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Fast and Efficient Strategies for Model Selection of
Gaussian Support Vector Machine

Zongben Xu, Mingwei Dai, and Deyu Meng

Abstract—Two strategies for selecting the kernel parameter
(σ) and the penalty coefficient (C) of Gaussian support vector
machines (SVMs) are suggested in this paper. Based on viewing
the model parameter selection problem as a recognition problem
in visual systems, a direct parameter setting formula for the kernel
parameter is derived through finding a visual scale at which the
global and local structures of the given data set can be preserved
in the feature space, and the difference between the two structures
can be maximized. In addition, we propose a heuristic algorithm
for the selection of the penalty coefficient through identifying the
classification extent of a training datum in the implementation
process of the sequential minimal optimization (SMO) procedure,
which is a well-developed and commonly used algorithm in SVM
training. We then evaluate the suggested strategies with a series
of experiments on 13 benchmark problems and three real-world
data sets, as compared with the traditional 5-cross validation
(5-CV) method and the recently developed radius-margin bound
(RM) method. The evaluation shows that in terms of efficiency
and generalization capabilities, the new strategies outperform the
current methods, and the performance is uniform and stable.

Index Terms—Data mining, kernel methods, pattern classifica-
tion, support vector machine (SVM).

I. INTRODUCTION

ROOTED in statistical learning theory (SLT), support vec-
tor machine (SVM) realizes the structural risk minimiza-

tion (SRM) principle [1] by implementing classification to
maximize the interclass margin(s) [2]–[5]. Due to its successful
applications on character recognition, speaker identification,
face recognition, gender classification, stock action prediction,
etc. [5]–[12], SVM has significantly been highlighted in areas
of data mining and machine learning.

Model selection of SVM is an important issue in SVM
research. Specifically, the involved parameters in SVM, such
as the kernel parameters (such as σ in Gaussian kernel) and the
penalty coefficient C, always have a significant influence on the
overall performance of the final obtained classifier. Designing
reasonable strategies to tune these parameters has attracted
more and more attentions in the latest years [13]–[25].
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So far, there have mainly been two categories of approaches
to the model selection issue of SVM. The first category of
approaches primarily takes the cross validation (CV) errors as
the criteria to control the selection of the model parameters
[13]–[15]. This category of approaches is most widely used
nowadays due to its simplicity, reliability, and interpretability.
Two typical approaches of this category are 5-cross validation
(5-CV) [14] and leave one out (LOO) [15]. The procedures
of those types of methods require a complete grid search
over the whole parameter space that needs to be located in
an interval of the feasible solution, and they also need to
take an appropriate sampling step. These bring negativeness
to the approaches since an appropriate sampling step varies
from kernel to kernel, and the search interval may not be easy
to locate without prior knowledge. Moreover, the complete
grid search unavoidably brings very high computational bur-
den, frequently excluding the possibility of their application
to very-large-scale problems. In the latest years, a series of
researches on improving the efficiency of the grid search have
been proposed by applying modern optimization techniques,
such as particle swarm optimization (PSO) [26]–[28], simulated
annealing [29], and genetic algorithms [30]–[32], to guide the
searching process of the optimal parameters. However, their
effectiveness on large-scale applications still need to be further
evaluated.

The second category of approaches takes a certain type of
theoretical approximation, such as the influence-function-based
estimation [33], [34], or upper bound estimations of CV errors
(LOO error commonly), such as the radius-margin bound (RM),
as the criteria to guide the model selection of SVM. The
main idea is to find the optimal parameters for minimizing
the approximations or the approximated error bounds. When
the error bound functions are differentiable, the traditional gra-
dient descent techniques are frequently adopted to realize the
minimization. In applications (e.g., [16]–[21]), the very often
used approximation error bounds are Joachim’s bound, span
bound, the generalized approximate cross-validation bound,
and RM (i.e., Vapnik–Chervonenkis (VC) bound). Compared
with the first category of approaches, this category of ap-
proaches can select the model parameters in a definite way (that
is, through a definite procedure of minimizing an error func-
tion), and, therefore, has a much lower computation complexity.
However, it is generally uncertain if a satisfied (sufficiently ac-
curate and differentiable) error bound can be obtained, and even
if it can, there exist inevitably gaps between the approximation
error and the real error, which then might lead to an inappropri-
ate selection of the parameters. Moreover, to iteratively attain
the minimal value of the approximation error bounds, generally,
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multiple times of SVM training have to be implemented, which
may then cause heavy burden of computation.

Aiming at alleviating these problems, we propose two novel
strategies to specify the model parameters of a Gaussian SVM
in this paper. Based on viewing the model selection problem
as a recognition problem in visual systems, we derive a direct
parameter setting formula for selecting the kernel parameter (σ)
through finding a visual scale at which the global and local
structures of a data set can be preserved in the feature space,
and, meanwhile, the difference between the two structures can
be maximized. We also propose a new heuristic for the selec-
tion of the penalty coefficient (C) through identifying some
quantities to measure the classification extent of each training
datum in the implementation process of the sequential minimal
optimization (SMO) procedure, which is a well-developed and
commonly used algorithm in SVM training. A series of exper-
iments with standard benchmark data sets and real-world ones
verify that the suggested strategies are capable of yielding the
SVM classifier with higher generalization capability within a
significantly less computation time, as compared with the well-
known 5-CV method and the recently developed RM method
(see [21]).

We organize the rest of this paper as follows. In Section II,
we present a brief review of SVM. In Sections III and IV,
the strategies to select the model parameters σ and C are
respectively introduced. The experimental results are reported
in Section V. Finally, we conclude this paper with some useful
remarks in Section VI.

II. BRIEF REVIEW OF SVM

SVM is initiated to calculate the underlying classifier f :
Rn → {−1, 1} of a given data set Dl = {xi, yi}l

i=1, where
xi ∈ Rn, yi ∈ {−1, 1}, and l is the number of the data set.
The attribute xi with label yi = +1 represents the sample
belonging to a positive class; otherwise, it belongs to a negative
class. SVM works based on solving the following mathematical
model:

min
1
2
‖ω‖2 + C

l∑
i=1

ξi

s.t. yi (〈ω, xi〉 − b) ≥ 1 − ξi, i = 1, . . . , l

ξi ≥ 0, i = 1, . . . , l (1)

where ω and ξi are unknown variables, ‖ω‖ is the reciprocal
of the margin between two classes, ξi is the permitted classi-
fication error for the ith sample, and C is the preset penalty
coefficient. Based on the SLT and SRM principles, all pursue of
implementing the model is to reach a best compromise between
the generalization capability (controlled by (1/2)‖ω‖2) and
the approximation capability (controlled by

∑l
i=1 ξ2

i ) of the
classifier [2], [4].

One of the most prominent developments in SVM is the
introduction of kernel functions [35]. Through substituting the
inner product 〈x, y〉 in the low-dimensional original space (Rn)
by kernel K(x, y) = 〈ϕ(x), ϕ(y)〉 in the high-dimensional fea-
ture space, a nonlinear classification problem in the original
space can equivalently be solved by considering a linear clas-

sification problem in the feature space. This greatly expands
the scope of applicability of the original SVM. In this paper,
we focus on the Gaussian SVM that involves application of the
Gaussian kernel function defined by

K(x, y) = e−
‖x−y‖2

σ2 . (2)

This is the type of SVMs most commonly used in applications
nowadays.

In SVM, the optimization problem [see (1)] with kernel
form is normally solved through transferring it to the following
equivalent dual problem:

min W (α1, . . . , αl)=
l∑

i=1

αi−
1
2

l∑
i=1

l∑
j=1

yiyjαiαjK(xi, xj)

s.t.
l∑

i=1

αiyi = 0, 0 ≤ αi ≤ C, i= 1, . . . , l (3)

where αi’s (i = 1, . . . , l) are the Lagrangian variables. The
problem (3) is a standard quadratic programming (QP) prob-
lem, and, therefore, αi’s (i = 1, . . . , l) are the solution if and
only if the following so-called Karush–Kuhn–Tucker (KKT)
conditions are fulfilled: for every i = 1, . . . , l:

αi = 0 ⇒ yi (f(xi) − yi) > 0
0 < αi < C ⇒ yi (f(xi) − yi) = 0

αi = C ⇒ yi (f(xi) − yi) < 0.

Due to their simplicity and low complexity of calculation, the
KKT conditions play an important role in accelerating the
optimization procedure of SVM training. Denoting the optimal
solutions of problem (3) by α∗

i (i = 1, . . . , l), the resultant
classifier of SVM is then defined by

f(x) = sign

(
l∑

i=1

α∗
iyiK(xi, x) + b

)
.

Note that before implementing the Gaussian SVM, we have
to preset the model parameters: the Gaussian kernel param-
eter σ and the penalty coefficient C. All simulations and
applications show that these two parameters have a significant
influence on the performance of the SVM, even compared with
the model itself. Hence, to appropriately select such model
parameters is crucial to the success of SVM. In this paper, we
aim at developing a fast and efficient method for the selection
of the parameters in SVM from a new perspective.

III. STRATEGY FOR SELECTION OF THE

GAUSSIAN KERNEL PARAMETER

The SVM with kernel function K essentially transforms
a nonlinear classification problem in the original space
(Rn) with Euclidean distance ‖x − y‖ into a linear clas-
sification problem in the feature space (H) with distance√

(K(x, x) + K(y, y) − 2K(x, y)) induced from the kernel
function. The Gaussian kernel is normally preferable by virtue
of its many perfect properties [36].
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Fig. 1. Observing a data set from different scales.

One of such promising properties is the structure-preserving
feature of the Gaussian kernel (that is, it preserves the ranking
order of the distances between data pairs in the original and
feature spaces). This is because, with the Gaussian kernel, the
feature space H is known to be a reproduced Hilbert space
with property H = span{ϕ1, ϕ2, . . . , ϕm, . . .}, where {ϕi}∞i=1

is the complete system of orthonormal eigenvectors of a linear
positive definite operator T : L2(Rn) → L2(Rn) induced by
the Gaussian kernel [4]. In this case, the transformation Φ to
realize the mapping from the original space Rn to the feature
space H in SVM is defined by

Φ(x) = (ϕ1(x), ϕ2(x), . . . , ϕm(x), . . .) ∈ H ∀x ∈ Rn.

Therefore, it satisfies K(x, y) = 〈Φ(x),Φ(y)〉 for any x, y
in Rn, and under the transformation, the original data set
Dl = {xi, yi}l

i=1 is transformed to the data set Φ(Dl) =
{Φ(xi), yi}l

i=1 in the feature space. With this understanding,
we can calculate that the distance of any data pair (Φ(x),Φ(y))
in Φ(Dl) ⊆ H is given by

‖Φ(x) − Φ(y)‖ =
√

(K(x, x) + K(y, y) − 2K(x, y))

=

√
2
(

1 − e−
‖x−y‖2

σ2

)
(4)

which exhibits a positively proportional relation between
‖Φ(x) − Φ(y)‖ and ‖x − y‖. This shows the structure-
preserving property of the Gaussian kernel. The structure-
preserving property might be the essential reason why the SVM
with Gaussian kernel performs more effectively than others in
general.

Another promising property of the Gaussian Kernel is its
connection with our everyday visual experience [5], [37]. When
we watch a data set in plane (cf. Fig. 1), viewed as an image,
every individual datum is amplified when the watching distance
is very near; then, each datum is observed, and a proper struc-
ture (e.g., the classification boundary) gradually appears as the
watching distance gets far. If the distance between us and the
data image continually becomes far, a more blurred image then
appears, and the structure disappears until only a blob is ob-

served when the watching distance becomes sufficiently far
away.

This everyday visual experience has been modeled in visual
theory, and it is shown (see, e.g., [37]) that the Gaussian filtering
of the initial image gives the blurred image of visual observa-
tion at scale σ. When we implement the SVM with Gaussian
kernel, a completely same phenomenon occurs: when σ is
very small, the yielded SVM classifier fully accords with the
given label for each training sample, whereas it always appears
as a very complicated shape, having a perfect approximation
but without any generalization capability. However, when σ
is set very large, a very smooth classifier (commonly a linear
classifier) is yielded, which has very strong generalization but
without approximation capability. Only when the scale is set
appropriately, that is, neither too small nor too large, would
the obtained classifier possibly find a proper classification
surface, reaching an optimal compromise between the two
capabilities.

Let us further explain why the SVM performs like this to
motivate our idea for the selection of the Gaussian kernel
parameter.

When σ is very small, we can deduce from (4) that the
distances between all data pairs in the feature space tend to
be close to the maximal value

√
2 (as shown in Fig. 2 when

σ = 0.1, 1), so all structures in the data set are nearly dismissed.
More specifically, the local structure of the data set (the data
pairs with small distances) in the original space is inclined
to be destroyed in the feature space, so each data point (in-
cluding noises) is deviated from its local neighbors to form
an isolated plot in the feature space. Hence, each datum can
correctly be classified by the yielded classifier, i.e., it has perfect
approximation capability. However, since any new input is also
inclined to be an isolated plot, no reference data can properly
guide its classification. Thus, the classifier has no or very poor
generalization capability.

On the other hand, when σ is very large, the distances
between all data pairs approach the minimal value 0 (as shown
in Fig. 2 when σ = 30, 100). In this case, the global structure
(the data pairs with large distances) in the original space tends
to be broken in the feature space, and each original faraway
data pair may appear very close in the feature space. In such a
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Fig. 2. Demonstration (in y-axis) for the distance distributions of a data set in the Gaussian feature spaces under different kernel parameters. The data set contains
1000 points, which are randomly generated from the 2-D (0, 1) × (0, 1) box. The circled points are the �0.9 ∗ N(l − 1)�th distance and the �0.1 ∗ N(l − 1)�th
distance, respectively, where N = 1000.

way, all the data are highly syncretized in the feature space, and
the classifier can no longer distinguish labels of the given data,
leading to a very poor approximation capability. In this case,
the generalization of any rule from such syncretized data does
not make sense, so the yielded classifier could be regarded as
having a very strong generalization capability (even if it does
not necessarily imply a meaningful result).

The above explanation and the visual experience both sug-
gest that there is an appropriate scale, for example, σ∗, at which
the classification structure of a data set image can best be ob-
served. From this point of view, the Gaussian kernel parameter
selection problem can then be viewed as a recognition problem
in a visual system: to find a best visual scale at which the image
can most clearly be understood.

The problem is how to find σ∗ in a practical, fast, and
efficient way. Our idea is to look for such a scale at which the
global and local structures of a data set can be preserved in the
feature space, and, meanwhile, the difference between the two
structures can be maximized.

To realize this, we may first pick a comparatively large
distance expressed by a Gaussian kernel as a measure for the
global structure and a small distance for the local structure in
the feature space (in doing so, some possibly extreme cases
caused by noise or outlier of the data should be excluded for
reliability). Then, we determine an appropriate value of σ to
make the global structure measure as large as possible and the
local structure measure as small as possible, so as to maximize
the gap (the difference) between the two measures in the feature
space. A concrete method may be as follows.

First, we set the global and local structure measures in the
feature space according to the following way: Randomly select
N (N ≤ l) samples from the given data set. Calculate the
Euclidean distances between the data in the selected set and
all the ones in the given data set, and rank them in increasing
order. Pick the �(1 − α) ∗ (N(l − 1))�th distance and the �α ∗
(N(l − 1)) + 1�th distance (0 ≤ α < 0.5) in the ordered se-
quence as the global and local structure measures dfar and dnear,
respectively.

Note that the effect of the aforementioned α is to set dfar

and dnear as a comparatively large value and a small one
from all N(l − 1) distances between the selected data with
number N and the whole data with number l (N 0-distances
between selected samples have been eliminated). Particularly,
as α is taken as 0, dfar and dnear correspond, respectively, to
the largest and smallest distances of the whole distance set, and
evidently, in this case, the deviation between the two values
are maximized. However, when α inclines to 0.5, this deviation
tends to vanish. Generally speaking, both of the above extreme
cases are not preferred. On one hand, if α is set too small,
the possible existence of outliers or noises in the given data
set tends to negatively influence the effectiveness of the latter-
proposed model selection strategy constructed based on the
preset dfar and dnear (This negative influence can be obviously
demonstrated in Fig. 5). On the other hand, if it is set too ad-
jacent to 0.5, then it is evident that dfar and dnear so calculated
have lost the significance of giving global and local structure
measures of the data set. Therefore, the value of α should be set
neither too adjacent to 0 or 0.5. The strategy to set the value of
α will further be discussed toward the end of this paper.

Then, we determine the optimal σ by maximizing the dif-
ference between the local and global structure measures in the
feature space corresponding to dfar and dnear. According to (4),
we can formulate the difference function of the two squared
measures in the feature space mathematically as

dif(σ) =
(

2 − 2e−
d2
far

2σ2

)
−

(
2 − 2e−

d2
near
2σ2

)

= 2
(

e−
d2
near
2σ2 − e−

d2
far

2σ2

)
.

Denote the optimal σ at which dif(σ) attains its maximum by
σopt. Then

σopt = arg max
σ

dif(σ)

= arg max
σ

(
e−

d2
near
2σ2 − e−

d2
far

2σ2

)
.
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To simplify the calculation, we define γ = (1/2σ2). Then,
dif(σ) and σopt can be rewritten as

dif(γ) = e−γd2
near − e−γd2

far

γopt = arg max
γ

(
e−γd2

near − e−γd2
far

)
.

Differentiating dif(γ) with respect to γ, we get

∂dif(γ)
∂γ

= e−γd2
near

(
−d2

near

)
− e−γd2

far
(
−d2

near

)
and γopt satisfies

e−γoptd
2
near

(
−d2

near

)
− e−γoptd

2
far

(
−d2

near

)
= 0

that is

−γoptd
2
near + ln d2

near = −γoptd
2
far + ln d2

far.

Therefore, we find

γopt =
ln d2

far − ln d2
near

d2
far − d2

near

and, hence, σopt is given by

σopt =

√
1

2γopt
=

√
d2
far − d2

near

2 (ln d2
far − ln d2

near)
. (5)

To summarize, we suggest the following method to specify
the Gaussian kernel parameter σ in SVM.

Algorithm 1: Selection for Gaussian Kernel Parameter σ
Step I. Randomly select N samples {xi, i = 1, . . . , N}

in Dl. Calculate the Euclidean distances between
the selected data and all the ones in the given set,
and rank them in increasing order.

Step II. Pick up the �(1 − α) ∗ (N(l − 1))�th and the �α ∗
(N(l − 1))� + 1th distances from the ranked dis-
tances as the global and local structure measures
dfar and dnear, respectively, where α is a small
real number (for example, set to be 0.1 in our
experiments).

Step III. Calculate the optimal value σopt according to (5).

Note that when the sample size is not too large, we can set
N = l; otherwise, we can set N to be an integer less or much
less than l to save computation time.

IV. STRATEGY FOR SELECTION OF

THE PENALTY COEFFICIENT

In this section, we develop a strategy to select the penalty
coefficient C.

As it is known, the role of the penalty coefficient C consists
of balancing the generalization capability of an SVM classi-
fier controlled by the term (1/2)‖ω‖2 and the approximation
capability controlled by the term

∑l
i=1 ξi in the SVM model

[see (1)]. When C is set too small (e.g., close to 0), the SVM

model puts emphasis on the former and comparatively neglects
the latter so that it yields a classifier with good generalization
capability but poor approximation capability. However, when C
is set too large, the corresponding model tends to be degraded
as the traditional empirical risk minimization (ERM) model,
which highly focuses on the fitness of the obtained classifier
on the training examples, but less on generalization. This then
leads to the well-known overfitting problem. Hence, the value
of C should also be set neither too small nor too large as that
for the Gaussian parameter σ.

Once the model parameters are set, an SVM can be trained
through many available algorithms. The most well-known and
commonly used algorithm, for instance, is the SMO algorithm
[38], [39]. The SMO algorithm has been proven to be very fast
and effective in applications [40]. Moreover, some useful infor-
mation, which might had been ignored by previous researches,
can be identified and extracted for guiding the selection of
model parameters. Our aim in this section is to explore such
possibility.

In principle, the SMO algorithm solves model (3) through
decomposing the original large QP problem into a series of the
smallest possible QP problems, each of which contains only
two variables and can analytically be solved. The smallest QP
problem with variables α1 and α2 is of the form

min
α1,α2

W (α1, α2) =
1
2
K(x1, x1)α2

1 +
1
2
K(x2, x2)α2

2

+ y1y2K(x1, x2)α1α2 − (α1 + α2)

+ y1α1

l∑
i=3

yiαiK(xi, x1)

− y2α2

l∑
i=3

yiαiK(xi, x2) + c1

s.t. α1y1 + α2y2 = −
l∑

i=3

yiαi = c2,

0 ≤ αi ≤ C, i = 1, . . . , l (6)

where c1 and c2 are two constants independent of α1 and α2.
According to [38] and [39], if we only minimize W (α1, α2)
without considering the constraints, then the iterative proce-
dures can then be formulated as

αnew
1 =αold

1 +
y1(E2 − E1)

κ

αnew
2 =αold

2 +
y2(E1 − E2)

κ
(7)

where Ei = fold(xi) − yi, i = 1, 2. If the constraints in (6) are
considered, then αnew

1 and αnew
2 need to be clipped further to

amend the values in the iteration as

αnew,clipped
1 =

⎧⎨
⎩

H, if αnew
1 ≥ H

αnew
1 , if L < αnew

1 < H
L, if αnew

1 ≤ L

αnew,clipped
2 =

⎧⎨
⎩

H, if αnew
2 ≥ H

αnew
2 , if L < αnew

2 < H
L, if αnew

2 ≤ L
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where

L = max
(
0, αold

2 − αold
1

)
H = min

(
C,C + αold

2 − αold
1

)
, if y1 �= y2

L = max
(
0, αold

2 − αold
1 − C

)
H = min

(
C,αold

2 − αold
1

)
, if y1 = y2.

In application of the SMO algorithm, αnew
1 and αnew

2 in (7)
are normally used as intermediate values for clipping. There
hides, however, very useful information in αnew

1 and αnew
2

before clipping. Looking at the computing procedure [see (7)],
for example, we can observe the following.

1) When xi is correctly classified by the current classifier
fold, i.e., yi(fold(xi) − yi) > 0(yiEi > 0), then αnew

i

tends to be smaller than αold
i . Furthermore, if xi is far-

away from the classification surface, i.e., yi(fold(xi) −
yi) � 0(yiEi � 0), then αnew

i inclines to be much
smaller than αold

i .
2) When xi is incorrectly classified by the current clas-

sifier fold, i.e., yi(fold(xi) − yi) < 0(yiEi < 0), then
αnew

i tends to be larger than αold
i . In this case, if xi

is further faraway from the classification surface, i.e.,
yi(fold(xi) − yi) � 0(yiEi � 0), then αnew

i is inclined
to be much larger than αold

i .
From this observation, a very interesting conclusion can be

drawn. After all the iterations of the algorithm, the values of all
αnew

i (i = 1, . . . , l) in the memory naturally yield measures for
classification extent of the training data. Specifically, if αnew

i

for some sample xi is small, then it shows that xi has correctly
been classified by the current classifier. If αnew

i is quite small,
then not only has xi correctly been classified but it should also
be inside the yi-class area defined by the classifier. However,
if αnew

i is large, then the corresponding xi tends to be in the
classification surface or be classified incorrectly; if it is quite
large, then xi inclines to be deviated greatly from the yi-class
area. Therefore, αnew

i can be viewed as a reasonable indication
of classification degree of the corresponding sample xi.

From this sense, we can see that clipping (i.e., the last step
of the SMO algorithm) plays the role of limiting the magnitude
of αnew

i regulated by the penalty coefficient C. The limitations
should be neither too strong nor too weak. With reference to
(6), we define the limitation strength of αnew

i as

limitationi =
{

0, αnew
i < C

αnew
i − C, αnew

i ≥ C.

That is, we hope that clipping does not affect or heavily
affect those samples with αnew

i smaller than C, and only those
samples with αnew

i greater than C are limited.
Turning this idea to specify the penalty coefficient C, we

then suggest to update the currently set C through successively
relaxing its current assignment so as to tightly bound the current
αi’s in a certain sense. More specifically, we propose the
following strategy for updating the penalty coefficient C. First,
we start with a small enough C to guarantee it to be smaller
than the real optimal value. Second, we train the SVM model
by the SMO algorithm under current C and store all αi’s. Then,

we take the mean of limitation strength on all αnew
i as the

incremental value of C for the next iteration.
In practice, we denote Λ′ = {αnew

i : αnew
i ≥ C} and denote

by Λ the set formed through deleting the largest 10% ones in
Λ′ to avoid the infections of the extreme cases (i.e., outliers and
noisy samples). Then, we define

Cnew = Ccurrent +
1
|Λ|

∑
i∈Λ

(
αnew

i − Ccurrent
)

(8)

where |Λ| is the number of elements contained in Λ. Such
iteration is continued until a convergence condition is met.

A problem still remains as to when to terminate the above
update procedure. To find such a heuristic, we have run a set of
simulations of SVM with 13 benchmark data sets provided by
[41]. These data sets have originally been used in [42] and are
very good for classification tasks [43]. We calculated the correct
classification rate of the SVM through training the machine on
the given training sets and testing the machine on the validation
sets with varying penalty coefficient C = ei, i = −7,−6, . . . ,
0, 1, . . . , 8. The classification rate of SVMs with different C is
listed in Table I and Fig. 3. It can clearly be observed that the
correct classification rate of SVM first increases as C increases,
and after reaching the maximum at a certain C, it no longer
stops increasing. This suggest the possibility and rationality
of taking the classification/misclassification rate (MR) as the
criterion to guide the termination of the update procedure.
This criterion has originally been discovered in [47]. In the
following, we decide to stop the update procedure of C once the
classification rate of the obtained classifier no longer increases.

With such a criterion, we now suggest the following proce-
dure for selection of the penalty coefficient C.

Algorithm 2: Selection of penalty coefficient C
Step I. Calculate the optimal kernel parameter σopt ac-

cording to Algorithm 1 and initialize a small value
to Ccurrent. Set the correct classification rate R =
0 and a small threshold ε > 0.

Step II. Do the following iteration until convergence:
Step II.1. Apply the SMO algorithm on the training set

to get Cnew by utilizing (8) under σopt and
Ccurrent. If ‖Cnew − Ccurrent‖ < ε, stop the
iteration.

Step II.2. Evaluate the correct classification rateR′under
σopt and Cnew. If R′ ≤ R, stop the iteration;
otherwise, let R = R′, Ccurrent = Cnew.

End Do
Step III. Output Copt = Ccurrent as the optimal selection of

the penalty coefficient value.

Note that to promise feasibility of the above algorithm, it
needs to be designed in advance how to evaluate a reasonable
classification rate R′ of a classifier (Step II.1). Based on the
existing research, CV errors, like LOO error or k-fold CV
error, provide the mostly appropriate criterion to measure the
classification rate of a classifier. Hence, we suggest the use
of such type of error (particularly, 5-fold CV error has been
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TABLE I
CLASSIFICATION RATES OF SVM WITH DIFFERENT PENALTY COEFFICIENT C

adopted in the following experiments) in the application of the
algorithm.

V. EXPERIMENT RESULTS

We provide a series of experiments in this section to demon-
strate the rationality, effectiveness, and high efficiency of the
suggested new strategies for SVM model selection.

Our experiments were made with two different family of
data sets. One was with the standard 13 benchmark problems
commonly utilized in previous researches, and the other with
three real-world data sets from University of California, Irvine,

DELVE, STAT-LOG, and other benchmark repositories. The
first family consisted of small- or medium-sized data sets (each
less than 1500 samples), designed for facilitating the overall
performance evaluation of the new algorithms due to the known
nearly optimal solutions checked by the CV technique. The
second family was of relatively large-scale data sets (each larger
than 30 000 samples), the optimal solutions of which were un-
known, and was designed for supporting the real performance
assessment of the new strategies. For comparison, we applied
our new algorithms together with the most accepted 5-CV
method [14] and a newly developed RM method [21]. When
applying Algorithm 1 in our method, we set α= 0.1, N = l for
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Fig. 3. Evolution of correct classification rates of SVM as C varies when applied to 13 benchmark data sets.

the first family of data sets, and α= 0.1, N = 0.5l for the
second one. We ourselves have written the program of the 5-CV
method, in which a 16 × 16 grid of (σ,C) values varying
from e−7 to e8 were considered as candidates to be selected,
whereas that of the RM method was downloaded directly from
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/#12. All programs
were written in C++ language and realized in the platform
of VC++.net 2003. The implementation environment was a
personal computer with Genuine Intel T2400 at 1.83 G (CPU),
1024 MB (memory), and Windows XP (operating system).

A. Experiments With Benchmark Problems

In this series of experiments with 13 benchmark problems,
our aim is to evaluate the overall performance of the new algo-
rithms as compared with the 5-CV method and the RM method
in terms of efficiency and ability of yielding the SVM classifier
with higher generalization capability. The related information
of the benchmark problems is summarized in Table II, where
the number of samples in the training set (Ntrain), the number
of samples in the testing set (Ntest), and the dimension of the
corresponding data set (Dim) are listed for each data set.

For each problem, the data set contains 100 partitions (except
20 partitions for Image and splice problems) of training sets
and testing sets (approximately 60% : 40%). For a fixed SVM
implementation scheme (that is, an SVM model with fixed
model parameters), through training the SVM on each training
set and testing the classifier on the corresponding testing set,
we obtained 100 (or 20) SVM classifiers with different MRs
for each problem. The average and variance of the MRs over
the 100 (or 20) classifiers were then taken as the measures of

TABLE II
INFORMATION OF THE 13 BENCHMARK DATA SETS

generalization ability of the SVM scheme when applied to the
problem.

For each involved model selection method, we determined
the parameters C and σ in the following way. First, we

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 15, 2009 at 05:02 from IEEE Xplore.  Restrictions apply. 



1300 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 5, OCTOBER 2009

TABLE III
MODEL PARAMETERS AND NUMBERS OF SVS CONDUCTED BY THE RM METHOD,

THE 5-CV METHOD, AND THE NEW METHOD ON THE BENCHMARK DATA SETS

estimated the parameters of the Gaussian SVM by applying the
method to the first five partitions of each benchmark data set.
Then, we computed the median of the obtained five estimations
and taken the median values as the final model parameters.
Once the parameters C and σ were set in this way, an SVM
implementation scheme (an SVM scheme in short) was de-
fined. Then, the experiment results with such an SVM scheme
were taken as the results of the corresponding model selection
method. In consequence, the capability of a model selection
method was measured with the MR of the corresponding SVM
scheme, whereas the efficiency of a model selection method
was measured directly with the average computation time for
the estimation of the parameters. Evidently, the smaller the MR
and computation time, the better a model selection method.

The experiment results with the 5-CV method, the RM
method, and our new method are summarized in Tables III
and IV and Fig. 4. Particularly, the calculated optimal model
parameters C and σ, the number of support vectors (NSVs),
the computation time (Time), and the corresponding MR are
listed in two tables for each method. An the NSVs, computa-
tional times, means, and variances of the MRs for each of the
13 benchmark data sets are depicted in Fig. 4.

From Fig. 4 and Tables III and IV, it can be seen that our
new method, overall, outperforms the 5-CV method and the RM
method. In particular, all cases for 13 benchmark data sets re-
port less computation time for the new method: approximately
three times higher than that of the RM method and more than
500 times higher than that of the 5-CV method (in average).

As generalization capability is concerned, the new method has
minimal average MR among the three methods for both mean
and variance. Considering that the 5-CV method has commonly
been accepted as the best and reliable method that can very
often yield a nearly optimal classifier, we conclude that the new
method is not only feasible but reliable and efficient as well.

An interesting observation can be made from Table III. The
parameters σ and C found by the new method tend to be smaller
than those found by the 5-CV method and larger than those
found by the RM method (that is, located between the two
values found by the RM and 5-CV methods). As the analysis
conducted in Sections III and IV implies, either too small or
too large σ and C is inclined to lead to poor performance
of SVM in application, and, hence, a moderate value might
be more preferable. Our experiments are evidently supported
by this assertion. Therefore, to a certain extent, this gives an
explanation on why the new method outperforms the 5-CV
and RM methods. It can also be observed from Table II and
Fig. 4 that the numbers of support vectors (SVs) found by the
new algorithm are also in the middle of the two found by the
other two methods (in average, the 5-CV method tends to get
the least, and the RM method tends to get the largest). This
shows that the classifier yielded by the 5-CV method tends to
be the simplest one. In this sense, 5-CV might have a better
performance than the other two methods. Nevertheless, its huge
computation burden has excluded itself from being an even
feasible model selection method in SVM when applied to large-
scale problems.
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TABLE IV
COMPUTATIONAL COSTS AND MRS CONDUCTED BY THE RM METHOD, THE 5-CV METHOD, AND THE NEW METHOD ON THE BENCHMARK DATA SETS

Fig. 4. Output results consulted by the RM method, the 5-CV method, and the new method on 13 benchmark data sets.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 15, 2009 at 05:02 from IEEE Xplore.  Restrictions apply. 



1302 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 5, OCTOBER 2009

TABLE V
INFORMATION OF THE THREE REAL-WORLD DATA SETS

B. Experiments With Real-World Problems

In this section, we further testify the effectiveness and
efficiency of the new method when applied to larger-scale
real-world problems. Three such real-world data sets, i.e.,
Adult, Web, and International Joint Conference on Neural Net-
works (IJCNN), were simulated. Herein, Adult data were ex-
tracted from the census bureau database at http://www.census.
gov/ftp/pub/DES/www/welcome.html, Web data were gener-
ated by judging whether a web page data set belongs to a
category or not, and each input consists of 300 sparse binary
keyword attributes extracted from each web page (http://www.
research.microsoft.com/jplatt/web. zip), and IJCNN data were
formed from the first problem of IJCNN challenge 2001 [44]
by preprocessing the raw data using the winner’s transforma-
tion, which was downloaded from http://www.csie.ntu.edu.tw/
cjlin/libsvmtools/ data sets. Each of these three real-world data
sets was composed of one training set and one testing set.
Related information on the magnitude and dimensionality of
the data sets is shown in Table V. We can see that the size of
every data set in this case exceeds 30 000.

In this case, the 5-CV method cannot be utilized due to its
extremely huge computation burden. Only the RM method and
our method are then simulated and compared in this series of
experiments. We still evaluated the performance of the methods
in terms of the average computation time (efficiency measure)
and the MR (generalization measure) of the corresponding
SVM scheme. The generalization measures were collected for
each fixed data set in the following way: first, applying the RM
method and the new model selection method to the data set,
yielding the parameters σ and C, then adopting the obtained
parameters (namely, the SVM scheme with the chosen model
parameter) to train SVM on the training set, yielding an SVM
classifier, and finally calculating the MR of the classifier on
the testing set. The efficiency measure was simply taken as
the computation time used for the parameter selection run. The
experiment results are given in Tables VI and VII.

From Tables VI and VII, it is seen that the new method
significantly outperforms the RM method. To be more specific,
we can observe the following from the tables: 1) For each data
set, the NSVs found by the SVM scheme deduced from the
new method is much less than (almost half of) that from the
RM method. This shows the notable simplicity of the classifier
defined by the new method, and so, it tends to have faster com-
putation speed and better generalization performance. 2) The
computational speed of the new method is around 20 times
faster than that of the RM method, which shows the high
efficiency of the new method. 3) The average MR of the SVM
deduced from the new method is also smaller than that from

TABLE VI
MODEL PARAMETERS AND NUMBERS OF SVS CONDUCTED BY THE RM

METHOD AND THE NEW METHOD ON THE LARGE-SCALE DATA SETS

TABLE VII
COMPUTATIONAL COSTS AND MRS CONDUCTED BY THE RM METHOD

AND THE NEW METHOD ON THE LARGE-SCALE DATA SETS

the RM method (about 16% better), which testifies the better
prediction capability of the new method.

All these experiments support the feasibility, effectiveness,
and high efficiency of the new strategies.

VI. DISCUSSION AND CONCLUDING REMARKS

We conclude by discussing the stability of our proposed
strategy for selecting the kernel parameter, comparing the strat-
egy with the two latest model selection methods for SVM,
presenting a short summary of the whole paper, and mentioning
some open problems for future investigation.

A. Stability and Parameter Tuning of Algorithm 1

Note that the proposed model selection method needs to
first calculate the optimal Gaussian scale parameter σopt via
Algorithm 1 and then, based on σopt, compute the opti-
mal penalty coefficient Copt. Therefore, the capability of
Algorithm 1 has a significant effect on the whole model selec-
tion strategy and, further, on the final SVM implementation.
Since there are two parameters, i.e., α and N , involved in the
algorithm, it is necessary to discuss how the stability of the
algorithm is dependent on these two parameters and how to
preset suitable values for them.

In the above issue, by adopting similar 13 benchmark data
sets (only the first partition is considered for each data set)
utilized in Section V, three series of experiments have been
designed. The first series changes α from 0 to 0.2 with fixed
N = 0.5l, where l is the number of the whole training set. The
second changes N from 0.5l to l with fixed a = 0.1. The aim
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Fig. 5. Evolution of the optimal scale curves obtained from Algorithm 1 as α varies from 0 to 0.2, with fixed N = 0.5l (l is the number of the corresponding
training set) when applied to 13 benchmark data sets.

of these two series of experiments is to testify the algorithm’s
stability related to α and N , respectively. The third lets the
algorithm run 100 times with fixed a = 0.1 and N = 0.5l to
testify the stability of the algorithm related to the randomly
selected N samples. The results are demonstrated in Figs. 5–7,
respectively. For uniformity, we set all figures in the window
boxes with similar height of 4.

Two distinctive features can clearly be observed from Fig. 5.
First, when α is set too small, i.e., too adjacent to 0, the algo-
rithm perform unstably on some data sets, such as the Breast-
cancer, Flare-solar, German, and Image data sets. This is duo to
the fact that in such extreme case the algorithm is more likely
to be negatively affected by the possible existence of outliers
or noises in the training data, as mentioned in Section III.
The second observation is, when α varies from 0.1 to 0.2,
the algorithm has a very stable performance. Particularly, the
variances of the output scale tendency curves in 12 experiments
are less than 0.1 (except that corresponding to Thyroid data,
where the variance is less than 0.5). This shows that we only
need to preset the parameter α as an arbitrary value in the
interval [0.1, 0.2], and then the stability of Algorithm 1 can
empirically be verified.

The stability of Algorithm 1 that is related to size N in
selecting the optimal scale parameter can easily be observed in
Fig. 6. Specifically, the variances of the 13 output scale curves
from the algorithm on all of the training data sets are all less

than 0.1. This shows that the parameter N can be set as any
value between 0.5l and l to promise a stable performance of the
algorithm.

Fig. 7 further depicts the stable performance of Algorithm 1
when it is running 100 times with fixed parameters α and N . In
particular, all of the 13 output scale curves figure as a constant
line with little deviations. This shows that the stability of the
algorithm is not affected by the randomly selected sample set
with number N . This means that if the same experiment (with
similar α and N ) is run multiple times, then there will not be a
vast difference in results, i.e., the stable optimal scale can still
be obtained.

The above experimental results verify the stability of
Algorithm 1 that is related to α and N and the randomly
selected sample set with size N . This also confirms the reason-
ability of the adopted parameters (α = 0.1 and N = 0.5l or l)
in all our experiments in Section V.

B. Links With Two Latest Model Selection Methods

In the recent three to four years, several novel parameter
selection methods for SVM have arisen. The most typical
ones are the regularization path method [45], [46] and the
bilevel programming method [47]–[49]. In the following, we
will analyze the relations between these two methods and our
method.
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Fig. 6. Evolution of the optimal scale curves obtained from Algorithm 1 as N varies from 0.5l to l, with fixed α = 0.1 when applied to 13 benchmark data sets.

Fig. 7. Optimal scale curves obtained by running Algorithm 1 100 times on 13 benchmark data sets with fixed α = 0.1 and N = 0.5l.
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The regularization path method is an iterative method specif-
ically proposed to select the optimal penalty coefficient C. The
method is constructed based on the principle that the outputs of
SVM (such as the Lagrangian variables) are piecewise linear in
C, and, hence, by reasonably calculating a breakpoint sequence
of C with increasing order from small to large, the entire
solution path of SVM with respect to C corresponding to each
output variable can be simulated via linear interpolation on
the outputs obtained by sequentially running SVM on these
breakpoints. Through setting the rational termination condition,
the optimal C can be obtained on the iterative process of the
method.

Intrinsically, there are many similarities between the pro-
posed method (Algorithm 2) and the regularization path method
in selecting C. First, both are iterative methods, and both base
on the outputs in the current step to calculate the value of C
in the next step in an increasing order. Second, both only take
into account the SVs while totally ignoring other samples under
the current model parameters to calculate the related results in
the iterative process. Third, both embed the model selection
procedures into the SVM training process, which means that on
the termination of the method, the results of SVM with respect
to the corresponding optimal C are simultaneously obtained.
Fourth, both set the termination condition as that there are little
difference between the next step and the current one.

However, there are also essential differences between the two
methods. In each step of the proposed method, the classifica-
tion degrees of all current SVs are quantitatively evaluated to
calculate C in the next step, and by integrating such global
information, the parameter is updated in a comparatively fast
speed. However, for the regularization path method, as C in-
creases so that a nonbound SV changes to a bound SV, or a non-
SV or bound SV to a nonbound SV, it is updated, and, hence,
the number of the iterative steps are much larger. Empirically
speaking, the latter method generally iterates much more times
than the former, particularly for large data sets. Even for the
large-scale real-world experiments proposed in Section V-B,
no more than ten iterations are implemented by utilizing our
method. More experiments and evaluations are needed in our
future research to further quantitatively entertain such analysis
result. In addition, utilizing the regularization path of the SVM
to improve the termination conditions of the algorithm should
also be examined in further research.

By integrating the general SVM model and the CV principle,
the bilevel programming method initiates a bilevel optimiza-
tion problem, which means another optimization programming
exists in the constraints of the original problem. By virtue of
KKT conditions and other mathematical skills, such bilevel
programming can further be transformed into a uniform opti-
mization problem with respect to the penalty coefficient and
the Lagrangian variables. Then, by solving this optimization,
the optimal penalty parameter and the SVM result can both
be obtained. However, the presence of complementarity con-
straints in the model is a major theoretical and computational
challenge, as the principles of nonlinear programming theory
cannot directly be extended to the current model. That is to
say, model selection for a nonlinear SVM, including Gaussian
SVM, cannot be implemented by virtue of such method. As

mentioned in [49], a major outstanding open question is the
development of efficient algorithms for bilevel programs, par-
ticularly for a nonlinear SVM.

If we first utilize Algorithm 1 in Section III to select σopt

and substitute it into the nonlinear SVM problem, then the
model selection problem of SVM can be transformed to the
optimization issue that only involves the penalty coefficient
C. Then, through a similar mathematical deduction of linear
bilevel programming, the uniform optimization problem with
respect to the penalty coefficient and the Lagrangian variables
can also be obtained, and, hence, the optimal Copt and the
corresponding Lagrangian variables can be calculated by solv-
ing this optimization problem. This idea will let the bilevel
programming method be feasible for the model selection of
nonlinear SVM and will be pursued in further research.

C. Summary and Ongoing Work

Two heuristic strategies to select the parameters, i.e., the
kernel parameter σ and the penalty coefficient C, of Gaussian
SVM have been suggested in this paper. Based on viewing the
model parameter selection problem as a recognition problem in
a visual system, we have developed a simple direct parameter
setting formula for the kernel parameter σ. The philosophy
behind the formula is to find a visual scale with which the global
and local structures of a data set can be preserved in the feature
space, and the difference between the two structures (the visual
effect) will be maximized. We have analyzed the SMO proce-
dure, which is a well-developed and commonly used algorithm
nowadays in SVM training. Through constructing classification
extents of the training data in the process of training, we have
developed a heuristic for updating the penalty coefficient C
from a very small value to an appropriate one. The proposed
new strategies have been evaluated with a series of experiments
on 13 standard benchmark problems and three real-world data
sets, as compared with the well-known 5-CV heuristic and the
recently developed RM method. The experiments show that in
terms of efficiency and generalization capability, the new strate-
gies outperform the current methods, and the performance is
very uniform and stable. In particular, we can conclude from the
experiments that the new strategies are capable of yielding the
SVM classifier with higher generalization capability and fewer
NSVs within a significantly less time. Hence, the suggested
new strategies can be accepted as an efficient reliable model
selection method for Gaussian SVM.

However, certain limitations of the method should be kept in
mind. Currently, the proposed model selection strategy is only
suitable for SVM with Gaussian kernel, and yet it still cannot
directly be utilized on those with other kernels, such as the
polynomial kernel

k(x, y) = (x · y + 1)d

and the sigmoid kernel

k(x, y) = tanh(κx · y + c).

The main reason is that these kernels are not of the structure-
preserving property as the Gaussian kernel, i.e., it cannot

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 15, 2009 at 05:02 from IEEE Xplore.  Restrictions apply. 



1306 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 5, OCTOBER 2009

preserve the ranking order of the distances between data pairs
in the original and feature spaces.1 That is to say, it is not easy
to deduct the global and local structure measures in such kernel
feature spaces as in a Gaussian one, and, hence, the suggested
kernel selection strategy cannot similarly be constructed for
these kernels. Therefore, we need to further develop specific
model selection strategies for SVMs with non-Gaussian kernels
in future research. In addition, although it has been verified that
the proposed strategy significantly improves the computational
time of the current model selection methods for SVM (this point
has been proved by applying paired t-test [50] to the experi-
mental results in this paper), to what extent the new method im-
proves the classification accuracy of other methods still needs
further investigation. Furthermore, the interior point method
has outperformed SMO on some large-sized data sets in solving
SVMs [51], and it is very meaningful to develop the model
selection strategies based on interior point methods instead of
the SMO algorithm, particularly for large-scale applications.
Other problems include developing the theoretical basis of
model selection, devising a more robust termination criterion
for the proposed algorithms, extending the proposed strategy to
the fuzzy hypersphere SVM (FHS-SVM), and comparing more
extensively all the known model selection techniques. Future
work will be on the research of these cases and applications of
the proposed method in more practical areas.
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