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We present some newmultiplicity of positive solutions results for nonlinear semipositone fraction-
al boundary value problem Dα

0+u(t) = p(t)f(t, u(t)) − q(t), 0 < t < 1, u(0) = u(1) = u′(1) = 0, where
2 < α ≤ 3 is a real number andDα

0+ is the standard Riemann-Liouville differentiation. One example
is also given to illustrate the main result.

1. Introduction

This paper is mainly concerned with the multiplicity of positive solutions of nonlinear frac-
tional differential equation boundary value problem (BVP for short)

Dα
0+u(t) = p(t)f(t, u(t)) − q(t), 0 < t < 1,

u(0) = u(1) = u′(1) = 0,
(1.1)

where 2 < α ≤ 3 is a real number and Dα
0+ is the standard Riemann-Liouville differentiation,

and f, p, q is a given function satisfying some assumptions that will be specified later.
In the last few years, fractional differential equations (in short FDEs) have been

studied extensively the motivation for those works stems from both the development of
the theory of fractional calculus itself and the applications of such constructions in various
sciences such as physics, mechanics, chemistry, and engineering. For an extensive collection
of such results, we refer the readers to the monographs by Kilbas et al. [1], Miller and Ross
[2], Oldham and Spanier [3], Podlubny [4], and Samko et al. [5].
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Some basic theory for the initial value problems of FDE involving the Riemann-
Liouville differential operator has been discussed by Lakshmikantham and Vatsala [6–8],
Babakhani and Daftardar-Gejji [9–11], and Bai [12], and others. Also, there are some papers
that deal with the existence and multiplicity of solutions (or positive solution) for nonlinear
FDE of BVPs by using techniques of nonlinear analysis (fixed point theorems, Leray-
Schauders theory, topological degree theory, etc.), see [13–22] and the references therein.

Bai and Lü [15] studied the following two-point boundary value problem of FDEs

D
q

0+u(t) + f(t, u(t)) = 0, u(0) = u(1) = 0, 0 < t < 1, 1 < q ≤ 2, (1.2)

whereDq

0+ is the standard Riemann-Liouville fractional derivative. They obtained the existence
of positive solutions by means of the Guo-Krasnosel’skii fixed point theorem and Leggett-
Williams fixed point theorem.

Zhang [22] considered the existence and multiplicity of positive solutions for the
nonlinear fractional boundary value problem

cD
q

0+u(t) = f(t, u(t)), 0 < t < 1, u(0) + u′(0) = 0, u(1) + u′(1) = 0, (1.3)

where 1 < q ≤ 2 is a real number, f : [0, 1] × [0,+∞) → [0,+∞), and cD
q

0+ is the standard
Caputo’s fractional derivative. The author obtained the existence and multiplicity results of
positive solutions by means of the Guo-Krasnosel’skii fixed point theorem.

From the above works, we can see the fact that although the fractional boundary
value problems have been investigated by some authors to the best of our knowledge,
there have been few papers that deal with the boundary value problem (1.1) for nonlinear
fractional differential equation. Motivated by all the works above, in this paper we discuss
the boundary value problem (1.1), using the Guo-Krasnosel’skii fixed point theorem, and we
give some new existence of multiple positive solutions criteria for boundary value problem
(1.1).

The paper is organized as follows. In Section 2, we give some preliminary results that
will be used in the proof of themain results. In Section 3, we establish the existence ofmultiple
positive solutions for boundary value problem (1.1) by the Guo-Krasnosel’skii fixed point
theorem. In the end, we illustrate a simple use of the main result.

2. Preliminaries and Lemmas

For the convenience of the reader, we present here the necessary definitions from fractional
calculus theory. These definitions can be found in the recent literature such as [1, 4, 15].

Definition 2.1 (see [1, 4]). The Riemann-Liouville fractional integral of order α(α > 0) of a
function f : (0,+∞) → R is given by

Iα0+f(t) =
∫ t

0

(t − s)α−1

Γ(α)
f(s)ds, (2.1)

provided that the right side is pointwise defined on (0,+∞), where Γ is the gamma function.
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Definition 2.2 (see [1, 4]). The Riemann-Liouville fractional derivative of order α(α > 0) of a
continuous function f : (0,+∞) → R is given by

(
Dα

0+f
)
(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t

0
(t − s)n−α+1f(s)ds, (2.2)

provided that the right side is pointwise defined on (0,+∞), where n = [α]+1 and [α] denotes
the integer part of α.

Lemma 2.3 (see [15]). Let α > 0. If one assumes u ∈ C(0, 1) ∩ L(0, 1), then fractional differential
equation

Dαu(t) = 0 (2.3)

has

u(t) = C1t
α−1 + C2t

α−2 + · · · + CNtα−N, Ci ∈ R, i = 1, 2, . . . ,N, (2.4)

as unique solutions, where N is the smallest integer greater than or equal to α.

Lemma 2.4 (see [15]). Assume that h ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order α > 0
that belongs to C(0, 1) ∩ L(0, 1). Then

IαDαh(t) = h(t) + C1t
α−1 + C2t

α−2 + · · · + CNtα−N, (2.5)

for some Ci ∈ R, i = 1, 2, . . . ,N, where N is the smallest integer greater than or equal to α.

In the following, we present Green’s function of the fractional differential equation
boundary value problem.

Lemma 2.5. Let h ∈ C[0, 1] and 2 < α ≤ 3, then the unique solution of

Dαu(t) + h(t) = 0, 0 < t < 1,

u(0) = u(1) = u′(1) = 0
(2.6)

is given by

u(t) =
∫1

0
G(t, s)h(s)ds, (2.7)

where G(t, s) is Green’s function given by

G(t, s) =
1

Γ(α)

⎧⎨
⎩
(1 − s)α−1tα−1 − (t − s)α−1, if 0 ≤ s ≤ t ≤ 1,

(1 − s)α−1tα−1, if 0 ≤ t ≤ s ≤ 1.
(2.8)
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The following properties of Green’s function form the basis of our main work in this
paper.

Lemma 2.6. The function G(t, s) defined by (2.8) possesses the following properties:

(i) G(t, s) = G(1 − s, 1 − t) for t, s ∈ (0, 1);

(ii) tα−1(1 − t)s(1 − s)α−1 ≤ G(t, s)Γ(α) ≤ (α − 1)s(1 − s)α−1 for t, s ∈ (0, 1);

(iii) tα−1(1 − t)s(1 − s)α−1 ≤ G(t, s)Γ(α) ≤ (α − 1)tα−1(1 − t) for t, s ∈ (0, 1);

(iv) G(t, s) > 0 for t, s ∈ (0, 1).

The following Krasnosel’skii’s fixed point theorem will play a major role in our next
analysis.

Lemma 2.7 (see [23]). Let X be a Banach space, and let P ⊂ X be a cone in X. Assume Ω1,Ω2 are
open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let A : P → P be a completely continuous operator
such that either

(i) ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1, ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or

(ii) ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

ThenA has a fixed point in P ∩ (Ω2 \Ω1).

3. Main Results

In this section, we establish some new existence results for the fractional differential equation
(1.1). Given a ∈ L1(0, 1), we write a a � 0, if a ≥ 0 for t ∈ [0, 1], and it is positive in a set of
positive measure.

Let us list the following assumptions:
(H1) f : [0, 1] × [0,∞) → [0,∞) is continuous, p, q � 0;
(H2) there exists θ ∈ (0, 1/2), such that

∫1−θ

θ

p(s)s(1 − s)α−1 ds > 0. (3.1)

In view of Lemmas 2.5 and 2.6, we obtain the following.

Lemma 3.1. Let q ∈ L1[0, 1] with q > 0 on (0,1), and γ(t) is the unique solution of

Dα
0+u(t) = q(t), 0 < t < 1,

u(0) = u(1) = u′(1) = 0,
(3.2)

Then

0 ≤ γ(t) ≤ α − 1
Γ(α)

‖q‖1tα−1(1 − t) := Ctα−1(1 − t), for t ∈ [0, 1], (3.3)

where C = (α − 1/Γ(α))‖q‖1, ‖q‖1 =
∫1
0 |q(t)|dt.
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Next, we consider

Dα
0+u(t) = p(t)g

(
t, u(t) − γ(t)

)
, 0 < t < 1,

u(0) = u(1) = u′(1) = 0,
(3.4)

where

g(t, u) =

⎧⎨
⎩
f(t, u), if u ≥ 0

f(t, 0), if u < 0,
(3.5)

Then (3.4) is equivalent to the following integral equation:

u(t) =
∫1

0
G(t, s)p(s)g

(
s, u(s) − γ(s)

)
ds. (3.6)

Lemma 3.2. Let u(t) ≥ γ(t) for t ∈ [0, 1], and u(t) is positive solution of the problem (3.4). Then
u(t) − γ(t) is positive solution of the problem (1.1).

Proof. In fact, let x(t) = u(t) − γ(t). Then x(t) ≥ 0 and u(t) = x(t) + γ(t). Since u(t) is positive
solution of the problem (3.4), we have

Dα
0+
[
x(t) + γ(t)

]
= p(t)g(t, x(t)), 0 < t < 1,

(
x + γ

)
(0) =

(
x + γ

)
(1) =

(
x + γ

)′(1) = 0.
(3.7)

So

Dα
0+x(t) = p(t)g(t, x(t)) − q(t), 0 < t < 1,

x(0) = x(1) = x′(1) = 0.
(3.8)

For our constructions, we will consider the Banach space E = C[0, 1] equipped with
standard norm ‖u‖ = max0≤t≤1|u(t)|, u ∈ E.

Define a cone K by

K =

{
u ∈ E : u(t) ≥ tα−1(1 − t)

α − 1
‖u‖, ∀t ∈ [0, 1], α ∈ (2, 3]

}
. (3.9)

Let the operator A : K → E be defined by the formula

(Ax)(t) :=
∫1

0
G(t, s)p(s)g

(
s, x(s) − γ(s)

)
ds, 0 ≤ t ≤ 1, u ∈ K. (3.10)

Lemma 3.3. Assume that (H1) holds. Then A(K) ⊂ K.
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Proof. Notice from (3.10) and Lemma 2.6 that, for x ∈ K, Ax(t) ≥ 0 on [0, 1] and

‖Ax‖ ≤ 1
Γ(α)

∫1

0
(α − 1)s(1 − s)α−1p(s)g

(
s, x(s) − γ(s)

)
ds. (3.11)

On the other hand, we have

Ax(t) ≥ 1
Γ(α)

∫1

0
tα−1(1 − t)s(1 − s)α−1p(s)g

(
s, x(s) − γ(s)

)
ds

≥ tα−1(1 − t)
(α − 1)Γ(α)

‖Ax‖.
(3.12)

Thus we have A(K) ⊂ K. The proof is finished.

It is standard that A : K → K is continuous and completely continuous.

For convenience, we introduce the following notations: Ñ = ((α − 1)‖p‖1/Γ(α))
max0≤s≤1s(1 − s)α−1, N = σ

∫1−θ
θ (s(1 − s)α−1/Γ(α))p(s)ds, σ = minθ≤t≤1−θ(1 − t)tα−1.

Theorem 3.4. Assume that (H1) and (H2) are satisfied. Also suppose the following conditions are
satisfied:

(A1) there exists a constantR1 > (α−1)C such that Ñf(t, u) ≤ R1 for all (t, u) ∈ [0, 1]×[0, R1];

(A2) there exists a constant R2 > 2R1 such thatNf(t, u) > R2 for all (t, u) ∈ [0, 1]× [σR2, R2];

(A3) limu→+∞max0≤t≤1(f(t, u)/u) = 0.

Then the problem (1.1) has at least two positive solutions.

Proof. To show that (1.1) has at least two positive solutions, we will assume the problem (3.4)
has at least two positive solutions x1 and x2 with R1 ≤ ‖x1‖ < R2 < ‖x2‖ ≤ R3.

We now show

‖Ax‖ ≤ ‖x‖, for x ∈ K ∩ ∂Ω1, (3.13)

To see this, let Ω1 = {x ∈ K | ‖x‖ < R1}, then for x ∈ K ∩ ∂Ω1, t ∈ [0, 1], by Lemma 3.1
and (A1), we have

x(t) − γ(t) ≤ x(t) ≤ ‖x‖ = R1,

x(t) − γ(t) ≥ tα−1(1 − t)
α − 1

R1 − Ctα−1(1 − t) ≥
(

R1

α − 1
− C

)
tα−1(1 − t) ≥ 0.

(3.14)



Discrete Dynamics in Nature and Society 7

Thus, we see, from Lemma 2.6 and (A1), that

‖Ax‖ = max
0≤t≤1

(Au)(t) = max
0≤t≤1

∫1

0
G(t, s)p(s)g

(
s, x(s) − γ(s)

)
ds

≤ (α − 1)
Γ(α)

∫1

0
s(1 − s)α−1p(s)f

(
s, x(s) − γ(s)

)
ds

≤ (α − 1)
Γ(α)

∫1

0

R1

Ñ
s(1 − s)α−1p(s)ds

≤ R1,

(3.15)

from which we see that ‖Ax‖ ≤ ‖x‖, for x ∈ K ∩ ∂Ω1.
Next we now show

‖Ax‖ ≥ ‖x‖, for x ∈ K ∩ ∂Ω2. (3.16)

To see this, let Ω2 = {x ∈ K| ‖x‖ < R2}; then, for x ∈ K ∩ ∂Ω2, t ∈ [0, 1], by R2 > 2R1, we have

x(t) − γ(t) ≥ tα−1(1 − t)
α − 1

R2 − Ctα−1(1 − t) ≥ tα−1(1 − t)
2(α − 1)

R2. (3.17)

For x ∈ ∂Ω2; t ∈ [θ, 1 − θ]σ, then, it follows from (3.17) that

R2 ≤ tα−1(1 − t)
2(α − 1)

R2 ≤ x(t) − γ(t) ≤ R2. (3.18)

In view of (A2), (3.17) and Lemma 2.6, we have that for all x ∈ ∂Ω2, t ∈ [θ, 1 − θ]σ

‖Au‖ ≥
∫1

0
G(t, s)p(s)g

(
s, x(s) − γ(s)

)
ds

≥ tα−1(1 − t)
∫1

0

s(1 − s)α−1

Γ(α)
p(s)f

(
s, x(s) − γ(s)

)
ds

> tα−1(1 − t)
∫1−θ

θ

s(1 − s)α−1R2

Γ(α)N
p(s)ds

≥ σ

∫1−θ

θ

s(1 − s)α−1R2

Γ(α)N
p(s)ds

= R2,

(3.19)

from which we see that ‖Ax‖ > ‖x‖, for x ∈ K ∩ ∂Ω2.
On the other hand, let ε > 0, where

ε(α − 1)
Γ(α)

max
0≤t≤1

t(1 − t)α−1
∥∥p∥∥1 ≤ 1. (3.20)
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Supposing that (A3) holds, one can find N > R2 > 0, so that

f(t, u) ≤ εu, ∀t ∈ [0, 1], u ≥ N. (3.21)

Setting

R3 =
(α − 1)max0≤t≤1t(1 − t)α−1 ‖p‖1max(t,u)∈[0,1]×[0,N]f(t, u)(

Γ(α) − ε(α − 1)max0≤t≤1t(1 − t)α−1‖p‖1
) +N, (3.22)

then R3 > N > R2, and so

‖Au‖ = max
0≤t≤1

∫1

0
G(t, s)p(s)g

(
s, x(s) − γ(s)

)
ds

≤
∫1

0

(α − 1)s(1 − s)α−1

Γ(α)
p(s) max

(s,u)∈[0,1]×[0,N]
f(s, u)ds

+
∫1

0

(α − 1)s(1 − s)α−1

Γ(α)
p(s)ε

(
x(s) − γ(s)

)
ds

≤ R3,

(3.23)

from which we see that ‖Ax‖ ≤ ‖x‖, for x ∈ K ∩ ∂Ω3.
In view of Lemma 2.7, the problem (3.4) has at least two positive solutions x1 and x2

with R1 ≤ ‖x1‖ < R2 < ‖x2‖ ≤ R3. Since R2 > R1 > (α − 1)C, we have

x1(t) − γ(t) ≥ tα−1(1 − t)
α − 1

R1 − Ctα−1(1 − t) ≥
(

R1

α − 1
− C

)
tα−1(1 − t) ≥ 0,

x2(t) − γ(t) ≥ tα−1(1 − t)
α − 1

R2 − Ctα−1(1 − t) ≥
(

R2

α − 1
− C

)
tα−1(1 − t) ≥ 0.

(3.24)

Therefore x1, x2 are solutions of the problem (1.1). This completes the proof.

Theorem 3.5. Suppose that (H1), (H2) are satisfied. Furthermore assume that

(A4) there exists a constant R1 > 2(α − 1)C such that Nf(t, u) ≥ R1 for all (t, u) ∈ [0, 1] ×
[σR1, R1];

(A5) there exists a constant R2 > max{R1, (R1/N)Ñ} such that Ñf(t, u) < R2 for all (t, u) ∈
[0, 1] × [0, R2];

(A6) limu→+∞minθ≤t≤1−θ(f(t, u)/u) = +∞.

Then the problem (1.1) has at least two positive solutions.



Discrete Dynamics in Nature and Society 9

4. An Example

As an application of the main results, we consider

D5/2y(t) = f
(
y
) − 1√

t
, 0 < t < 1,

y(0) = y′(0) = y(1) = 0,
(4.1)

Set

f
(
y
)
=

⎧⎪⎪⎨
⎪⎪⎩
−2(y − 7)2 + 1100, if 0 ≤ y ≤ 7,

−2(y − 7
)
+ 1100, if 7 ≤ y ≤ 450,(

y − 450
)2 + 214, if y ≥ 450,

(4.2)

Thenwe have C = (α−1)/Γ(α)‖q‖1 ≈ 2.25676,Ñ = ((α−1)‖q‖1/Γ(α))max0≤s≤1s(1 − s)α−1 ≈ 0.4,
letting, θ = 1/4, then σ = minθ≤t≤1−θ(1 − t)tα−1 ≈ 0.09375, N = σ

∫3/4
1/4 (s(1 − s)α−1/Γ(α))ds ≈

0.008, choosing R1 = 7, R2 = 450, then R1 > 2(α − 1)C = 6.77, R2 > max{R1, (R1/N)Ñ} =
max{7, 350} = 350; therefore, we have Nf(u) = 0.008[−2(y − 7)2 + 1100] ≥ 8.156 >

R1, (t, u) → [1/4, 3/4] × [0.65625, 7], Ñf(u) = 0.4[−2(y − 7)2 + 1100] ≤ 440 < R2, (t, u) →
[0, 1] × [0, 7], Ñf(u) = 0.4[−2(y − 7) + 1100] ≤ 440 < R2, (t, u) → [0, 1] × [7, 450], and
limy→+∞(f(y)/y) = limy→+∞(((y − 450)2 + 214)/y) = +∞.

It is clear that f : [0, 1] × [0,∞) → [0,∞) is continuous. Since all the conditions of
Theorem 3.5 are satisfied, the problem (4.1) has at least two positive solutions.
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