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THE INTERLACING OF SPECTRA BETWEEN CONTINUOUS AND
DISCONTINUOUS STURM-LIOUVILLE PROBLEMS AND ITS

APPLICATION TO INVERSE PROBLEMS

Shouzhong Fu, Zongben Xu and Guangsheng Wei

Abstract. The discontinuous Sturm-Liouville problem defined on [0, 1] with
jump conditions at point d ∈ (0, 1) is considered. The interlacing of the
spectra between the discontinuous Sturm-Liouville problem and two Sturm-
Liouville problems defined on [0, d] and [d, 1] is provided. As the application
of this interlacing to inverse problems, we prove that the potential is determined
uniquely by the three spectra generated by the discontinuous Sturm-Liouville
problem and two Sturm-Liouville problems defined on [0, d] and [d, 1].

1. INTRODUCTION

In this paper, we consider the discontinuous Sturm-Liouville problem (DSLP)
consisting of the equation

(1.1) −y′′ + qy = λy, on [0, 1],

and the boundary conditions

(1.2) y′(0)− hy(0) = 0,

(1.3) y′(1) + Hy(1) = 0,

and the jump conditions

(1.4) y(d + 0) = ay(d− 0), y′(d + 0) = y′(d− 0)/a,
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where q ∈ L1([0, π]) is real-valued and h, H ∈ R, a > 0 and d ∈ (0, 1). In partic-
ular, if a = 1 in (1.4), then the DSLP (1.1-4) reduces the classical Sturm-Liouville
problem (SLP), which, in our sense, is called the continuous SLP corresponding to
the DSLP.

It is well known [4, pp. 234-235] that the DSLP (1.1-4) is self-adjoint in L 2[0, 1]
and, therefore, its spectrum is real. Further, it is shown [4] that the spectrum consists
in simple and bounded lower eigenvalues.

For the study of inverse SLP’s, Gesztesy and Simon [5] and Pivovarchik [9, 10],
proved that, if the three spectra are pairwise disjoint, then the potential q can be
uniquely determined by the three spectra of the problems defined on three intervals
[0, 1], [0, d] and [d, 1] for some d ∈ (0, 1). Furthermore, Gesztesy and Simon [5, p.
90] gave a counterexample to show that the pairwise disjoint condition is necessary.
The main goal of this paper is to generalize the result of the above three spectra
associated with the SLP’s to the DSLP’s. Our particular interest will to be examine
under what conditions the three spectra generated by the DSLP on [0, 1] and two
SLP on [0, d] and [d, 1] are pairwise disjoint.

The contents of the paper are twofold. First, we will consider the pairwise
disjoint problem of the three spectra. This problem can be identified in terms of the
interlacing of the spectra between DSLP (1.1-4) and two SLP’s on [0, d] and [d, 1],
which are imposed the boundary conditions (1.2) and (1.3) and the same condition
at x = d :

(1.5) y′(d) + h0y(d) = 0,

respectively. It should be noted that the interlacing among SLP’s has been study by
a number of authors (see, for example, [3, 7, 9] references cited therein). However,
less works are known to deal with the same problem for the DSLP’s. We shall
concern the problem and prove the interlacing associated with three spectra, and
provide suitable conditions such that they are pairwise disjoint. Second, we shall
apply the interlacing to consider the inverse eigenvalue problems for the DSLP.
Note that the inverse problems of the DSLP have been considered by a number of
authors, see, for example, [6, 4, 1]. The Borg theorem and half-inverse theorem
were established (see [4, 6]). We will prove that the potential q can be determined
uniquely by the three spectra under the more distinguishable condition (see Theorems
4.2 and 4.3 below).

The method we use is based on the Weyl-Titchmarsh-m-function. The interlac-
ing of the eigenvalues can be identified by the monotone increasing of the m-function
on the suitable intervals and the determination of the potential q is distinguished in
terms of the asymptotics, poles and residues of the m-function.

The organization of the paper is as follows. In Sections 2 and 3, we will consider
the interlacing of the three spectra in two cases of the Dirichlet and non-Dirichlet



Discontinuous Sturm-Liouville Problems 653

conditions at the inter point x = d. The determination problem of the potential is
treated in Section 4.

2. THE INTERLACING ASSOCIATED WITH DIRICHLET CONDITION

In this section, we will mainly consider the interlacing of the eigenvalue se-
quences between the DSLP (1.1-4) and two SLP’s on subintervals [0, d] and [d, 1],
which are imposed the Dirichlet boundary condition at d.

Let v−(x, λ) and v+(x, λ) be the fundamental solutions of equation (1.1) satis-
fying the initial conditions

(2.1) v−(0) = 1, v′−(0) = h,

and

(2.2) v+(1) = 1, v′+(1) = −H,

respectively. Let

(2.3)
∆(λ) =

∣∣∣∣ v+(d, λ) av−(d, λ)
av′+(d, λ) v′−(d, λ)

∣∣∣∣
= v′−(d, λ)v+(d, λ)− a2v−(d, λ)v′+(d, λ).

It is easy to check that ∆(λ) is the characteristic function of the DSLP. Since
v

(k)
± (d, λ) (k = 0, 1) are entire functions of order 1

2 , it follows that ∆(λ) is also an
entire function of order 1

2 and, therefore, has at most countable of zeros. All zeros
of ∆(λ) are simple (see [4, Theorem 4.4.1]).

We denote the boundary condition at d point by:

(2.4) y(d) = 0.

Then, equation (1.1) and the boundary conditions (1.2) and (2.4) generate a con-
tinuous SLP on [0, d] and the increasing sequence of its eigenvalues is denoted by
{µD

n |n = 1, 2, · · ·}. Similarly, on [d, 1], equation (1.1) and the boundary conditions
(2.4) and (1.3) generate a continuous SLP too, and its increasing sequence of the
eigenvalues is denoted by {νD

n |n = 1, 2, · · ·}.
Define the Weyl-Titchmarsh m-functions

(2.5) m+(λ) =
v′+(d, λ)
v+(d, λ)

, m−(λ) = −v′−(d, λ)
v−(d, λ)

.

It is known [5] that both m±(λ) are the Herglotz functions, that is, analytic functions
in the upper half-plane C

+, with positive imaginary part.
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Lemma 2.1. λ∗ is a zero of ∆(λ) if and only if

(2.6) m−(λ∗) = −a2m+(λ∗),

where (2.6) implies the case that both sides are ∞, but which don’t take ±∞ apart.

Proof. We note that the equality (2.6) is a simple transformation of ∆(λ) = 0
and, therefore, the conclusion is obviously true when v−(d, λ∗)v+(d, λ∗) �= 0. If
one of

(2.7) v−(d, λ∗) = 0

and

(2.8) v+(d, λ∗) = 0

holds, and also (2.6) is satisfied, then we can easily check that the other must hold
too. On the other hand, if both sides of (2.6) are ∞, we have (2.7) and (2.8). The
proof is complete.

Remark 2.2. Lemma 2.1 implies that all of the elements of {µD
n }+∞

n=1∩{νD
n }+∞

n=1

are eigenvalues of the DSLP. Furthermore, λ∗ ∈ {µD
n }+∞

n=1 ∩ {νD
n }+∞

n=1, if and only
if (2.6) yields the case ∞ = ∞.

The results of Lemma 2.1 construct the relation between the spectrum of the
DSLP and m-function. In order to obtain the spectral distribution of the DSLP, we
consider a property of m-function as following.

Lemma 2.3. m−(λ) is a strictly monotone increasing continuous function both
on interval (−∞, µD

1 ) and on interval (µD
n , µD

n+1) (n = 1, 2, · · · ).
Proof. Note that the zeros of v−(d, λ) are exactly {µD

n }+∞
n=1 and, therefore, if

λ ∈ R \ {µD
n }+∞

n=1, then m−(λ) is continuous.
Differentiating both sides of

(2.9) −v′′−(x, λ) + q(x)v−(x, λ) = λv−(x, λ),

with respect to λ, we have

(2.10) −(
∂v−(x, λ)

∂λ
)′′ + q(x)

∂v−(x, λ)
∂λ

= λ
∂v−(x, λ)

∂λ
+ v−(x, λ).

On the condition that without ambiguities, in order to maintain consistency of the
sign, where ”′” denotes still the derivative with respect to x. Integrating the differ-
ence of (2.10) multiplying by v−(x, λ) and (2.9) multiplying by ∂v−(x,λ)

∂λ , integrating
by parts, we infer
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(2.11)
[∂v−(x, λ)

∂λ
v′−(x, λ)− (

∂v′−(x, λ)
∂λ

)v−(x, λ)
]∣∣d

0
=

∫ d

0
v2
−(x, λ)dx.

Note that both v−(0, λ) = 1 and v′−(0, λ) = h are independent of λ and, hence,
∂v−(0,λ)

∂λ = 0 and ∂v′−(0,λ)

∂λ = 0. Thus, (2.11) can be rewritten as

(2.12)
∂v−(d, λ)

∂λ
v′−(d, λ)− (

∂v′−(d, λ)
∂λ

)v−(d, λ) =
∫ d

0
v2
−(x, λ)dx.

From the definition of m−(λ), it then follows that

(2.13)

d

dλ
m−(λ) = − ∂

∂λ

v′−(d, λ)
v−(d, λ)

=
[∂v−(d, λ)

∂λ
v′−(d, λ)− (

∂v′−(d, λ)
∂λ

)v−(d, λ)
]
/v2

−(d, λ).

If λ �= µD
n (n = 1, 2, · · ·), then we have

(2.14)
d

dλ
m−(λ) =

∫ d
0 v2−(x, λ)dx

v2−(d, λ)
> 0.

This completes the proof.
It can be verified

(2.15) lim
λ→−∞

m±(λ) = −∞.

In fact, for any ε > 0, if ε ≤ argλ ≤ 2π − ε, then m±(λ) has the asymptotic
behavior (see [8])

(2.16) m±(λ) = i
√

λ
(
1 + o(

1√
λ

)
)
, as λ → ∞.

Specially, when λ → −∞, we have

m±(λ) = −
√

|λ|
(
1 + o(

1√|λ|)
)
→ −∞.

Hence, from

(2.17) lim
λ→µD

n

m−(λ) = ∞, n = 1, 2, · · · ,

together with Lemma 2.3, next lemmas may thus be concluded.
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Lemma 2.4. m−(λ) is continuous and strictly increasing from −∞ to +∞ on
intervals (−∞, µD

1 ) and (µD
n , µD

n+1) (n = 1, 2, · · ·).
Lemma 2.5. m+(λ) is continuous and strictly increasing from −∞ to +∞ on

intervals (−∞, νD
1 ) and (νD

n , νD
n+1) (n = 1, 2, · · ·).

Theorem 2.6. (i) Rearrange {µD
n }+∞

n=1 ∪{νD
n }+∞

n=1, the new sequence will form
a partition of R, then there contains exactly one eigenvalue of the DSLP (1.1-4) on
each open subinterval of the partition.

(ii) If λ∗ ∈ {µD
n }+∞

n=1∩{νD
n }+∞

n=1, then λ∗ is the eigenvalue of the DSLP (1.1-4).
Instead, if some µD

k (resp. νD
k ) is the eigenvalue of the DSLP, then µD

k ∈ {νD
n }+∞

n=1

(resp. νD
k ∈ {µD

n }+∞
n=1 ).

Proof. (i) For convenience, denoting µD
0 =νD

0 =−∞, we consider the function

(2.18) g(λ) = m−(λ) + a2m+(λ).

From Lemmas 2.4 and 2.5, g(λ) is strictly monotone increasing and continuous on
each open interval of the supposed partition, and

lim
λ→µD

n +0
g(λ) = −∞, lim

λ→νD
n +0

g(λ) = −∞,

lim
λ→µD

n −0
g(λ) = +∞, lim

λ→νD
n −0

g(λ) = +∞,

for n = 0, 1, · · · . Thus, g(λ) has exactly one zero on each open interval of the
partition. Following from Lemma 2.1, there contains exactly one eigenvalue of the
DSLP on each open interval above-mentioned.

(ii) Which actually is the retelling of Remark 2.2.
The proof is completed.

Remark 2.7. This theorem gives the interlacing of the spectra between the
DSLP and two SLP’s. Note that {µD

n }+∞
n=1 ∪ {νD

n }+∞
n=1 are independent of the a.

Thus, when d ∈ (0, 1) is fixed, but a can change in (0, +∞), since a has no
influence on the limit of g(λ) at the division points, it follows that every DSLP’s,
corresponding to a, has exactly one eigenvalue on each open interval of partition
mentioned in Theorem 2.6. Moreover, it should be noted that if a = 1 then the
DSLP is equivalence to a classic SLP. Theorem 2.6 shows the conformity of the
spectra of the DSLP’s and SLP.

The interlacing of spectra can be phrased as the following corollary.

Corollary 2.8. Fixed a>0, for every n>0, only one of the following alternative
is valid:
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(i) The interval (λ0, λn) contains exactly n(counting multiplicities) elements of
set {µD

n }+∞
n=1 ∪ {νD

n }+∞
n=1, and λn �∈ {µD

n }+∞
n=1 ∪ {νD

n }+∞
n=1.

(ii) The interval (λ0, λn) contains exactly n−1(counting multiplicities) elements
of set {µD

n }+∞
n=1 ∪ {νD

n }+∞
n=1, and λn ∈ {µD

n }+∞
n=1 ∪ {νD

n }+∞
n=1.

Specially when a = 1, Corollary 2.8 is the case of Theorem 1.1 in [9].
Attention is now focused on the result corresponding to symmetric case phrased

by H. Hochstadt.
When d = 1

2 , h = H and q(x) is symmetric (that means q(1 − x) = q(x)),
we conclude that µD

n = νD
n (n = 1, 2, · · ·). So all of µD

n = νD
n (n = 1, 2, · · ·)

are eigenvalues of the DSLP, and each interval, (−∞, νD
1 ) and (νD

n , νD
n+1) (n =

1, 2, · · ·), contains exactly one eigenvalue of the DSLP.

Corollary 2.9. If d = 1
2 , h = H and q(x) is symmetric, then λ2n−1 = µD

n =
νD
n (n = 1, 2, · · ·), while λ2n ∈ (µD

n , µD
n+1) = (νD

n , νD
n+1) (n = 0, 1, · · ·), where

µD
0 = νD

0 := −∞.

3. THE INTERLACING ASSOCIATED WITH NON-DIRICHLET CONDITION

In this section, we will consider the interlacing of the spectra of the DSLP and
two SLP’s on two subintervals [0, d] and [d, 1], which are imposed the non-Dirichlet
boundary conditions at d, respectively. Since their proofs are similar to the above,
we omit all of them.

For every h0 ∈ R, the equation (1.1) and boundary conditions (1.2) and

(3.1) y′(d) + a2h0y(d) = 0,

lead to an continuous SLP on [0, d]. The equation (1.1) and boundary conditions
(1.3) and

(3.2) y′(d) + h0y(d) = 0,

also lead to an continuous SLP on [d, 1]. Whose increasing sequences of eigenvalues
are denoted by {µn}+∞

n=0 and {νn}+∞
n=0, respectively. Specially, the two sequence

corresponding to h0 = 0, be denoted by {µN
n }+∞

n=0 and {νN
n }+∞

n=0.
Define the Weyl-Titchmarsh M -functions

(3.3) M−(λ) =
v−(d, λ)

v′−(d, λ) + a2h0v−(d, λ)
= − 1

m−(λ)− a2h0
,

(3.4) M+(λ) = − v+(d, λ)
v′+(d, λ)+ h0v+(d, λ)

= − 1
m+(λ) + h0

.

It is easy to check that M±(λ) are also the Herglotz functions by the facts that
m±(λ) are the Herglotz functions.
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Lemma 3.1. λ∗ is a zero of ∆(λ) if and only if

(3.5) M+(λ∗) = −a2M−(λ∗)

where both sides allow ∞, but not take ±∞ apart.

Lemma 3.2. (i) M−(λ) is always positive on (−∞, µ0), and continuously
monotonically increase from 0 to +∞.

(ii) While on (µn, µn+1) (n = 0, 1, · · ·), which is continuously monotonically
increase from −∞ to +∞.

By Lemma 2.4, m−(λ)− a2h0 → −∞ as λ → −∞, and m−(λ) − a2h0 → 0
as λ → µ0. This means m−(λ) − a2h0 < 0 when λ ∈ (−∞, µ0) and, therefore,
M−(λ) = −1/(m−(λ)− a2h0) > 0. The result (ii) in Lemma 3.2 can be derived
from Lemma 2.4 and (3.3).

Lemma 3.3. M+(λ) is always positive on (−∞, ν0), and continuously mono-
tonically increase from 0 to +∞. While on (νn, νn+1) (n = 0, 1, · · ·), which is
continuously and strictly monotonically increase from −∞ to +∞ .

Theorem 3.4. (i) Rearrange {µn}+∞
n=0 ∪ {νn}+∞

n=0, the new sequence will form
a partition of R, then each open subinterval of the partition contains exactly one
eigenvalue of the DSLP, but (−∞, min{µ0, ν0}) does not contain any eigenvalue
of the DSLP.

(ii) If λ∗ ∈ {µn}+∞
n=0∩{ν0}+∞

n=0, then λ∗ is the eigenvalue of the DSLP. Instead,
if some µk (resp. νk) is the eigenvalue of the DSLP, then µk ∈ {νn}+∞

n=0 (resp.
νk ∈ {µn}+∞

n=0).

Consider the function

(3.6) G(λ) = M+(λ) + a2M−(λ).

Together with Lemmas 3.1-3.3, similar to the proof of Theorem 2.6, we conclude
that except for (−∞, min{µ0, ν0}), each open subinterval of the partition contains
exactly one eigenvalue of the DSLP, and the conclusion (ii) is correct.

With regard to (−∞, min{µ0, ν0}), following from Lemmas 3.2 and 3.3, we
will find that G(λ) has no zero on this interval.

Remark 3.5. Different from Theorem 2.6, there is no eigenvalue of the DSLP
on interval (−∞, min{µ0, ν0}), which implies that min{µ0, ν0} is the lower bound
for the eigenvalues of the DSLP’s to all a > 0 and is also the lower bound for the
eigenvalues of the SLP.

Corollary 3.6. Fixed a > 0, for every n > 0, one of the following alternative
is valid:
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(i) The interval (−∞, λn) contains exactly n + 1 (counting multiplicities) ele-
ments of set {µn}+∞

n=0 ∪ {νn}+∞
n=0, and λn �∈ {µn}+∞

n=0 ∪ {νn}+∞
n=0.

(ii) The interval (−∞, λn) contains exactly n(counting multiplicities) elements
of set {µn}+∞

n=0 ∪ {νn}+∞
n=0, and λn ∈ {µn}+∞

n=0 ∪ {νn}+∞
n=0.

If d = 1
2 , h = H and q(x) is symmetric, we then have µN

n = νN
n (n = 0, 1, · · ·).

So all of µN
n = νN

n (n = 0, 1, · · · ) are the eigenvalues of the DSLP, and each open
interval (νN

n , νN
n+1) (n = 0, 1, · · ·), contains exactly one eigenvalue of the DSLP,

but there is no eigenvalue of the DSLP on interval (−∞, νN
0 ), which can be phrased

as the following corollary.

Corollary 3.7. If d = 1
2 , h = H and q(x) is symmetric, then we have that

λ2n = µN
n = νN

n (n = 0, 1, · · ·), and λ2n+1 ∈ (µN
n , µN

n+1) = (νN
n , νN

n+1) (n =
0, 1, · · ·).

Theorem 3.8. If d = 1
2 , h = H and q(x) is symmetric, for every a > 0, all

eigenvalues of the DSLP, {λn}+∞
n=0, satisfy

λ2n = µN
n = νN

n , n = 0, 1, · · · ,(3.7)

and

λ2n−1 = µD
n = νD

n , n = 1, 2, · · · .(3.8)

Proof. It can be obtained from Corollary 3.7 and Corollary 2.9 together.

Remark 3.9. Does that mean, on symmetric case, for every a, the sets of
eigenvalues of the DSLP’s all are equal to {µN

n }∞n=0 ∪ {µD
n }∞n=0.

4. DETERMINATION OF THE POTENTIAL

In this section, we will give three theorems of discontinuous inverse spectral
problems as the applications of the interlacing in Sections 2 and 3. The technique
which used to prove these theorems is an adaptation of the method discussed by F.
Gesztesy and B. Simon in [5]. We need following lemma on asymptotics, poles and
residues determining a meromorphic Herglotz function, see Theorem 2.3 in [5].

Lemma 4.1. Let f1(z) and f2(z) be two meromorphic Herglotz functions with
identical sets of poles and residues, respectively. If

f1(ix)− f2(ix) → 0, as x → ∞,

then f1 = f2.
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We need still the classic theory of inverse spectral problems, that is, the Borg
theorem: two spectra can uniquely determine the potential function of the SLP.

Theorem 4.2. Let h, H , d ∈ (0, 1) and a > 0 be fixed. If {µD
n }+∞

n=1, {νD
n }∞n=1

and {λn}∞n=0 are pairwise disjoint, then these three spectra determine the potential
q uniquely on [0, 1].

Remark 4.3. This result is a extension of [9, 5] to the discontinuous problems
with one jump point. For the pairwise disjoint condition, indeed, we need know
only {µD

n }+∞
n=1 and {νD

n }∞n=1 are disjoint, see Theorems 2.6(ii) in Section 2.

Proof of Theorem 4.2. Rewrite g(λ) defined in (2.18) as

g(λ) = − ∆(λ, a)
v−(d, λ)v+(d, λ)

.

It is clear that the set of poles of g(λ) is precisely {µD
n }+∞

n=1 ∪ {νD
n }∞n=1 and the set

of zeros of g(λ) is precisely {λn}+∞
n=0.

Let q̃(x) be another potential such that {λn}∞n=0, {µD
n }+∞

n=1 and {νD
n }∞n=1 are

the eigenvalues of the DSLP consisting of (1.1-1.4) and the SLP’s consisting of
(1.1-1.3) and (2.4) with q(x) replaced by q̃(x), respectively. Define m̃+(λ), m̃−(λ)
and g̃(λ) in an analogous manner (see (2.5) and (2.18)).

Let
F (λ) = g(λ)/g̃(λ).

Then F is an entire function, since g has the same zeros and poles with g̃. Recall
the asymptotic behavior of m-functions (2.16) . For any ε > 0,

F (λ) = g(λ)/g̃(λ) = 1 + O(
1√
λ

)

holds in the sector of ε ≤ arg λ ≤ 2π − ε. By Liouville’s Theorem, we have

F (λ) ≡ 1,

which concludes

(4.1) g(λ) = g̃(λ).

Note that the poles of m−(λ) and m+(λ) are precisely the points of {µD
n }+∞

n=1

and {νD
n }∞n=1, respectively. By the hypothesis of the theorem that {µD

n }+∞
n=1 and

{νD
n }∞n=1 are disjoint. We have

res m−(µD
n ) = res g(µD

n ), res m+(νD
n ) =

1
a2

res g(νD
n ),



Discontinuous Sturm-Liouville Problems 661

for n = 1, 2, · · · . This means

res m−(µD
n ) = res m̃−(µD

n ), res m+(νD
n ) = res m̃+(νD

n ),

for all n ≥ 1. This, together with Lemma 4.1 and the asymptotic behavior (2.16),
obtains

m±(λ) = m̃±(λ).

Therefore q(x) = q̃(x) on [0, d] and [d, 1], respectively, by Borg theorem [8]. Thus,
completes the proof of Theorem 4.2.

Theorem 4.4. Let h, H , d ∈ (0, 1) and a > 0 be fixed. If {µn}+∞
n=0∩{νn}∞n=0 =

∅, then these two sets together with {λn}∞n=0 can determine the potential q uniquely
on [0, 1].

Proof. Rewrite G(λ) defined in (3.6) as

G(λ) = − ∆(λ)
[v′−(d, λ) + h0v−(d, λ)][v′+(d, λ) + a2h0v+(d, λ)]

.(4.2)

It is clear that the set of poles of G(λ) is precisely {µn}+∞
n=0 ∪ {νn}∞n=0 and the set

of zeros of G(λ) is precisely {λn}+∞
n=0.

As in the proof of Theorem 4.2, we can prove that the given three disjoint
spectra determine all residues of M±(λ).

Since M±(λ) have the asymptotic behavior

(4.3) M±(λ) = − 1
m±(λ) + const

= − i√
λ

(
1 + o(

1√
λ

)
)
, as λ → ∞ in C,

when ε ≤ arg λ ≤ 2π−ε for any ε > 0. By Lemma 4.1, it determines the functions
M±(λ). Then M±(λ) determine the q(x) on [0, d] and [d, 1], respectively, by Borg
theorem. Thus, completes the proof of Theorem 4.4.

Theorem 4.5. If d = 1
2 , h = H and q(x) is symmetric, for every a > 0,

{λn}∞n=0 determine the potential q uniquely on [0, 1].

Remark 4.6. When a = 1, this is the symmetric case of Borg theorem. We will
prove it holds also for the DSLP.

Proof. By Corollary 2.9,

µD
n = νD

n = λ2n−1 (n = 1, 2, · · ·).(4.4)

Consider g(λ) and g̃(λ), again. g(λ) = g̃(λ) still holds as (4.1) in the proof of
Theorem 4.2. By the symmetry hypothesis, we have

v−(x, λ) = v+(1 − x, λ), v′−(x, λ) = v′+(1− x, λ).(4.5)
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This means

m−(λ) = m+(λ).(4.6)

So we have

m−(λ) = m+(λ) =
1

1 + a2
g(λ).(4.7)

Then m±(λ) determine uniquely the q(x) on [0, 1
2 ] and [ 12 , 1], respectively, by Borg

theorem.

Remark 4.7. For different a > 0, all of g(λ) have the same zeros and poles,
but g(λ) is dependent on a.
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