infor-
mation Processing Systems 21, MIT Press, Cambridge, MA, 2009, pp.
73–80.

[13] B. Sriperumbudur, D. Torres, G. Lanckriet, Sparse eigen methods by dc
programming, in: Proceedings of the 24th International Conference on
Machine Learning, ACM, 2007, pp. 831–838.

[14] B. K. Sriperumbudur, D. A. Torres, G. Lanckriet, A majorization-
minimization approach to the sparse generalized eigenvalue problem,
Machine Learning 85 (1-2) (2011) 3–39.

[15] Z. Lu, Y. Zhang, An augmented lagrangian approach for sparse principal
component analysis, Mathematical Programming 135 (1-2) (2012) 149–
193.

[16] A. d’Aspremont, F. Bach, L. Ghaoui, Full regularization path for sparse
principal component analysis, in: Proceedings of the 24th International
Conference on Machine Learning, ACM, 2007, pp. 177–184.

24

[17] B. Moghaddam, Y. Weiss, S. Avidan, Spectral bounds for sparse pca:
Exact and greedy algorithms, in: Y. Weiss, B. Schölkopf, J. Platt (Eds.),
Advances in Neural Information Processing Systems 18, MIT Press,
Cambridge, MA, 2006, pp. 915–922.

[18] A. d’Aspremont, F. Bach, L. El Ghaoui, Optimal solutions for sparse
principal component analysis, Journal of Machine Learning Research 9
(2008) 1269–1294.

[19] D. M. Witten, R. Tibshirani, T. Hastie, A penalized matrix decompo-
sition, with applications to sparse principal components and canonical
correlation analysis, Biostatistics 10 (3) (2009) 515–534.

[20] A. Farcomeni, An exact approach to sparse principal component analy-
sis, Computational Statistics 24 (4) (2009) 583–604.

[21] Y. Zhang, L. E. Ghaoui, Large-scale sparse principal component analysis
with application to text data, in: J. Shawe-Taylor, R. Zemel, P. Bartlett,
F. Pereira, K. Weinberger (Eds.), Advances in Neural Information Pro-
cessing Systems 24, MIT Press, Cambridge, MA, 2011, pp. 532–539.

[22] D. Y. Meng, Q. Zhao, Z. B. Xu, Improve robustness of sparse pca by
l1-norm maximization, Pattern Recognition 45 (1) (2012) 487–497.

[23] Y. Wang, Q. Wu, Sparse pca by iterative elimination algorithm, Ad-
vances in Computational Mathematics 36 (1) (2012) 137–151.

[24] L. Mackey, Deflation methods for sparse pca, in: D. Koller, D. Schu-
urmans, Y. Bengio, L. Bottou (Eds.), Advances in Neural Information
Processing Systems 21, MIT Press, Cambridge, MA, 2009, pp. 1017–
1024.

[25] H. Hotelling, Analysis of a complex of statistical variables into principal
components, Journal of Educational Psychology 24 (1933) 417–441.

[26] K. Pearson, On lines and planes of closest fit to systems of points in
space, Philosophical Magazine 2 (7-12) (1901) 559–572.

[27] D. Knuth, The Art of Computer Programming, Addison-Wesley, Read-
ing, MA, 1973.

25

[28] P. Tseng, Convergence of a block coordinate descent method for nondif-
ferentiable minimization, Journal of Optimization Theory and Applica-
tions 109 (3) (2001) 475–494.

[29] R. Zass, A. Shashua, Nonnegative sparse pca, in: B. Schölkopf, J. Platt,
T. Hoffman (Eds.), Advances in Neural Information Processing Systems
19, MIT Press, Cambridge, MA, 2007, pp. 1561–1568.

[30] A. Cichocki, R. Zdunek, A. Phan, S. Amari, Nonnegative Matrix and
Tensor Factorizations: Applications to Exploratory Multi-way Data
Analysis and Blind Source Separation, Wiley, 2009.

[31] J. Jeffers, Two case studies in the application of principal component
analysis, Applied Statistics 16 (1967) 225–236.

[32] U. Alon, N. Barkai, D. Notterman, K. Gish, S. Ybarra, D. Mack,
A. Levine, Broad patterns of gene expression revealed by clustering
analysis of tumor and normal colon tissues probed by oligonucleotide
arrays, Cell Biology 96 (12) (1999) 6745–6750.

[33] J. Friedman, T. Hastie, R. Tibshirani, The Elements of Statistical Learn-
ing, Springer, 2001.

26

Appendix A. Proof of Theorem 2

In the following, we denote w = ETu, and hardλ(w) the hard threshold-
ing function, whose i-th element corresponds to I(|wi| ≥ λ)wi, where wi is
the i-th element of w and I(x) (equals 1 if x is ture, and 0 otherwise) is the
indicator function
Theorem 2. The optimal solution of

max
v

wTv s.t. vTv = 1, ‖v‖0 ≤ t,

is given by:

v∗0(w, t) =

φ, t < 1,

hardθk (w)

‖hardθk (w)‖2 , k ≤ t < k + 1 (k = 1, 2, . . . , d− 1),
w
‖w‖2 t ≥ d.

where θk denotes the k-th largest element of |w|.

Proof. In case of t < 1, the feasible region of the optimization problem is
empty, and thus the solution of the problem does not exist.

In case of t ≥ d, the problem is equivalent to

max
v

wTv s.t. vTv = 1.

It is then easy to attain the optimum of the problem v∗ = w
‖w‖2 .

In case of k ≤ t < k + 1 (k = 1, 2, . . . , d − 1), the optimum v∗ of the
problem is parallel to w on the k-dimensional subspace where the first k
largest absolute value of w are located. Also due to the constraint that vTv =
1, it is then easy to deduce that the optimal solution of the optimization
problem is hardt(w)

‖hardt(w)‖2 .
The proof is completed.

27

Appendix B. Proof of Theorem 3

We denote (I1, I2, . . . , Id) the permutation of (1, 2, . . . , d) based on the
ascending order of |w| = (|w1|, |w2|, . . . , |wd|)T , softλ(w) the soft threshold-

ing function sign(w)(|w| − λ)+, fw(λ) = softλ(w)
‖softλ(w)‖2

and gw(λ) = wTfw(λ)

throughout the following.
Theorem 3. The optimal solution of

max
v

wTv s.t. vTv = 1, ‖v‖1 ≤ t,

is given by:

v∗1(w) =

φ, t < 1,

fw(λk), t ∈ [‖fw(|wIk |)‖1, ‖fw(|wIk−1
|)‖1) (k = 2, 3, . . . , d− 1),

fw(λ1), t ∈ [‖fw(|wI1|)‖1,
√
d),

fw(0), t ≥
√
d,

where for k = 1, 2, . . . , d− 1,

λk =
(m− t2)(

∑m
i=1 ai)−

√
t2(m− t2)(m

∑m
i=1 a

2
i − (

∑m
i=1 ai)

2)

m(m− t2)
,

where (a1, a2, . . . , am) = (|wIk |, |wIk+1
|, . . . , |wId |), m = d− k + 1.

Proof. For any v located in the feasible region of (12), it holds that

√
d =
√
dvTv ≥ ‖v‖1 ≥

√
vTv = 1.

We thus have that if t < 1, then the optimal solution v∗ does not exist since
the feasible region of the optimization problem (9) is empty.

If t ≥
√
d, it is easy to see that (12) is equivalent to

max
v

wTv s.t. vTv = 1,

and its optimum is

v∗ =
w

‖w‖2
= fw(0).

We then discuss the case when t ∈ [1,
√
d). Firstly we deduce the

monotonic decreasing property of hw(λ) = ‖fw(λ)‖1 =
∥∥∥ softλ(w)
‖softλ(w)‖2

∥∥∥
1

and

gw(λ) = wTfw(λ) in λ ∈ (−∞, |wId |) by the following lemmas.

28

Lemma 1. hw(λ) is monotonically decreasing with respect to λ in (−∞, |wId |).

Proof. First, we prove that hw(λ) is monototically decreasing with λ ∈
[|wIk−1

|, |wIk |), k = 2, 3, . . . , d and (−∞, |wI1|).
It is easy to see that for λ ∈ [|wIk−1

|, |wIk |), k = 2, 3, . . . , d and (−∞, |wI1|),

hw(λ) =

∑d
i=k(|wIi| − λ)√∑d
i=k(|wIi | − λ)2

.

Then we have

h′w(λ) =
−(d− k + 1)

√∑d
i=k(|wIi | − λ)2 +

∑d
i=k(|wIi |−λ)√∑d
i=k(|wIi |−λ)

2

∑d
i=k(|wIi| − λ)∑d

i=k(|wIi | − λ)2

=

(
d∑
i=k

(|wIi | − λ)2

)−3/2−(d− k + 1)
d∑
i=k

(|wIi | − λ)2 +

(
d∑
i=k

(|wIi | − λ)

)2
 .

It is known that for any number sequence s1, s2, . . . , sn, it holds that(
n∑
i=1

si

)2

≤ n
n∑
i=1

s2i .

Thus we have
h′w(λ) ≤ 0

for λ ∈ [|wIk−1
|, |wIk |), k = 2, 3, . . . , d and (−∞, |wI1|). Since hw(λ) is ob-

viously a continuous function in (−∞, |wId |), it can be easily deduced that
hw(λ) is monotonically decreasing in the entire set (−∞, |wId |) with respect
to λ.

The Proof is completed.

Based on Lemma 1, It is easy to deduce that the range of hw(λ) for
λ ∈ (−∞, |wId |) is [1,

√
d), since lim

λ→−∞
hw(λ) =

√
d and hw(λ) = 1 for

λ ∈ [|wId−1
|, |wId |).

The following lemma shows the monotonic decreasing property of gw(λ).

Lemma 2. gw(λ) is monotonically decreasing with respect to λ ∈ (−∞, |wId |).

29

Proof. Please see [22] for the proof.

The next lemma proves that the optimal solution v∗ can be expressed as
fw(λ∗).

Lemma 3. The optimal solution of (12) is of the expression v∗ = fw(λ∗)
for t ∈ [1,

√
d) on some λ∗ ∈ (−∞, |wId |).

Proof. Please see [19, 22] for the proof.

Lemmas 1-3 imply that the optimal solution of (12) is attained at λ∗ where
‖fw(λ∗)‖1 = t holds. The next lamma presents the closed-form solution of
this equation.

Lemma 4. The solutuion of ‖fw(λ)‖1 = t for t ∈ [‖fw(|wIk |)‖1, ‖fw(|wIk−1
|)‖1),

(k = 2, 3, . . . , d− 1), or t ∈ [‖fw(|wI1|)‖1,
√
d) is

λk =
(m− t2)(

∑m
i=1 ai)−

√
t2(m− t2)(m

∑m
i=1 a

2
i − (

∑m
i=1 ai)

2)

m(m− t2)
,

where (a1, a2, . . . , am) = (|wIk |, |wIk+1
|, . . . , |wId|) and m = d− k + 1.

Proof. Let’s transform the equation

‖fw(λ)‖1 =

∑d
i=k(|wIi | − λ)√∑d
i=k(|wIi | − λ)2

=

∑m
i=1(ai − λ)√∑m
i=1(ai − λ)2

= t (19)

as the following expression

(
m∑
i=1

ai −mλ)2 = t2
m∑
i=1

(ai − λ)2.

Then we can get the quadratic equation with respect to λ as:

m(m− t2)λ2 − 2(m− t2)(
m∑
i=1

ai)λ+ (
m∑
i=1

ai)
2 − t2

m∑
i=1

a2i = 0. (20)

30

We first claim that t2 < m for t ∈ [‖fw(|wIk |)‖1, ‖fw(|wIk−1
|)‖1), k =

2, 3, . . . , d− 1, or t ∈ [‖fw(|wI1 |)‖1,
√
d). In fact, by the definition of fw(λ),

we have that

t < ‖fw(|wIk−1
|)‖1 =

∑m
i=1(ai − |wIk−1

|)√∑m
i=1(ai − |wIk−1

|)2

≤

m m∑
i=1

 (ai − |wIk−1
|)√∑m

i=1(ai − |wIk−1
|)2

2
1
2

=
√
m,

for t ∈ [‖fw(|wIk |)‖1, ‖fw(|wIk−1
|)‖1), k = 2, . . . , d− 1, and

t < ‖fw(|
√
d|)‖1 =

∑d
i=1(ai − |

√
d|)√∑d

i=1(ai − |
√
d|)2

≤

d d∑
i=1

 (ai − |
√
d|)√∑d

i=1(ai − |
√
d|)2

2
1
2

=
√
d =
√
m,

for t ∈ [‖fw(|wI1 |)‖1,
√
d). Then it can be seen that the discriminant of

equation (20)

∆ = t2(m− t2)(m
m∑
i=1

a2i − (
m∑
i=1

ai)
2) ≥ 0,

using the fact that (
∑m

i=1 ai)
2 ≤ m

∑m
i=1 a

2
i . Therefore, the solutions of

equation (20) can be expressed as

λ =
(m− t2)(

∑m
i=1 ai)±

√
t2(m− t2)(m

∑m
i=1 a

2
i − (

∑m
i=1 ai)

2)

m(m− t2)
.

31

It holds that

λ+ =
(m− t2)(

∑m
i=1 ai) +

√
t2(m− t2)(m

∑m
i=1 a

2
i − (

∑m
i=1 ai)

2)

m(m− t2)

≥ (m− t2)(
∑m

i=1 ai)

m(m− t2)

=

∑m
i=1 ai
m

(=

∑d
i=k |wIi |

d− k + 1
)

≥ |wIk |.

If λ+ > |wIk |, since λ ≤ |wIk | required by equation (19), then

λk = λ− =
(m− t2)(

∑m
i=1 ai)−

√
t2(m− t2)(m

∑m
i=1 a

2
i − (

∑m
i=1 ai)

2)

m(m− t2)
.

Otherwise, if λ+ = |wIk |, then it holds that (
∑m

i=1 ai)
2 = m

∑m
i=1 a

2
i , which

naturally leads to λk = λ+ = λ−.
The proof is then completed.

Based on the above Lemmas 1-4, the conclusion of Theorem 3 can then
be obtained.

32

Appendix C. Proof of Theorem 5

Theorem 5. The global optimal solution to (18) is v∗p((w)+, t) (p = 0, 1),

where w = ETu, and v∗0(·, ·) and v∗1(·, ·) are defined in Theorem 2 and The-
orem 3, respectively.

It is easy to prove this theorem based on the following lemma.

Lemma 5. Assume that there is at least one element of w is positive, then
the optimization problem

(P1) max
v

wTv s.t. vTv = 1, ‖v‖p ≤ t, v � 0,

can be equivalently soved by

(P2) max
v

(w)T+v s.t. vTv = 1, ‖v‖p ≤ t,

where p is 0 or 1.

Proof. Denote the optimal solutions of (P1) and (P2) as v1 and v2, re-
spectively.

First, we prove that wTv1 ≥ wTv2. Based on Theorem 2 and 3, the
elements of v2 are of the same signs (or zeros) with the corresponding ones
of (w)+. This means that v2 � 0 natrually holds. That is, v2 belongs
to the feasible region of (P1). Since v1 is the optimum of (P1), we have
wTv1 ≥ wTv2.

Then we prove that wTv1 ≤ wTv2 through the following three steps.
(C1): The nonzero elements of v1 =(v

(1)
1 , v

(1)
2 , ..., v

(1)
d) lie on the positions

where the nonnegative entries of w are located.
If all elements of w are nonnegative, then (C1) is evidently satisfied.
Otherwise, there is an element, denoted as the i-th element wi of w, is

negative and the corresponding element, v
(1)
i , of v1 is nonzero (i.e. positive).

We further pick up a nonnegative element, denoted as wj, from w. Then we
can construct a new d-dimensional vector ṽ = (ṽ1, ṽ2, ..., ṽi) as

ṽk =

0, k = i,√

(v
(1)
i)2 + (v

(1)
j)2, k = j,

v
(1)
k , k 6= i, j.

Then we have

33

wT ṽ =
∑
k

wkvk = wj

√
(v

(1)
i)2 + (v

(1)
j)2 +

∑
k 6=i,j

wkv
(1)
k

> wiv
(1)
i + wjv

(1)
j +

∑
k 6=i,j

wkv
(1)
k

= wTv1.

We get the inequality by the fact that wj

√
(v

(1)
i)2 + (v

(1)
j)2 ≥ wjv

(1)
j and

0 > wiv
(1)
i . This is contradict to the fact that v1 is the optimal solution of

(P1), noting that ‖ṽ‖p ≤ ‖v‖p ≤ t.
The conclusion (C1) is then proved.

(C2): The nonzero elements of v2 =(v
(2)
1 , v

(2)
2 , ..., v

(2)
d) lie on the positions

where the nonzero entries of (w)+ are located.
Denote (w)+ = (w+

1 , w
+
2 , ..., w

+
d). If all elements of (w)+ are positive,

then (C2) is evidently satisfied.
Otherwise, let w+

i be a zero element of w and the corresponding element,

v
(2)
i , of v2 is nonzero, and let w+

j be a positive element of w. Then we can
construct a new d-dimensional vector v = (v1, v2, ..., vi) as

vk =

0, k = i,√

(v
(2)
i)2 + (v

(2)
j)2, k = j,

v
(2)
k , k 6= i, j.

Then we have

(w)T+v =
∑
k

w+
k vk = w+

j

√
(v

(2)
i)2 + (v

(2)
j)2 +

∑
k 6=i,j

w+
k v

(2)
k

> w+
i v

(2)
i + w+

j v
(2)
j +

∑
k 6=i,j

w+
k v

(1)
k

= (w)T+v2.

We get the first inequality by the fact that w+
j

√
(v

(2)
i)2 + (v

(2)
j)2 > w+

j v
(2)
j

and 0 = w+
i v

(2)
i . This is contradict to the fact that v2 is the optimal solution

of (P2), noting that ‖ṽ‖p ≤ ‖v‖p ≤ t.

34

The conclusion (C2) is then proved.
(C3): We can then prove that wTv1 ≤ wTv2 based on the conclusions

(C1) and (C2) as follows:

wTv1 = (w)T+v1 ≤ (w)T+v2 = wTv2.

In the above equation, the first equality is conducted by (C1), the second
inequality is based on the fact that v2 is the optimal solution of (P2), and
the third equality is followed by (C2).

Thus it holds that wTv1 = wTv2. This implies that the optimization
problem (P1) can be equivalently solved by (P2).

35

	1 Introduction
	2 The recursive divide-and-conquer method for sparse PCA
	2.1 Basic models of sparse PCA
	2.2 Decompose original problem into small and simple sub-problems
	2.3 The closed-form solutions of (??) and (??)
	2.4 The recursive divide-and-conquer algorithm for sparse PCA
	2.5 Convergence analysis
	2.6 The ReDaC method for nonnegative sparse PCA

	3 Experiments
	3.1 Synthetic simulations
	3.1.1 Hastie data
	3.1.2 Synthetic toy data

	3.2 Experiments on real data
	3.2.1 Pitprops data
	3.2.2 Colon data

	3.3 Nonnegative sparse PCA experiments
	3.3.1 Synthetic toy data
	3.3.2 Colon data
	3.3.3 Application to face recognition

	4 Conclusion

