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Abstract Compressive sensing has achieved great success in many scientific research
fields. It has revealed that sparse signals can be stably recovered from a small number
of noisy measurements by solving the constrained convex �1-minimization problem.
In practice, a faster algorithm for solving this optimization problem is the key to com-
pressive sensing. The Douglas–Rachford splitting method is a well-known operator
splitting method that has been widely applied for solving a certain class of convex
composite problems. In particular, its dual application results in the popular alter-
nating direction method of multipliers (ADMM). In this paper, we reformulate the
constrained convex �1-minimization problem as a convex composite problem with a
special structure and then apply the primalDouglas–Rachford splittingmethod to solve
it. The computational cost of the developed algorithm in each iteration is dominated
by the projection onto the constraint set. A fast and efficient method of computing the
projection is proposed. Numerical results show that the developed algorithm performs
better than the popular NESTA and LADMM (inexact ADMM) in terms of accuracy
and run time for large-scale sparse signal recovery.
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1 Introduction

Over the past decade, compressive sensing (CS), first introduced by Donoho [17],
Candès et al. [11,12], has established itself as a rapidly growing research area with
wide applications in signal and image processing [28], medicine [40], astronomy [7],
seismology [35], and so on. Indeed, the original work [11] on compressive sensingwas
motivated by medical imaging. The application of compressive sensing techniques to
magnetic resonance imaging (MRI) was investigated in [40,44,58], and its application
to the related problem of nuclear magnetic resonance spectroscopy was also studied in
[36,56]. It is well known that the single-pixel camera [26] was designed to verify that
the underlying idea of compressive sensing can be implemented in hardware. Appli-
cations of compressive sensing to radar, sonar and the channel estimation problem
in wireless communications can also be found in [37,51,53]. Compressive sensing
is closely related to sampling theory [5], error correction [13] and high-dimensional
statistics [6]. Additional applications of compressive sensing include hyperspectral
imaging [52], analog-to-digital conversion [45,57] and low-rank matrix recovery
[14,32]. We refer the reader to two recent monographs [29,31] for further details
on compressive sensing and its applications.

The fundamental problem in compressive sensing is to recover a high-dimensional
sparse signal from a small number of linear measurements. We consider linear mea-
surements of a sparse signal x̄ ∈ R

n :

b = Ax̄, (1)

where A ∈ R
m×n (m � n) is a known sensing matrix. A naïve idea is to recover

the sparse signal x̄ from the available measurements b by solving the �0 minimization
problem:

(P0) min
x∈Rn

{||x ||0 : b = Ax}. (2)

In (P0), ||x ||0 denotes the number of nonzero entries of x and is often called the �0-
‘norm’ of x . (P0) is a non-convex problem and is generally NP-hard. A widely studied
problem is its convex relaxation:

(BP) min
x∈Rn

{||x ||1 : b = Ax}, (3)

which is known as basis pursuit (BP) [10]. Compressive sensing has revealed that
under certain conditions with regard to the sensing matrix A, the minimizer of (BP)
is identical to that of (P0), and thus, (BP) can exactly recover a sparse signal.

In practice, measurements are often perturbed by noise, i.e.,

b = Ax̄ + e, (4)
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where e ∈ R
m is a noise term. In this case, the quadratically constrained �1-

minimization problem is considered:

(BPε) min
x∈Rn

{||x ||1 : ||Ax − b||2 ≤ ε}, (5)

where ε is an estimated upper bound on the noise level, i.e., ‖e‖2 ≤ ε, with ‖ · ‖2
being the Euclidean norm. It follows from compressive sensing [31] that sparse signals
can be stably recovered from noisy measurements by solving (BPε). Note that in the
presence of noise-freemeasurements, (BPε)with ε = 0 reduces to basis pursuit. Thus,
in this paper, we consider only (BPε) and develop efficient algorithms for solving it.

(BP) and (BPε) play central roles in sparse recovery; however, these two non-
smooth constrained optimization problems are challenging to solve, especially (BPε).
It is well known that (BP) and (BPε) can be cast as a linear programming problem (LP)
and a second-order cone programming problem (SOCP), respectively. The relatively
simple primal-dual interior-point method for solving (LP) and the log-barrier method
[46] for solving (SOCP) can thus be applied to (BP) and (BPε), respectively. However,
these two methods are typically problematic for large-scale problems because large
systems of linear equations must be solved in each iteration. Many efforts have been
made to develop more efficient algorithms for solving (BP) and (BPε). Here, we recall
only a few widely used methods; we do not attempt to give a complete review of
all proposed methods. The Bregman iteration algorithms were proposed in [61] for
solving (BP) and were thoroughly studied and improved in [50]. In recent years, the
alternating directionmethod ofmultipliers (ADMM) has been extensively investigated
for various applications arising in different areas [30,42,60]. Inexact ADMM-based
algorithms were developed by Yang and Zhang [59] to solve the two constrained �1-
minimization problems. The developed algorithms are efficient, stable and robust for
sparse recovery.Moreover, a fast and accurate first-order algorithmnamedNESTAwas
proposed in [8]; this algorithm smooths the �1-norm and then implements Nesterov’s
optimal gradient method to solve the smoothed problem.

In the sparse recovery literature, (BP) and (BPε) have been well studied as an
�1-regularized least-squares problem:

min
x∈Rn

{
1

2
||Ax − b||22 + λ||x ||1

}
, (6)

where λ > 0 is a regularization parameter. The problem expressed in (6) is called basis
pursuit denoising (BPDN) in [10] and is often called the least absolute shrinkage and
selection operator (LASSO) in statistics. Furthermore, since problem (6) can be cast
as a quadratic programming problem (QP), it may also be denoted by (QPλ). From
convex optimization theory, it is well known that the solutions to (BPε) and (QPλ)

are the same when one can select appropriate parameter values ε and λ. Based on the
above considerations, many researchers have designed efficient algorithms for solving
(QPλ) instead of (BPε). Among these algorithms, the iterative shrinkage-thresholding
algorithm (ISTA) [15] is the most well-known method because of its simplicity. Since
ISTA converges slowly and needs many iterations to obtain an optimal solution, sev-
eral accelerated versions have been proposed. By using a continuation strategy, Hale et
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al. developed a fixed-point continuation method (FPC) in [34]. A more elegant accel-
erated method known as the fast iterative shrinkage-thresholding algorithm (FISTA),
which enjoys a better theoretical rate of convergence, was proposed in [3]. Because,
in general, we do not know how to determine in advance the relationship between the
parameters ε and λ, these algorithms designed specifically for (QPλ) may not be able
to solve (BPε) in practice. In addition, efficient hybrid random/deterministic parallel
algorithms were proposed in [19,20] for solving a general optimization problem in
which the objective function is the sum of a smooth function and a non-smooth convex
one. The work presented in [21,22] used the smoothing technique and then developed
second-order methods of handling large-scale optimization problems such as sparse
signal recovery using coherent and redundant dictionaries as well as large-scale sup-
port vector machines [47].

Recently, operator splitting methods [38] have received considerable attention for
solving many structured convex minimization problems. Among these splitting meth-
ods, the Douglas–Rachford splitting method originally introduced in [25] possesses
many favorable properties. It is well known that for a class of convex problems with
a particular structure [27], ADMM is the dual application of the Douglas–Rachford
splitting method. It was further elucidated in [27] that the Douglas–Rachford split-
ting method is a special case of the fundamental proximal point algorithm. Its rate
of convergence has recently been studied in [33]. The Douglas–Rachford splitting
method has proven to be suitable for several practical applications, such as the traffic
equilibrium problem [43], TV-based image recovery [16], semidefinite programming
[23], multiplicative noise removal [55], matrix completion [1] and robust principal
component analysis [64]. Moreover, primal-dual decomposition algorithms based on
theDouglas–Rachford splittingmethod have recently been proposed for image deblur-
ring [49]. We also note that in [24], this method was applied to (BP), with a focus
on analyzing the asymptotic linear convergence rate. The Douglas–Rachford splitting
method has also been extended to address several non-convex problems [39].

In this paper, we apply the primal Douglas–Rachford splitting method to (BPε).
The resulting algorithm mainly consists of computing the proximity operator of the
�1-norm and its projection onto the constraint set in (BPε) in each iteration. The prox-
imity operator of the �1-norm is thewell-known soft-thresholding operator [18], which
is very simple and incurs only a small computational cost. Thus, the computational
cost of the resulting algorithm in each iteration is dominated by the projection onto the
constraint set. It is worth noting that in various applications of compressive sensing,
the sensing matrix A satisfies AA∗ = I . By utilizing this special structure, we can
derive a closed-form solution for the projection. For cases in which the sensing matrix
A does not satisfy AA∗ = I , a fast and efficient method is proposed for computing
the projection onto the constraint set. We list several advantages of the proposed algo-
rithm compared with some popular methods. First, in contrast to the dual application
of the Douglas–Rachford splitting method, i.e., the alternating direction method of
multipliers (ADMM), the proposed algorithm offers a closed-form solution for each
subproblemwhen the sensing matrix A satisfies AA∗ = I . Second, the proposed algo-
rithm involves only one parameter, whereas the inexact ADMM, that is, the linearized
alternating direction method of multipliers (LADMM), involves more tuned parame-
ters. Third, the proposed algorithm can solve (BPε), whereas NESTA was proposed
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merely to solve an approximation of (BPε). Thus, both its simplicity and efficiency
make the proposed algorithm more suitable for sparse signal recovery.

The remainder of the paper is organized as follows. In Sect. 2, the primal Douglas–
Rachford splitting method is reviewed and applied to a general convex composite
optimization problem. The application of the Douglas–Rachford splitting method to
(BPε) is presented in Sect. 3. Numerical experiments and conclusions are presented
in Sects. 4 and 5, respectively.

2 Douglas–Rachford Splitting Method

LetRd denote the usual d-dimensional Euclidean spacewith the standard inner product
〈u, v〉 = ∑d

i=1 uivi for u, v ∈ R
d and the corresponding norm. We consider the

problem of finding a zero of the sum of two maximally monotone operators in R
d ,

that is,

0 ∈ T1(x) + T2(x). (7)

Before applying the Douglas–Rachford splitting method to (7), we need to introduce
the resolvent operator of any maximally monotone operator denoted by T . In fact,
the resolvent operator with index α > 0 of T is defined as Jα

T = (I + αT )−1. The
resolvent operator Jα

T has several very important properties, as presented below.

Proposition 1 Let T be a maximally monotone operator. Its resolvent operator Jα
T is a

single-valued operator that is defined everywhere on Rd and is firmly non-expansive,
that is,

‖Jα
T (u) − Jα

T (v)‖2 ≤ 〈Jα
T (u) − Jα

T (v), u − v〉, ∀ u, v ∈ R
d . (8)

More details on a maximally monotone operator and its resolvent can be found in
[4,54].

For solving (7), the Douglas–Rachford splitting method generates a sequence {yk}
with an arbitrary initial point y0 ∈ R

d by means of the following iterative scheme:

yk+1 = [Jα
T2 ◦ (2Jα

T1 − I ) + (I − Jα
T1)](yk), (9)

where ◦ denotes the composition of operators. The following result regarding the
convergence of this algorithm has been established in [43].

Theorem 1 Let T1 and T2 be maximally monotone operators in R
d . If the set of

solutions of (7) is non-empty, then the iterative sequence {yk} generated by the scheme
given in (9) converges to a point y ∈ R

d such that x = Jα
T1

(y) is a solution of (7).

Proof Assume that x is a solution of (7). For α > 0, it follows from the inclusion
problem expressed in (7) that

2x ∈ (I + αT1)x + (I + αT2)x . (10)
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By choosing a point y ∈ (I + αT1)x , that is, x = Jα
T1

(y), we can rewrite (10) as

2x − y ∈ (I + αT2)x, (11)

which indicates that x = Jα
T2

(2x − y). Based on the equality x = Jα
T1

(y), we further
find that

y + Jα
T2(2J

α
T1(y) − y) = y + Jα

T1(y), (12)

that is,

y = [Jα
T2 ◦ (2Jα

T1 − I ) + (I − Jα
T1)](y). (13)

Let

F = Jα
T2 ◦ (2Jα

T1 − I ) + (I − Jα
T1).

Obviously, the point y is a fixed point of the operator F .
To prove that the iterative sequence generated by the scheme given in (9) converges

to a fixed point of F , let us first prove that F is firmly non-expansive. To this end,
given two points x1, x2 ∈ R

d , we set

y1 = Jα
T1(x1), y2 = Jα

T1(x2), z1 = Jα
T2(2y1 − x1), z2 = Jα

T2(2y2 − x2).

Thus, F(x1) = x1 + z1 − y1 and F(x2) = x2 + z2 − y2. Since the resolvent operators
Jα
T1

and Jα
T2

are firmly non-expansive. the following two inequalities hold:

〈y1 − y2, x1 − x2〉 ≥ ‖y1 − y2‖2, (14)

〈z1 − z2, 2y1 − x1 − 2y2 + x2〉 ≥ ‖z1 − z2‖2. (15)

It follows from (14) and (15) that

〈F(x1) − F(x2), x1 − x2〉
≥ 〈F(x1) − F(x2), x1 − x2〉 − 〈y1 − y2, x1 − x2〉 + ‖y1 − y2‖2
= 〈z1 − z2, x1 − x2〉 + ‖x1 − y1 − x2 + y2‖2
= 〈z1 − z2, 2y1 − x1 − 2y2 + x2〉 − ‖z1 − z2‖2 + ‖F(x1) − F(x2)‖2
≥ ‖F(x1) − F(x2)‖2.

Thus, the operator F is firmly non-expansive.
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Assume that ŷ is a fixed point of F , that is, ŷ = F(ŷ). Furthermore, we have

‖yk+1 − ŷ‖2 = ‖yk+1 − yk + yk − ŷ‖2
= ‖yk+1 − yk‖2 + 2〈yk+1 − yk, yk − ŷ〉 + ‖yk − ŷ‖2 (16)

and

〈yk+1 − yk, yk − ŷ〉 = 〈yk+1 − ŷ + ŷ − yk, yk − ŷ〉
= 〈F(yk) − F(ŷ), yk − ŷ〉 − ‖yk − ŷ‖2
≥ ‖F(yk) − F(ŷ)‖2 − ‖yk − ŷ‖2
= ‖yk+1 − ŷ‖2 − ‖yk − ŷ‖2. (17)

(16) and (17) lead to

‖yk+1 − ŷ‖2 ≤ ‖yk − ŷ‖2 − ‖yk+1 − yk‖2. (18)

Summing the inequalities in (18) from k = 1 to N yields

‖yN+1 − ŷ‖2 ≤ ‖y1 − ŷ‖2 −
N∑

k=1

‖yk+1 − yk‖2. (19)

First, it follows from the inequality expressed in (19) that the iterative sequence {yk}
is bounded, which indicates that the iterative sequence {yk} has at least one cluster
point, denoted by ȳ. We also assume that {yki } is a subsequence that converges to ȳ.
Second, (19) also indicates that

N∑
k=1

‖yk+1 − yk‖2 < +∞, (20)

which further implies that

lim
k→∞ ‖yk+1 − yk‖2 = 0. (21)

Upon setting k = ki in (21), we obtain

lim
i→∞ yki+1 = lim

i→∞ yki = ȳ. (22)

Since F is firmly non-expansive and thus is continuous, we find that

ȳ = lim
i→∞ yki+1 = lim

i→∞ F(yki ) = F(ȳ). (23)

Hence, ȳ is a fixed point of F .
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We now replace ŷ in (19) with ȳ. Obviously, the iterative sequence {‖yk − ȳ‖2} is
monotonically decreasing. Since the subsequence {yki } converges to ȳ, we find that

lim
k→∞ yk = ȳ.

The proof is complete. ��

We now focus on the convex composite optimization problem of the form

min
x∈Rd

{ f (x) + g(x)}, (24)

where f, g : R
d → R̄ = R ∪ {+∞} are proper lower-semicontinuous convex

functions. It follows from Fermat’s rule that the optimality condition for solving (24)
is

0 ∈ ∂ f (x) + ∂g(x), (25)

where ∂ f and ∂g are the subdifferentials of functions f and g, respectively.
The subdifferential of a proper lower-semicontinuous convex function f at a given

point x ∈ R
d is the set defined by

∂ f (x) = {z ∈ R
d | ∀u ∈ R

d , f (u) ≥ f (x) + 〈z, u − x〉}.

In particular, ∂ f (x) = {∇ f (x)} if the function f is differentiable at the point x .
The problem defined in (24) can be considered a problem of the type represented by

(7) since the optimality condition (25) can be expressed as (7) by letting T1 = ∂ f and
T2 = ∂g. Moreover, the subdifferential operator of any proper lower-semicontinuous
convex function is maximally monotone [4]. When the iterative scheme described in
(9) is applied to the monotone inclusion problem defined in (25), it is necessary to
compute the resolvent of the subdifferential operator. In fact, the resolvent operator
with index α > 0 of the subdifferential operator of any proper lower-semicontinuous
convex function f is the proximal operator with index α > 0 of f , that is,

proxα f = (I + α∂ f )−1,

where the proximal operator proxα f from R
d to Rd is defined as

proxα f (x) = argmin
z∈Rd

{
1

2α
||z − x ||2 + f (z)

}
. (26)

Building on the proximity operators of f and g, we rewrite the Douglas–Rachford
splitting method applied to (24) as follows:
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Algorithm 1 The Douglas–Rachford splitting method
Input: Initialization: y0, α > 0.
1: for k = 1, 2, . . . , K do
2: xk+1 = proxα f (yk );
3: zk+1 = proxαg(2xk+1 − yk );
4: yk+1 = zk+1 + yk − xk+1.
5: end for
Output: xK

Note that the aboveDouglas–Rachford splittingmethod is a simple iterative scheme
that requires only the computation of the proximity operators of the functions f and
g. In the remainder of this section, the proximity operators of several functions that
we will need in later sections are presented.

For a non-empty closed convex set C ⊆ R
d , its indicator function is defined as

ιC (x) =
{
0, if x ∈ C,

+∞, if x /∈ C.

Clearly, for any non-empty closed convex set C , we have proxαιC
= PC , where

PC : R
d → C,PC (x) = argminz∈C ‖z − x‖, denotes the projection operator onto

C . For example, for the indicator function of a closed �2-ball in R
d with radius ε,

denoted by Bε
2 , it is very easy to compute its proximity operator proxαιBε

2
, that is, the

projection onto Bε
2 . In fact, its proximity operator can be written as

proxαιBε
2
(x) = PBε

2
(x) = min

{
1,

ε

‖x‖2
}

· x . (27)

We can also compute proximity operators of the �1-norm and �2-norm inRd . The prox-
imity operator proxα||·||1 is the well-known soft-thresholding operator [18], defined
as

proxα||·||1(x) = sgn(x) � max{|x | − α, 0}, (28)

where � represents elementwise multiplication.
The proximity operator proxα||·||2 can be expressed as

proxα‖·‖2(x) =
{
max

{
1 − α

||x ||2 , 0
}
x, x �= 0,

0, x = 0.
(29)

Proof We let J denote the proximal function:

J (z) = 1

2
||z − x ||2 + α||z||2.
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Since J (z) is non-differentiable only at 0, proxα||·||2(x) must be 0 or a point z̄ that
satisfies the following first-order condition:

z̄ − x + α

||z̄||2 z̄ = 0.

The above equation implies that the following two equalities hold:

||z̄||2 = ||x ||2 − α, z̄ = ||x ||2 − α

||x ||2 x .

By comparing J
( ||x ||2−α

||x ||2 x
)
with J (0), we find that

J
( ||x ||2 − α

||x ||2 x

)
− J (0) =

{− 1
2 (||x ||2 − α)2 < 0, ||x ||2 > α,

1
2 (α − ||x ||2)(3α + ||x ||2) ≥ 0, ||x ||2 ≤ α.

Hence, we obtain

proxα||·||2(x) =
{

(1 − α/||x ||2)x, ||x ||2 > α,

0, ||x ||2 ≤ α,

which is equivalent to (29). The proof is complete. ��

3 Application to (BPε)

In this section, the primal Douglas–Rachford splitting method is applied to solve
(BPε), and a fast and efficient algorithm is developed to address the subproblems of
the proposed algorithm. The relation of the proposed algorithm to the popular ADMM
and LADMM is also discussed.

(BPε) can be rewritten as the following unconstrained convex composite problem:

min
x∈Rn

{‖x‖1 + ιBε
2
(Ax − b)}, (30)

where ιBε
2
is the indicator function of a closed �2-ball in Rm with radius ε (Bε

2). If the
functions f and g in (24) are taken to be ‖x‖1 and ιBε

2
(Ax − b), respectively, then

the Douglas–Rachford splitting method for solving (24) can be applied to (30). To
this end, we need to compute the proximity operators of ‖ · ‖1 and ιBε

2
(A · −b). The

proximity operator of ‖ · ‖1 has previously been presented in (28). For the function
ιBε

2
(A · −b), its proximity operator is the projection onto the constraint set in (BPε),

which is computationally difficult to solve in general. However, a fast and efficient
method of solving it can be designed. Furthermore, a closed-form solution for the
projection can also be obtained when the matrix A satisfies AA∗ = I . These results
are presented in Theorem 2.
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Theorem 2 The proximity operator of the function ιBε
2
(A ·−b) with index α > 0, that

is,

proxαιBε
2
(A·−b)(x) = argmin

z∈Rn

{
1

2α
||z − x ||2 + ιBε

2
(Az − b)

}
, (31)

can be computed as follows:

proxαιBε
2
(A·−b)(x) = x − A∗ ỹ. (32)

In (32), ỹ is a minimizer of the following optimization problem:

min
y∈Rm

{
1

2
‖A∗y‖2 − 〈y, Ax − b〉 + ε‖y‖2

}
. (33)

In particular, when the matrix A satisfies AA∗ = I , the equality given in (32) can be
written as

proxαιBε
2
(A·−b)(x) = x − A∗proxε‖·‖2(Ax − b). (34)

Proof Since proxαιBε
2
(A·−b) is the projection onto the constraint set in (BPε), we can

write that proxαιBε
2
(A·−b) = proxιBε

2
(A·−b) for any index α > 0. Therefore, we consider

the following problem:

min
z∈Rn

{
1

2
||z − x ||2 + ιBε

2
(Az − b)

}
. (35)

The dual problem of (35) can be derived as follows. First, (35) is rewritten in the
following constrained form:

min
z∈Rn ,w∈Rm

{
1

2
||z − x ||2 + ιBε

2
(w) : w = Az − b

}
. (36)

By introducing a dual variable y ∈ R
m , we can construct the Lagrangian function of

the problem expressed in (36):

L(z, w, y) = 1

2
||z − x ||2 + ιBε

2
(w) − 〈y, w − (Az − b)〉. (37)
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By minimizing (37) with respect to the primal variables z and w, we find that the dual
function d(y) is

d(y) = min
z∈Rn ,w∈Rm

L(z, w, y)

= min
z∈Rn

{
1

2
||z − x ||2 + 〈A∗y, z〉

}

+ min
w∈Rm

{ιBε
2
(w) − 〈y, w〉} − 〈y, b〉. (38)

To obtain d(y), we need to solve the following two optimization problems:

min
z∈Rn

{
1

2
||z − x ||2 + 〈A∗y, z〉

}
(39)

and

min
w∈Rm

{ιBε
2
(w) − 〈y, w〉}. (40)

Let us first consider problem (39). It is easy to compute the minimizer of (39) denoted
by z̃, that is, z̃ = x − A∗y. Thus,

min
z∈Rn

{
1

2
||z − x ||2 + 〈A∗y, z〉

}

= 1

2
||z̃ − x ||2 + 〈A∗y, z̃〉

= −1

2
‖A∗y‖2 + 〈y, Ax〉. (41)

For problem (40), we have

min
w∈Rm

{ιBε
2
(w) − 〈y, w〉} = min

w∈Rm
{−〈y, w〉 : ‖w‖2 ≤ ε}

= − max
w∈Rm

{〈y, w〉 : ‖w‖2 ≤ ε}
= − max

w′∈Rm
{〈εy, w′〉 : ‖w′‖2 ≤ 1, w = εw′}

= −ε‖y‖2.

The last equality above is derived from the fact that the dual norm of the �2-norm is
itself.

By combining the work presented above, we obtain the following dual problem:

max
y∈Rm

{
−1

2
‖A∗y‖2 + 〈y, Ax〉 − ε‖y‖2 − 〈y, b〉

}
. (42)

Problem (36) is convex, and its constraints are all affine. By Slater’s condition,
as long as problem (36) is feasible, the strong duality condition for convex problems
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(see, e.g., [54]) holds, and the optimal solution of the dual problem expressed in (42) is
attained. Let z̃ and w̃ denote the optimal primal variables, and let ỹ denote the optimal
dual variable. From the KKT condition on problem (36), we find that

0 = ∂z L(z̃, w̃, ỹ) = z̃ − x + A∗ ỹ, (43)

0 ∈ ∂wL(z̃, w̃, ỹ) = ∂ιBε
2
(w̃) − ỹ, (44)

0 = ∂y L(z̃, w̃, ỹ) = w̃ − (Az̃ − b). (45)

To obtain an optimal solution ỹ, we can also solve the following problem:

min
y∈Rm

{
1

2
‖A∗y‖2 − 〈y, Ax − b〉 + ε‖y‖2

}
. (46)

From (43), the equality expressed in (32) can be obtained. If the matrix A satisfies
AA∗ = I , then the optimal solution to (46) is ỹ = proxε‖·‖2(Ax − b), which leads to
(34). The proof is complete. ��
Remark 1 Since z can be taken to be x̄ , which is the original sparse signal, w =
Ax̄ − b ∈ Bε

2 holds under the assumption that ε is an estimated upper bound on the
noise level, i.e., ‖Ax̄ − b‖2 ≤ ε. Thus, problem (36) is feasible.

Remark 2 In many practical applications, as shown in [59], the sensing matrices A
are often formed by randomly taking a subset of rows from orthonormal transform
matrices, such as discrete cosine transform (DCT), discrete Fourier transform (DFT)
or discrete Walsh–Hadamard transform (DWHT) matrices. Such sensing matrices do
not require storage and permit a fast algorithm for matrix-vector multiplication. Since
the rows of A are orthonormal, the condition AA∗ = I holds for such sensingmatrices.

Remark 3 Other widely used types of sensing matrices A, such as random Gaussian
matrices, are often full spark matrices [2], which have the property that anym columns
of A are linearly independent. In fact, a matrix whose entries are continuous random
variables drawn from independent and identical distributionswill be a full sparkmatrix
with probability one; this assertion has recently been proved in [9]. A full spark matrix
is necessarily also of full rank; that is, them rows of A are linearly independent. Thus,
an orthonormal basis for the span of the rows of A can be formulated from linear
combinations of those rows. If we multiply A by an elementary matrix denoted by
E , then the matrix E A will have orthonormal rows. Since an elementary matrix is
invertible, Ax = b is equivalent to E Ax = Eb. Moreover, the condition of every
m × m submatrix of A being invertible implies that every m × m submatrix of E A
is also invertible, i.e., E A is a full spark matrix. Thus, in the noise-free case, we can
always reformulate (BP) such that the rows of A are orthonormal, i.e., AA∗ = I .
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Remark 4 The results of Theorem 2 can be generalized to evaluate the proximity
operator of a general composite function f ◦B, where the function f has an inexpensive
proximity operator and B is a matrix or linear operator. Evaluating the proximity
operator of f ◦B is critical for several practical problems, such as total-variation-based
image denoising or deblurring [3] and compressive sensing problems with coherent
and redundant dictionaries [21].

For a case in which the measurements are perturbed by noise and the sensingmatrix
A does not satisfy AA∗ = I , Theorem 2 provides an approach for computing the value
of proxαιBε

2
(A·−b) at any point x . Specifically, a solution ỹ to problem (33) is first found,

and then, proxαιBε
2
(A·−b)(x) is identified as

proxαιBε
2
(A·−b)(x) = x − A∗ ỹ. (47)

We now develop a fast and efficient method of finding solutions to problem (33).
Clearly, problem (33) is a special case of a minimization problem of the following
form:

min
y∈Rm

{F(y) = Φ(y) + Ψ (y)}, (48)

where Ψ : R
m → R̄ = R∪ {+∞} is a proper lower-semicontinuous convex function

andΦ : R
m → R is a continuously differentiable convex functionwith an L-Lipschitz

continuous gradient, i.e.,

‖∇Φ(u) − ∇Φ(v)‖ ≤ L‖u − v‖ ∀ u, v ∈ R
m .

The well-known FISTA mentioned above can be applied to solve the minimization
problem expressed in (48). FISTA can be described as follows:

Algorithm 2 FISTA
Input: Initialization: z1 = y0, t1 = 1.
1: for k = 1, 2, . . . , K do
2: yk = prox 1

L Ψ

(
zk − 1

L ∇Φ(zk )
)
;

3: tk+1 = 1+
√
1+4t2k
2 ;

4: zk+1 = yk + tk−1
tk+1

(yk − yk−1).

5: end for
Output: yK

The remarkable property of this algorithm is that it guarantees a rate of convergence
of O(k−2) for the iterative sequence of the function values, where k is the number of
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iterations. In fact, it has been verified in [3] that for any k ≥ 1,

F(yk) − F(y∗) ≤ 2L‖y0 − y∗‖2
(k + 1)2

,

where y∗ is a solution to problem (48).
To enable the application of the above-described Algorithm 2 to problem (33), Φ

and Ψ in problem (48) are, respectively, taken to be

Φ(y) := 1

2
‖A∗y‖2 − 〈y, Ax − b〉 and Ψ (y) := ε‖y‖2. (49)

Obviously, the function Φ in (49) is differentiable, and its gradient, given by

∇Φ(y) = AA∗y − (Ax − b),

is Lipschitz continuous with constant ‖A‖22. As a result, the algorithm for computing
proxαιBε

2
(A·−b) can be written as follows:

Algorithm 3 FISTA for proxαιBε
2
(A·−b)(x)

Input: Initialization: x , b, z1 = y0, t1 = 1.
1: for k = 1, 2, . . . , K do

2: yk = prox ε
L ‖·‖2

(
zk − 1

L

(
A(A∗zk − x) + b

))
;

3: tk+1 = 1+
√
1+4t2k
2 ;

4: zk+1 = yk + tk−1
tk+1

(yk − yk−1).

5: end for
Output: proxαιBε

2
(A·−b)(x) = x − A∗yK .

The Douglas–Rachford splitting method for (BPε) can be summarized as follows:

Algorithm 4 The Douglas–Rachford splitting method for (BPε)

Input: Initialization: y0; α > 0.
1: for k = 0, 1, 2, . . . , K − 1 do
2: Compute xk+1 = proxα||·||1 (yk ) using (28);
3: If AA∗ = I , compute zk+1 = proxαιBε

2
(A·−b)(2xk+1 − yk ) using (34);

otherwise,
compute zk+1 = proxαιBε

2
(A·−b)(2xk+1 − yk ) using Algorithm 3;

4: yk+1 = zk+1 + yk − xk+1.
5: end for
Output: xK .
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In the remainder of this section, ADMM and LADMM are reviewed and compared
with Algorithm 4. Based on the work presented in [59], we can introduce a variable r
to reformulate (30) as follows:

min
x∈Rn ,r∈Rm

{‖x‖1 + ιBε
2
(r) : r = Ax − b}. (50)

The augmented Lagrangian function of (50) is

L(x, r, y) = ‖x‖1 + ιBε
2
(r) − 〈y, Ax − r − b〉 + α

2
‖Ax − r − b‖2. (51)

Here, y ∈ R
m is the Lagrangian multiplier vector, and α > 0 is a given penalty

parameter. The classical ADMM applied to (51) is written as follows:

⎧⎨
⎩
xk+1 = argminx∈Rn L(x, rk, yk),
rk+1 = argminr∈Rm L(xk+1, r, yk),
yk+1 = yk − γα(Axk+1 − rk+1 − b),

(52)

where γ ∈ (0, 2) is a relaxation parameter. When γ = 1, the ADMM is the dual
application of the Douglas–Rachford splitting method. Clearly, (52) can be equivalent
to

⎧⎪⎨
⎪⎩
xk+1 = argminx∈Rn

{‖x‖1 + α
2 ‖Ax − rk − b − yk/α‖2} ,

rk+1 = argminr∈Rm

{
ιBε

2
(r) + α

2 ‖Axk+1 − r − b − yk/α‖2
}

,

yk+1 = yk − γα(Axk+1 − rk+1 − b).

(53)

The x-related subproblem of (53) is difficult to solve; one strategy for alleviating this
difficulty is to linearize the quadratic term 1

2‖Ax − rk − b − yk/α‖2, resulting in the
following approximate x-related subproblem for (53):

argminx∈Rn

{
‖x‖1 + α

(
〈gk, x − xk〉 + 1

2β
‖x − xk‖2

)}
. (54)

In (54), gk = A∗(Axk − rk − b− yk/α) is the gradient of the quadratic term 1
2‖Ax −

rk − b − yk/α‖2 at x = xk , and β > 0 is a proximal parameter. The solution to (54)
is given explicitly by

xk+1 = prox β
α
‖·‖1(xk − βgk). (55)

It is very easy to obtain the solution to the r -related subproblem of (53), which can be
expressed as

rk+1 = prox 1
α
ιBε

2
(Axk+1 − b − yk/α). (56)
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case
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Fig. 3 Perfect recovery of three types of signals with (4096, 2048, 512) using Algorithm 4 in the noiseless
case

Hence, LADMM can be written as

⎧⎪⎨
⎪⎩
xk+1 = prox β

α
‖·‖1(xk − βgk),

rk+1 = prox 1
α
ιBε

2
(Axk+1 − b − yk/α),

yk+1 = yk − γα(Axk+1 − rk+1 − b).

(57)

Note that (57) is an inexact version of ADMM because the x-related subproblem is
solved approximately.

A few remarks on Algorithm 4, ADMM and LADMM are in order. First, unlike
ADMM, each subproblem of Algorithm 4 has a closed-form solution when the sensing
matrix A satisfies AA∗ = I . Second, when a general sensing matrix is used, we
can more exactly solve the second subproblem (projection problem) of Algorithm 4,
whereas in LADMM, a gradient approach is used to approximately solve the x-related
subproblem of ADMM. Third, our algorithm involves only one parameter, α, whereas
LADMM requires three parameters, α, β and γ , which are more difficult to tune to
ensure the efficiency of LADMM.
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Fig. 4 Perfect recovery of three types of signals with (16,384, 8192, 2048) using Algorithm 4 in the
noiseless case

4 Numerical Results

This section reports the implementation of the proposed Algorithm 4 for handling
sparse signal recovery problems and the verification of its numerical efficiency. It
is compared with the well-known NESTA and LADMM. All experiments were per-
formed on a Thinkpad SL510 with an Intel(R) Core(TM)2 Duo CPU @ 2.20 GHz
with 1.99 GB of RAM running Microsoft Windows XP 2002.

4.1 Experimental Setup and Parameter Selection

This subsection describes how the m × n sensing matrices A and sparse signals were
obtained in our experiments. Two types of sensing matrices were considered: sensing
matrices that satisfy AA∗ = I and those that do not. Two approaches for generating
sensing matrices that satisfy AA∗ = I were applied. In the first approach, the m ×
n sensing matrix was taken to be the partial DCT matrix generated by randomly
choosing m rows from the n × n DCT matrix. In the second approach, we generated
a random Gaussian matrix by independently drawing its elements from a standard
normal distribution and then orthonormalizing its rows. In this second case, A was
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Table 1 Average performance of the three algorithms in the case of the partial DCT sensing matrix for the
noiseless measurements

Method Algorithm 4 NESTA LADMM

Signal RE Time (s) RE Time (s) RE Time (s)

(n,m, s) = (1024, 512, 128)

Type 1 1.18e−16 0.2024 4.27e−11 0.8263 8.35e−14 0.5528

Type 2 2.01e−16 0.2486 8.19e−11 0.8310 2.01e−14 0.5633

Type 3 6.55e−16 0.2254 4.11e−11 0.9372 3.72e−14 0.5882

(n,m, s) = (4096, 2048, 512)

Type 1 4.12e−16 1.1249 7.23e−11 5.3682 2.90e−14 2.5827

Type 2 8.53e−16 1.1478 8.37e−11 5.4821 4.11e−14 2.9153

Type 3 2.20e−16 1.2163 6.16e−11 5.6193 2.85e−14 2.8126

(n,m, s) = (16,384, 8192, 2048)

Type 1 5.11e−16 4.0155 3.29e−11 12.3112 2.73e−14 7.5612

Type 2 9.32e−16 4.4786 1.16e−10 12.4728 2.58e−14 8.1247

Type 3 7.45e−16 5.1083 3.82e−10 12.8291 1.99e−13 8.7271

Table 2 Average performance of the three algorithms in the case of the orthonormalized Gaussian sensing
matrix for the noiseless measurements

Method Algorithm 4 NESTA LADMM

Signal RE Time (s) RE Time (s) RE Time (s)

(n,m, s) = (1024, 512, 128)

Type 1 2.56e−16 1.5078 9.23e−11 3.0138 3.45e−14 2.2733

Type 2 4.12e−16 1.9786 4.33e−11 3.2745 2.56e−14 2.5291

Type 3 5.61e−16 1.7534 8.15e−11 3.7291 8.90e−14 2.7183

(n,m, s) = (4096, 2048, 512)

Type 1 3.79e−16 17.3191 3.55e−11 25.1583 1.14e−14 19.3957

Type 2 9.12e−16 17.5313 1.25e−11 25.9472 9.27e−14 19.7380

Type 3 6.31e−16 17.6156 4.42e−11 25.7390 9.38e−14 20.0358

(n,m, s) = (16,384, 8192, 2048)

Type 1 4.62e−16 38.2703 3.80e−10 49.3792 1.48e−13 42.8473

Type 2 3.16e−16 38.5829 9.17e−10 49.2547 9.02e−13 42.5836

Type 3 8.39e−16 38.7201 2.63e−10 49.5831 3.57e−13 42.0562

directly taken to be a general Gaussian random matrix with entries independently
drawn from the normal distributionN (0, 1/m).We considered three types of signals of
lengthn and sparsity level s, i.e.,with s nonzero components. Specifically, for signals of
the first type, each nonzero componentwas equal to 1,whereas for signals of the second
type, each nonzero component was equal to either 1 or−1. For signals of the last type,
each nonzero componentwas drawn froma standard normal distribution. The locations
of the nonzero components were randomly permuted in all three types of signals. We



4042 Circuits Syst Signal Process (2017) 36:4022–4049

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

1.5
original signal
recovered signal

0 100 200 300 400 500 600 700 800 900 1000
−2

−1

0

1

2
original signal
recovered signal

0 100 200 300 400 500 600 700 800 900 1000
−4

−2

0

2

4
original signal
recovered signal

Fig. 5 Accurate recovery of three types of signals with (1024, 512, 128) using Algorithm 4 in the case of
the partial DCT sensing matrix for the noise level σ = 0.01

let (n, m, s) denote signals of different lengths n, numbers of measurements m and
sparsity levels s. In our experiments, we considered n = 210, 212, 214,m = n/2
and s = m/4, i.e., (1024, 512, 128), (4096, 2048, 512) and (16384, 8192, 2048). The
measurements were collected in the form b = Ax̄ in the noiseless case or b = Ax̄ + e
in the noisy case, where e represents Gaussian noise. The accuracy of a recovered
solution can be assessed based on the relative �2-error, which is defined as follows:

RE = ||x̄ − x∗||2
||x ||2 . (58)

where x̄ is the original signal and x∗ is the recovered signal.
To implement the proposed Algorithm 4, we need to determine the relevant param-

eter α. We first observed the impact of different values of α on the performance of
Algorithm 4. To this end, 10 sparse signals of the third type with (16,384, 8192, 2048)
were generated as described above, and the sensing matrix A was taken to be the par-
tial DCT matrix. The measurements were free of noise. Six different values of α, i.e.,
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Fig. 6 Accurate recovery of three types of signals with (1024, 512, 128) using Algorithm 4 in the case of
the general Gaussian sensing matrix for the noise level σ = 0.01

0.001, 0.01, 0.1, 1.0, 10 and 100, were considered. One thousand iterations of Algo-
rithm 4 were run. Figure1 compares the performance of Algorithm 4 for six different
values of α. Figure1 shows that when α = 0.01, Algorithm 4 requires only approx-
imately 550 iterations for the relative �2-error to decrease to a level of 10−16. For
other values of α, the levels of the relative �2-errors are smaller than 10−06. Thus,
we can conclude that Algorithm 4 performs best with α = 0.01. Therefore, in our
experiments, α was set to 0.01. The use of NESTA and LADMM also requires the
determination of relevant parameters. It is well known that NESTA was developed by
first smoothing the �1-norm and then applying an accelerated first-order technique to
solve the smoothed problem. A parameter denoted by μ is used to control how close
the smoothed �1-norm may be to the �1-norm. We set μ = 10−06 in our experiments.
Another parameter, Tol, which defines the tolerance related to the stopping criterion for
NESTA, will be discussed in Sect. 4.2. The three parameters α, β and γ in LADMM
were optimally tuned in accordance with the work presented in [59]. The codes for
NESTA and LADMM can be obtained from [48] and [62], respectively.
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Table 3 Average performance of the three algorithms in the case of the partial DCT sensing matrix for the
different noise levels

Method Algorithm 4 NESTA LADMM

Signal RE Time (s) RE Time (s) RE Time (s)

σ = 0.01

(n,m, s) = (1024, 512, 128)

Type 1 3.19e−02 0.2041 5.91e−02 0.8362 9.16e−02 0.4829

Type 2 1.21e−02 0.1236 3.82e−02 0.8253 2.73e−02 0.4371

Type 3 1.01e−02 0.1312 3.18e−02 0.8101 5.82e−02 0.4015

(n,m, s) = (4096, 2048, 512)

Type 1 6.72e−02 0.3917 7.25e−02 3.5728 4.11e−02 0.8401

Type 2 3.25e−02 0.5792 4.32e−02 3.6719 4.79e−02 0.8237

Type 3 1.56e−02 0.4803 3.01e−02 3.1901 9.01e−02 0.8110

(n,m, s) = (16,384, 8192, 2048)

Type 1 5.18e−02 1.8790 5.91e−01 6.2736 4.71e−01 2.8638

Type 2 2.47e−02 1.5193 2.01e−01 6.2635 3.52e−01 2.8124

Type 3 2.18e−02 1.7745 1.00e−02 6.1628 3.12e−02 2.8628

σ = 0.1

(n,m, s) = (1024, 512, 128)

Type 1 5.91e−01 0.3303 6.29e−01 1.0257 3.47e−00 0.6381

Type 2 3.46e−01 0.2646 4.77e−01 0.9263 5.16e−01 0.6349

Type 3 2.31e−01 0.1726 2.71e−01 0.9125 2.47e−01 0.5283

(n,m, s) = (4096, 2048, 512)

Type 1 3.81e−01 0.7906 9.16e−00 4.2103 5.44e−00 2.5363

Type 2 4.27e−01 0.6437 4.83e−01 4.6281 6.27e−01 2.3137

Type 3 8.19e−01 0.7204 3.51e−01 4.2375 5.24e−01 2.1273

(n,m, s) = (16,384, 8192, 2048)

Type 1 2.14e−01 2.9713 1.01e−00 7.4724 1.27e−00 4.9125

Type 2 2.69e−01 2.6170 5.80e−01 7.3619 5.88e−00 4.2739

Type 3 1.52e−01 2.8449 2.48e−01 7.2639 6.81e−01 4.1728

4.2 Numerical Experiments

First, sparse signal recovery in thenoiseless case is considered.BasedonRemarks refre2
and 3, we discuss both the partial DCT sensing matrix and the orthonormalized Gaus-
sian sensing matrix. Note that since the DCT approach permits a fast algorithm for
matrix-vector multiplication, this trick can be utilized to accelerate the three algo-
rithms when the partial DCT sensing matrix is used. Algorithm 4 and LADMM
were terminated when the relative error on the recovered signal between succes-
sive iterations satisfied ||xk − xk−1||2/||xk−1||2 < 10−16. The stopping criterion for
NESTA was Tol < 10−16. One thousand iterations were run for each of the three
algorithms. Perfect recovery of signals with (1024, 512, 128), (4096, 2048, 512) and
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Table 4 Average performance
of Algorithm 4 and LADMM in
the case of the general Gaussian
sensing matrix for the various
noise levels

Method Algorithm 4 LADMM

Signal RE Time (s) RE Time (s)

σ = 0.01

(n,m, s) = (1024, 512, 128)

Type 1 2.18e−02 3.1648 4.38e−02 3.7391

Type 2 7.66e−02 3.5701 2.56e−02 3.0127

Type 3 2.02e−02 3.6175 7.99e−02 2.5281

(n,m, s) = (4096, 2048, 512)

Type 1 4.83e−02 32.5162 5.71e−02 26.5629

Type 2 8.66e−02 31.4738 9.28e−02 26.7190

Type 3 1.00e−02 31.3728 3.67e−02 25.9153

(n,m, s) = (16,384, 8192, 2048)

Type 1 5.77e−02 58.5680 5.83e−01 50.2675

Type 2 8.36e−02 58.3648 2.22e−01 49.7193

Type 3 4.56e−02 58.2631 4.31e−02 49.3749

σ = 0.1

(n,m, s) = (1024, 512, 128)

Type 1 5.63e−01 4.5614 2.74e−00 4.0124

Type 2 2.48e−01 4.7280 2.85e−00 3.9347

Type 3 9.47e−01 4.1023 4.58e−01 3.8103

(n,m, s) = (4096, 2048, 512)

Type 1 6.90e−01 34.8729 1.36e−00 29.5681

Type 2 3.62e−01 33.5628 6.85e−00 28.9201

Type 3 5.72e−01 33.7218 5.82e−01 28.1737

(n,m, s) = (16,384, 8192, 2048)

Type 1 5.83e−01 60.5257 4.83e−00 52.7348

Type 2 3.38e−01 60.1372 5.72e−00 52.6317

Type 3 4.12e−01 60.3648 2.90e−01 52.1135

(16,384, 8192, 2048) using our algorithm is exhibited in Figs. 2, 3 and 4, respectively.
Tables1 and 2 report the average performance (accuracy and CPU time) of the three
algorithms in recovering the three types of signals. It can be observed that the perfor-
mance of Algorithm 4 is superior to that of either NESTA or LADMM in terms of
both accuracy and CPU time.

In the following, sparse signal recovery in the noisy case is discussed. In the exper-
iment, the partial DCT matrix and the general Gaussian matrix were used as the
sensing matrices A. The measurements b were contaminated by random Gaussian
noise with mean 0 and standard deviation σ generated using the MATLAB command
σ ∗ randn(m, 1). The noise power proved to be ε = √

mσ . We set the noise lev-
els to σ = 0.01 and 0.1. For the partial DCT sensing matrix satisfying AA∗ = I ,
we considered both NESTA and LADMM for comparison. For the general Gaussian
sensing matrix, we compared our proposed algorithm only with LADMM because
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NESTA is very time consuming. In addition, for the case of the general Gaussian
sensing matrix, it was necessary to run the inner loop of our algorithm. In fact, we ran
FISTA only 10 times in each iteration. The stopping criterion for both our algorithm
and LADMM was that the relative error on the recovered signal between successive
iterations must satisfy ||xk − xk−1||2/||xk−1||2 < 10−04. The stopping criterion for
NESTA was Tol < 10−04. One thousand iterations were run for each of the three
algorithms. To save space, in Figs. 5 and 6, we show only the recovery results obtained
using Algorithm 4 for the signals with (1024, 512, 128) in the noisy case (σ = 0.01)
with the partial DCT sensing matrix and the general Gaussian sensing matrix, respec-
tively. It can be seen that it is slightly more difficult to recover signals of the first type
than signals of the other two types. Table3 reports the average performance of the
three algorithms in the case of the partial DCT sensing matrix for the different noise
levels. Table4 reports the average performance of Algorithm 4 and LADMM in the
case of the general Gaussian sensing matrix for the various noise levels. It can be seen
that the performance of Algorithm 4 is superior to that of either NESTA or LADMM
when the partial DCT sensing matrix is used. Furthermore, when the general Gaussian
sensing matrix is used, the accuracy of the signals recovered using our proposed algo-
rithm is slightly better than that for LADMM, although our proposed algorithm also
needs slightly more time than LADMM. Hence, from the two experiments presented
above, we can conclude that the proposed algorithm is a fast and efficient method of
recovering sparse signals, especially when the sensing matrix A satisfies AA∗ = I .

5 Conclusions

In this paper, the constrained convex �1-minimization problem (BPε) is recast as a
convex composite problem with a special structure by introducing the indicator func-
tion related to the constrained set into (BPε). The primal Douglas–Rachford splitting
method is applied to solve the resulting convex composite problem. The developed
algorithm requires the computation of the proximity operator of the �1-norm and pro-
jection onto the constraint set. Since the proximity operator of the �1-norm has a
closed-form solution that is very simple and requires only a few operations, the com-
putational cost of the developed algorithm in each iteration is dominated solely by the
projection. A fast and efficient method of computing the projection is proposed. In
particular, when the sensing matrix A satisfies AA∗ = I , which is often the case in
compressive sensing, a closed-form solution for the projection can be derived. Com-
pared with the popular NESTA and LADMM techniques, the developed algorithm
performs better in terms of accuracy and computation for large-scale sparse signal
recovery.

We also note several possible avenues of future research work. Since the perfor-
mance of the proposed algorithm is sensitive to the proximal parameter α, the question
of how to adaptively choose α becomes a practical and important problem. In addi-
tion, the primal Douglas–Rachford splitting method can be applied to other sparse
recovery problems, such as low-rank matrix completion [14]. Moreover, because sev-
eral non-convex functions [41,63,65] have been proposed to replace the �1-norm, we
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can further consider whether the primal Douglas–Rachford splitting method can be
applied to non-convex optimization problems in compressive sensing.
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