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Abstract: A modified bi-dimensional empirical mode decomposition 
(BEMD) method is proposed for sparsely decomposing a fringe pattern into 
two components, namely, a single intrinsic mode function (IMF) and a 
residue. The main idea of this method is a modified sifting process which 
employs morphological operations to detect ridges and troughs of the 
fringes, and uses weighted moving average algorithm to estimate envelopes 
of the IMF, replacing respective local extrema detection and envelope 
interpolation of conventional BEMDs. The background intensity of the 
fringe pattern is automatically removed by extracting the single IMF, 
thereby relieving the mode mixing problem of the BEMDs. A fast algorithm 
based on 2D convolution is also presented for reducing the calculation time 
to several seconds only. This approach is applied to process simulated and 
real fringe patterns, and the results obtained are compared with Fourier 
transform, discrete wavelet transform, and other EMD methods. The 
MATLAB code is downloadable at http://gr.xjtu.edu.cn/web/zhouxiang. 
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1. Introduction 

In fringe-assisted optical metrology such as fringe-projected profilometry and interferometry, 
the removal of background variation caused by uneven illumination or non-uniform 
reflectivity is usually a prerequisite to the demodulation methods of fringe patterns such as 
phase retrieval [1, 2], fringe normalization [3], and phase unwrapping [4]. Various time-
space-frequency analysis techniques based on Fourier analysis are conventionally used to 
filter out background intensity from a single pattern. These techniques include Fourier 
transform [2], windowed Fourier [5] or Gabor transform [6], wavelet transform [7–10], 
smoothed space-frequency distribution [11], S-transform methods [12]. However, these 
integral transform techniques suffer from an uncertainty problem that limits their ability to 
measure time/space and frequency simultaneously and accurately. Another major restriction 
of Fourier-based methods is their non-adaptive nature. Priori knowledge of parameters like 
filter window width and basis function is necessary for generating desirable outputs. Once 
selected, these parameters will have to be used to analyze all the data. Despite the extensive 
investigation conducted by researchers on the adaptive selection of window lengths for 
windowed Fourier transform [13, 14], a good solution for 2D analysis has yet to be found. 
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Lastly, working as linear transforms the Fourier-based methods produce non-negligible errors 
if analyzed signals have strong nonlinearity, which is common for fringe patterns. 

The empirical mode decomposition (EMD) algorithm has become an established tool for 
time-space-frequency analysis of nonstationary signals in recent years [15]. EMD and its 
variants are also currently used to analyze fringe patterns for denoising, detrending, and phase 
retrieval. Bernini et al. use the standard EMD to reduce noise and normalize fringes in a 
digital speckle pattern [16]. Li et al. utilize 1D EMD to eliminate zero spectrum in Fourier 
transform profilometry [17]. Moreover, bi-dimensional EMD (BEMD) is used to analyze 
speckle patterns [18] and amplitude-encoded fringe patterns [19]. BEMD overcomes the 
problem of 1D implementation, which ignores the correlation among rows or columns of an 
image and leads to unsatisfactory results for some fringes such as closed fringes [18]. 

Nonetheless, EMD-based methods still have inherent limits in handling fringe patterns 
despite their good adaptability and locality [20]. The first problem stems from the selection of 
coefficients when signals are being reconstructed. Unlike for wavelet and Fourier transform, 
the performance of EMD is not stable and varies with analyzed signals. Therefore, strong 
manual intervention for the proper selection of coefficients is needed. This requirement makes 
the automatic processing of fringe patterns difficult. The second issue is that envelope 
estimation [21] in BEMD is not only time consuming but can possibly generate undershooting 
and overshooting errors because of inappropriate interpolation of 2D scattered extrema. 
Another frustrating problem with both EMD and BEMD is the mode mixing caused by 
intermittent noise in different scales of data. Fringe pattern noises are often unevenly 
distributed or submerged in the fringes with large amplitudes, making the separation of noises 
and true fringes quite challenging. To alleviate this problem, a 1D ensemble EMD (EEMD) 
[20]and Multivariate EMD [22] are used for carrier fringe analysis. Bernini et al. [23] and 
Zhou et al. [24] use bi-dimensional EEMD for speckle patterns. However, the implementation 
of EEMD requires hundreds of interpolations of curves or surfaces, which is extremely time-
consuming. 

A desirable decomposition of a fringe pattern that is made up of three main parts, namely, 
background intensity, fringes, and noise, should be sparse. That is, the fringe pattern should 
be represented by as few coefficients as possible to facilitate the proper selection of 
coefficients for pattern reconstruction. This paper presents a morphological operation-based 
BEMD (MO-BEMD) for sparsely decomposing a fringe pattern into two components, 
namely, a single intrinsic mode function (IMF) and a residue, which correspond to the fringes 
with zero local mean and the background intensity of the pattern, respectively. The 
background intensity of the fringe pattern is automatically removed by selecting the single 
IMF. The main modifications to conventional BEMDs [21, 25–27] include three aspects: 

1. Morphological operations are employed in a sifting process to detect the ridges and 
troughs of fringe patterns, 

2. The envelopes of the IMF are estimated by using weighted moving averaging 
algorithm, 

3. 2D convolution is used to increase the speed of the envelope estimation. 
The rest of the paper is organized as follows. Section 2 describes the principle of the MO-

BEMD and gives a fast implementation via 2D convolution. In section 3, a mixed carrier and 
a closed simulated fringe patterns are demonstrated. The noise influence and phase recovery 
are also investigated. A real pattern from fringe-projected profilometry is examined in section 
4. The results are compared with those of conventional methods. Some questions about 
parameters and the extension to natural images are discussed in section 5. Section 6 concludes 
the paper. 

2. Principle 

2.1 General BEMD 

A recorded 2D fringe pattern can be modeled as 

#172970 - $15.00 USD Received 20 Jul 2012; revised 27 Aug 2012; accepted 9 Sep 2012; published 8 Oct 2012
(C) 2012 OSA 22 October 2012 / Vol. 20,  No. 22 / OPTICS EXPRESS  24249



 [ ]( , ) ( , ) ( , ) cos ( , ) ( , ),I x y a x y b x y x y n x yϕ= + +  (1) 

where ( , )a x y and ( , )b x y  are background intensity and fringe amplitude, respectively; 

( , )x yϕ  is phase distribution, and ( , )n x y  is randomly distributed noise. General BEMD is a 

sifting process that decomposes ( , )I x y  into multiple hierarchical components known as 
IMFs. A typical sifting process is summarized in the following iterations: 

1) Initialization: set ( , ) ( , )S x y I x y= . Identify all local maxima and local minima of 

( , )S x y . 

2) Interpolate the local maxima (resp. minima) to obtain the upper envelope 

max ( , )e x y (resp. lower envelope min ( , )e x y ). 

3) The mean ( , )m x y  = max min[ ( , ) ( , )] 2e x y e x y+  is computed and subtracted from 

( , )S x y to obtain ( , )S x y′  = ( , )S x y - ( , )m x y . 

4) Update ( , )S x y  by ( , )S x y′ . Repeat steps 1 to 3 until the stopping criterion is met. 
This can be accomplished by limiting the size of the standard deviation, SD, 
computed from the two consecutive sifting iteration results as 

 

[ ]

[ ]

2

2

( , ) ( , )

SD .
( , )

x y

x y

S x y S x y

S x y

′ −
=



 (2) 

The sifting process will stop if SD is less than a threshold such as 0.3. The resulting ( , )S x y′ , 

denoted by 1( , )c x y , is considered as the first IMF which is locally symmetrical with respect 
to the zero plane and represents the fast fluctuating component of the pattern. The residue 

1 1( , ) ( , ) ( , )r x y I x y c x y= −  is a slower fluctuating wave, which is treated as the new input, i.e., 

1( , ) ( , )S x y r x y= . The same sifting is then applied to the new input to extract the next IMF 
and produce the next residue. Such iteration is carried out for n  iterations until no more IMFs 
can be extracted. Consequently, a representation of the original pattern is obtained: 

 
1

( , ) ( , ) ( , ).
n

j n
j

I x y c x y r x y
=

= +  (3) 

Ideally, ( , )nr x y  should stand for the background ( , )a x y , 
1

1
( , )

n

jj
c x y

−

= corresponds to 

noise ( , )n x y , whilst ( , )nc x y  represents ( , ) cos ( , )b x y x yφ . In practice, separating these 
three parts is quite challenging. On the one hand, noise is often unevenly distributed or 
submerged in the fringes with large amplitudes. The detection of maxima and minima of 
images, which is normally based on 4- and 8-connected neighbors [27, 28] or on 
morphological reconstruction [26], is very sensitive to noise. This condition leads to the 
mode-mixing problem, which is a physically un-interpretable result. That is, different 
components of signals exist in the same IMFs. Therefore, the three parts cannot be clearly 
separated by merely grouping the IMFs. On the other hand, the frequency band of background 
variation probably overlaps with that of fringes, making the decomposition unstable, which in 
turn leads to unsatisfactory results. 

In surface interpolation, the radial basis function (RBF) technique [25, 26] and the 
triangle-based cubic spline interpolation [27, 29] are two typical methods used to interpolate 
scattered data points. The former uses a global optimization-based method and has a higher 
computational cost than the latter [21], which is piecewise cubic interpolation operated locally 
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on triangles of the maxima and minima. However, neither of these methods can calculate a 
sifting process in less than a minute on a desktop personal computer. As shown in section 2.3, 
the fast implementation of envelop estimation in this study can reduce iteration time in a 
sifting process to 1 to 2s. 

It should be noted that the residue of the proposed MO-BEMD is not necessarily a 
monotonic signal. Therefore, the term “residue” used in the following refers to the rest 
component of a fringe pattern after the extraction of the IMFs which corresponds to fringes 
with zero local mean . 

2.2 MO-BEMD 

As previously mentioned, the number of IMFs and their characteristics are highly dependent 
on extrema detection methods and envelope estimation techniques in the sifting process. In 
this study, extrema are not the local maxima (minima), but are those pixels on the ridges 
(troughs) of a fringe pattern that essentially characterize the attributes of the fringes. A 
morphological operation-based strategy is devised to find the ridges (troughs) iteratively. 
Furthermore, a weighted moving average algorithm, instead of scattered-point interpolation, is 
used to estimate upper (lower) envelopes. The algorithms are illustrated in Fig. 1. The phrases 
of morphological operations are written in italic type 

 

 Upper envelope estimation Ridge detection

Noisy 
fringe 
patterns 

Noise reduction 
(if heavy) 

Top-hat transform 

Initial ridge positions  

Segmentation by EDT 

Find maximum in subregions 

Dilating and thinning  

New ridge positions  Segmentation by EDT 

Construct a coarse envelope 

Weighted moving averaging  
(implemented by the fast algorithm) 

 The estimated envelope 

Iterating 

 

Fig. 1. Flowchart of the proposed algorithms (ridges are taken as example). 

2.2.1. Ridge detection 

The ridge is considered an example for simplicity. A simulated fringe pattern shown in Fig. 
2(a) is illustrated step-by-step for easy understanding. The so-called top-hat morphological 
transformation is used to find the approximate positions of true ridges, followed by an 
iterative process to refine those positions. A top-hat transformation of ( , )I x y  is defined as 

 [ ]( , ) ( , ) ( , ) ( , ) ,IT x y I x y I x y e x y= −   (4) 

where ( , )e x y  is a structuring element valued by 0s and 1s, shaped like a flat disk with a 

radius of 2 pixels. ( , ) ( , )I x y e x y  denotes the morphological opening of image I  by e . The 

top-hat transformation suppresses all but convex and narrow surfaces of ( , )I x y . That is, the 
intensity values in the neighborhood of ridges are conserved while others are reduced to zero 
or nearly zero. ( , )IT x y  is then converted into a binary image , ( , )I binaryT x y  by simply setting 

the suppressed pixels (0 and nearly 0 valued) to 0s, while setting others (adjacent to ridges) to 
1s. As a result, the foreground of , ( , )I binaryT x y  appears as a sequence of strips distributed 

along the ridges, as shown in Fig. 2(b). The strips are further narrowed down by 
morphological thinning to the 1-valued lines with single-pixel widths, denoted by 0 ( , )R x y  
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and shown in Fig. 2(c), as the initial ridge map. Some isolated points and spikes caused by 
noise should be removed by cutting-end operation. Before showing the details of the iterative 
algorithm for finding the refined positions of the ridges, a definition of Euclidean distance 
transform (EDT), which will be used to segment 0 ( , )R x y , is provided. Suppose a binary 

image ( , )R x y . EDT is a same-sized image wherein the intensity of point ( , )x y  has the value 

 { }2 2

( , )
( , ) min ( ) ( ) ; ( , ) 1 .R s t

D x y x s y t R s t= − + − =    (5) 

EDT, which is a relatively simple concept, finds the distance of every point to the nearest 
nonzero-valued point. The distance transform is also used as a measure of the separation of 
points in the image because it associates each point with its nearest nonzero neighbor. 
Therefore, EDT can segment a binary image into subregions, each of which corresponds to a 
1-valued inside point. The iterative algorithm to refine the ridge positions is then as follows: 

1) Initialization: Let 0( , ) ( , )R x y R x y= . 

2) The EDT on ( , )R x y is performed to provide a segmentation of 
1

( , )
N

i
i

R x y r
=

=  . N  is 

the total number of 1-valued points in ( , )R x y . 

3) The local maximum in each subregion ir  is identified as the new position of the ridge 

point, which is denoted by max ( , )R x y . 

4) The morphological dilation of max ( , )R x y  is performed, followed by a thinning 

operation. A new ridge map, denoted by ( , )R x y′ , is obtained. 

5) ( , )R x y is updated by ( , )R x y′ . Steps 2 to 4 are repeated until the difference between 
the consecutive iterations is smaller than a predefined threshold. The difference is 
defined as 

 [ ( , ) ( , )],RR
x y

D R x y R x y′ ′= ⊕  (6) 

where ⊕  means exclusive-or operation. It counts the total number of the pixels whose values 
are different between two consecutive ridge maps. Step 4 ensures that continuous lines are 
obtained in each iteration as continuity is a basic assumption to fringe ridges. 

The resulting ridge map ( , )R x y′  shown in Fig. 2(c) marks the refined positions of the 

desired ridges. The threshold of RRD ′  is empirically around ten pixels, and one to three 

iterations lead to convergence. Similarly, the trough positions, denoted by ( , )T x y′ , over the 

fringe pattern can be obtained by simply setting ( , ) ( , )I x y I x y= − . 
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(a) (b) (c) 

(e) (f) (g) (h) 

(d) 

 

Fig. 2. Illustration of ridge detection and envelop estimation. (a) Simulated fringe pattern; (b) 
binary strips from the top-hat transformation; (c) the initial ridge map (red) and the refined 
ridge map (blue); (d) EDT of the refined ridge map; (e) the coarse and (f) smoothed upper 
envelopes; (g) window width distribution and (h) its histogram 

2.2.2. Envelope estimation 

The two-step process of envelope estimation involves constructing a coarse upper (resp. 
lower) envelope from ( , )R x y′  (resp. ( , )T x y′ ) and smoothing them by a weighted moving 

average algorithm. EDT is again used in this process. The EDT of ( , )R x y′ , denoted by 

( , )RD x y′ , is first calculated, as shown in Fig. 2(d). ( , )RD x y′ is used to segment ( , )R x y′  into 

subregions as 
1

( , )
N

i
i

R x y r
=

′ ′=  . N  is the total number of 1-valued pixels, i.e., ridge points, in 

( , )R x y′ . Thus, the pixels ( , )x y  in each single subregion are associated with an inside ridge 

point ( , )i ix y . Consequently, a coarse upper envelope made up of N small flat facets is 
constructed, as shown in Fig. 2(e). This can be done by assigning the intensity value of the 
ridge point in each subregion to their associated pixels. That is, 

 
if ( , ) , 1, 2,...

then ( , ) ( , ), ( , ) .

i i i

up
coarse i i i

x y r i N

E x y I x y x y r

′∈ =
′= ∀ ∈

    

          
 (7) 

Next, a weighted moving average with space-varying and data-driven window size is 
calculated to smooth ( , )up

coarseE x y . The result, which is illustrated in Fig. 2(f), can be expressed 
as 

 
[ ]2

( , )

1
( , ) ( , ),

2 ( , ) 1 xy

up up
smooth coarse

s t S

E x y E s t
L x y ∈

=
+

   (8) 

where 

 [ ]{ }( , )
( , ) round max ( , ) ; ( , ) , 1,2,... ,

i
R i

p q r
L x y a D p q x y r i N′′∈

′= ⋅ ∀ ∈ =
       

     (9) 
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and xyS  is a square window of size 2 ( , ) 1L x y + , centered at point ( , )x y . “round” means 

rounding the elements of an array to nearest integers. a  is a constant coefficient. Thus, each 
point ( , )x y  is associated with a value of ( , )L x y , as shown in Fig. 2(g). Similarly, the 
estimated lower envelope can be obtained by smoothing the coarse lower envelope. Notably, 
the smoothing process is different from usual moving average because the moving window 
width is proportional to the longest Euclidean distance of the subregion ir′  which represents 
the local scale of fringes. The adaptive smoothing operation appropriately estimates the upper 
and lower envelopes, which are eventually averaged to form the mean surface of the fringe 
pattern. 

2.3 Fast implementation 

The most time-consuming step of MO-BEMD, which normally takes several minutes per 
sifting, is the envelope estimation because the moving average is calculated point by point. In 
fact, { ( , )}L x y  is redundant and contains many identical elements. Therefore, a non-redundant 

subset can be extracted from { ( , )}L x y , denoted by 1{ }K
k kW = . This subset only has K  different 

window widths. Figure 2(h) shows an illustrative histogram of { ( , )}L x y with 18K = . Based 
on this set, point-wise moving average is replaced by K low-pass filters via convolution. The 
cut-off frequencies of the K low-pass filters are configured to be proportional to window 
widths 1{ }K

k kW = . ( , )up
coarseE x y  is sequentially smoothened by multiple low-pass filters, 

providing K  smoothed images. ( , )up
smoothE x y  can then be generated by selecting the pixel 

value in different images by the associated ( , )L x y  of each point ( , )x y . Taking Gaussian 
low-pass filter as an example, the fast implementation can be expressed as 

 ( , ) ( , ) ( , ), 1,2,...,up up
k coarse kC x y E x y H x y k K= ⊗ =   (10) 

where ( , )kH x y  is a 2D Gaussian window with a standard deviation kW  

 

2 2

22

2

1
( , ) .

2
k

x y

W
k

k

H x y e
Wπ

+−

=  (11) 

The upper envelope can be generated by 

 
1

( , ) ( , ) ( , ),
K

up up
smooth k k

k

E x y C x y M x y
=

= ⋅  (12) 

and 

 
1, if ( , )

( , ) , 1,2,..., .
0, otherwise

k
k

L x y W
M x y k K

=
= =


    
   

           
 (13) 

The computation time for a single sifting will be shortened to a few seconds because of a 
2D convolution implementation. It took less than 2 s for a 2.4 GHZ CPU laptop to calculate 
an iteration of the sifting for the illustrated fringe pattern in Fig. 2(a). 

3. Simulations 

3.1 Background removal 

Two synthesized fringe patterns are tested by the proposed MO-BEMD. One is a mixed-
carrier fringe pattern free of noise, which is tested to show the accuracy of the decomposition. 
The other is a noisy, closed fringe pattern with background variation, which is tested to 
demonstrate the sparsity of the decomposition. Both images are 512 512×  pixels and 
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processed on a laptop with a 2.4-GHz CPU. The MATLAB code is downloadable at 
http://gr.xjtu.edu.cn/web/zhouxiang. 

The first example is shown in Fig. 3(a). The fringe pattern is made up of three 
components, namely, a high carrier pattern, a low carrier pattern and a slowly varying 
background. The intensity distribution of the pattern is described as follows: 

 
1 1 1 ( , )

( , ) cos ( , ) cos ( , ) ,
8 16 2

p x y
I x y a x p x y x p x y b c

x

δπ π
δ

    = ⋅ + + + + ⋅ +        
(14) 

where a , b and c are three constants and configured to make ( , )I x y range between 0 and 

255. ( , )p x y  represents the PEAKS function in MATLAB which is obtained by translating 
and scaling Gaussian distributions. Notably, the carrier frequency ratio of the two carrier 
components is 2:1. Figures 4(a) and 4(e) demonstrate the 115th row signal and the FFT 
spectrum, respectively. Evidently, the FFT spectra of the three components are so close that a 
clear separation of them using conventional linear filters is impossible. 

Two IMFs and a residue are obtained by applying MO-BEMD to the pattern, as shown in 
Figs. 3 (b)-3(d), respectively. 

(a) (b) (c) (d)  

Fig. 3. Decomposition of a mixed-carrier fringe pattern by MO-BEMD. (a) Simulated fringe 
pattern; (b) the IMF1; (c) the IMF2 and (d) the residue 

The 115th row signals of the IMFs and residue are plotted in Figs. 4(b)-4(d) with red 
color, respectively. All retrieved signals are fairly close to the ideal component signals with 
blue color. The corresponding FFT spectra in Figs. 4(f)-4(h) show that they are clearly 
separated from each other. Each sifting process is conducted in four iterations, lasting nearly 
10s when using the fast algorithm specified in section 2.3. It can be observed that relatively 
large errors occur in the slowly varying areas of the fringe pattern. That is because the local 
frequencies of the fringes and the background overlap so much that a complete separation is 
difficult in those local areas. A quantitative evaluation is done by calculating the mean 
squared errors (MSEs) between the decomposed components and the ideal ones which are 
1.46, 3.49, and 3.18 grey levels for IMF1, IMF2 and the residue, respectively. 
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

 

Fig. 4. The 115th row signals and their spectra of the patterns shown in Fig. 3. (a) The original 
115th row signal; (b) red curve: IMF1, blue curve: the ideal high carrier component; (c) red 
curve: IMF2, blue curve: the ideal low carrier component;; (d): red curve: the residue, blue 
curve: the ideal background component.(e)-(h) the FFT spectra of the left signals 

In order to quantify the noise level, an image quality index (IQI) is introduced to the 
simulation [30]. IQI is a normalized index ranging from + 1 to −1, i.e., to signify the variation 
from best to the worst in the image quality. As shown in Fig. 5(a), the closed fringe pattern in 
the second example is contaminated by Gaussian white noise with an IQI of 0.569. The 
background intensity shown in Fig. 5(b) and the amplitude of fringes are both simulated to be 
proportional to the output of the PEAKS function in MATLAB. The analyzed pattern in this 
example should be denoised prior to MO-BEMD because heavy noise will disturb the 
detection of ridges and troughs of fringes even if the algorithm works well with small noise. 
Various methods that can be used to reduce the noise of fringe patterns include low-pass 
filters, wavelets [26], and even the powerful block-matching 3D denoising (BM3D) [31]. In 
this example, the Gaussian low-pass filter is adopted to remove high-frequency noise because 
of its simplicity. The noise-reduced pattern is shown in Fig. 5(c). MO-BEMD is then used to 
decompose the pattern. An IMF and a residue are obtained and shown in Figs. 5(d) and 5(e). 
The IMF corresponds to the recovered fringes, which are locally symmetrical to the zero 
mean plane. The residue represents the background variation that is approximately similar to 
the ideal, except for small distortions caused by the extremely low frequency of the fringes in 
the central area. 

Two conventional methods, namely, 2D discrete wavelet transform (DWT) and the 
BEMD, are tested for comparison. In the former, a db9 wavelet is chosen to decompose the 
pattern. In order to find the best representation the different coefficient combinations at 
different levels should be tried. The results shown in Figs. 5(f) and 5(g) are found to be 
relatively good. However, a cross talk between the reconstructed background and the fringes 
is still found because DWT is essentially a dyadic filter bank and cannot completely filter out 
the broad band signal as in this example. In the latter method, the BEMD reported in Ref [26] 
is adopted. This particular BEMD uses morphological reconstruction and RBF for extrema 
detection and surface interpolation. A group of decomposed IMFs and a residue are listed in 
Figs. 5(h)–5(l). Severe mode mixing can be observed in the IMFs because the fringes which 
belong to any given component are allocated to different IMFs, which causes the distortion of 
physical significance. Clearly, recovering the desired fringes by merely selecting the available 
IMFs is quite difficult. In addition, the computation time takes more than three minutes, 
which is much longer than that in MO-BEMD. 
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A quantitative evaluation is done by calculating the MSEs of the decomposed 
backgrounds shown in Figs. 5(e), 5(g) and 5(i) over the ideal one in Fig. 5(b), which are 3.12, 
4.86, and 10.32 grey levels for MO-BEMD, DWT and the BEMD, respectively. 

It is noted that a modified BEMD, called IBEMD [32], has reported similar results. 
IBEMD is based on structural extrema and trigonometric interpolation functions. Compared 
with Fig. 7 in [32], the result from MO-BEMD has fewer artifacts. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l)  

Fig. 5. Decomposition of a noisy, closed fringe pattern. (a) The simulated fringe pattern and (b) 
its background; (c) the fringe pattern denoised by a low-pass filter; (d) the IMF and (e) the 
residue by MO-BEMD; (f) the reconstructed fringes from detailed coefficients at 1 to 4 levels 
and (g) the reconstructed background from approximation coefficients at 4th level by 2D DWT 
using a db9 wavelet; (h)–(l) the four IMFs and the residue by conventional BEMD 

3.2 Influence of noise on MO-BEMD 

Since the noise level in the fringe pattern impacts the decomposition error of MO-BEMD a 
quantitative analysis is conducted in this section to establish the relationship between them. 
Different levels of Gaussian white noise are sequentially added into the ideal fringe pattern 
shown in Fig. 2(a). The MO-BEMD is performed on the noisy patterns which are 
preprocessed in three ways, namely, no noise reduction, low-pass filter and BM3D. 
Specifically, a Gaussian low-pass filter is employed by setting the standard deviation to 2 
pixels. BM3D uses the default settings in [31]. The MSEs between the decomposed residues 
and the ideal background are tested while IQI of the pattern is decreased from 1 to 0.66 with 
an interval of approximate 0.02. 

The IQI curves of the analyzed pattern after using different preprocessing schemes are 
displayed in Fig. 6(a) to show the improvements of image quality after the noise reduction. 
Three MSE curves are plotted in Fig. 6(b). It is found that the curve without noise reduction is 
close to those with noise reduction in the beginning area with the high IQIs but exhibits a 
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sharp increase outside where the IQI decreases to around 0.85. By contrast, the MSEs with 
low-pass filter and BM3D denoising increase slowly while the noise level goes up. 

(a) (b)  

Fig. 6. Error evaluation of MO-BEMD on the patterns with different noise levels. (a) The 
improvements of IQIs after image preprocessing without denoising (red), with low-pass filter 
(green) and with BM3D (blue), respectively; (b) MSEs between the ideal background and the 
residues using corresponding preprocessing schemes. 

The observation above can be explained by Fig. 7, in which four groups of images with 
four noise levels are selected and shown out of all the levels. The decompositions in the first 
and second rows are all well performed except minor difference caused by the different 
residues of the noises. However, the results without noise reduction become poor as shown in 
the last two rows of the second columns while the decompositions preprocessed by low-pass 
filter and BM3D are still stable. The reason is that heavy noise disturbs the proper detection of 
ridges and troughs in the fringe pattern and therefore causes the mode mixing problem similar 
to that with conventional BEMD. 

The quantitative evaluation above indicates that it is necessary for the fringe patterns 
contaminated by a heavy noise to be denoised before MO-BEMD is performed. Since noise 
reduction plays an important role in fringe pattern analysis there are a variety of methods 
available to the preprocessing [6, 33, 34]. Whatever method is used IQIs of denoised fringe 
patterns should reach 0.85 or above, as indicated in Fig. 6. 

3.3 Evaluation of phase recovery 

Because phase recovery is usually a follow-up study to the background removal it is 
worthwhile to evaluate the accuracy of phase recovery with MO-BEMD though it is not a 
main focus of the paper. Three phase extraction methods are compared in terms of the phase 
error map and MSE between the recovered phase and the ideal one. 

The first method uses a conventional frequency domain filtering technique [35] which 
needs a manual selection of window size and position to filter out all but the fundamental 
frequency component of FFT spectrum. The second method employs MO-BEMD to 
decompose the fringe pattern and retrieves the phase by extracting the half plane of 2D 
Fourier spectrum of the IMF. The last method further normalizes the IMF of MO-BEMD and 
then extracts the phase map by an inverse cosine function. The normalization is an iterative 
process of dividing the IMF by the envelope that can be obtained using the method in section 
2.2. 
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Without denoising Using Low-pass filter Using BM3D 
IQI=1.00 

IQI=0.94 

IQI=0.80 

IQI=0.66 

Noisy patterns 

 

Fig. 7. The decomposition results at four selected noise levels out of all levels in Fig. 6. The 
first column shows the noisy patterns at four IQIs. The next three columns contain pairs of 
IMFs and residues of MO-BEMD using different preprocessing schemes 

For convenience, the fringe pattern with the IQI equal to 0.80 in Fig. 7 is chosen as an 
example. A Hanning window with a best-performing width and position is chosen to 
implement frequency domain filtering. The phase error map is shown in Fig. 8(a). The error 
map shown in Fig. 8(b) is obtained by MO-BEMD method with the same low-pass denoising 
filter as in section 3.2. At last, the resulting IMF from MO-BEMD is further normalized to be 
1 valued in amplitude, as shown in Fig. 8(c). The phase error map is shown in Fig. 8(d). The 
MSE values of the three methods are 0.422, 0.054 and 0.051rad, respectively. Evidently, the 
accuracy of phase recovery using frequency domain filtering is much lower than that of the 
other two methods, particular in the areas with slow variation and low modulation. 

   
(a) (b) (c) (d)  

Fig. 8. The phase error comparison of different methods. The phase error maps (a) by the 
frequency domain filtering technique and (b) by the MO-BEMD method. (c) The normalized 
pattern and (d) the phase error map by the normalized method. The analyzed fringe pattern is 
the same in Fig. 7 and its IQI is equal to 0.80. 

4. Real example 

A real fringe pattern projected onto a plaster model, as exhibited in Fig. 9(a), is examined to 
verify the performance of the proposed MO-BEMD for experimental data. As a widely used 
profilometry, the fringe-projected technique projects sinusoidal fringes on object surface and 
recovers height distribution from the phase of deformed fringe patterns. Fourier transform is 
usually used to suppress zero-frequency components in the case of single-pattern projection, a 
technique known as Fourier transform profilometry [2]. The phase is retrieved by extracting 
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the component of the fundamental frequency. However, separation of the fundamental 
frequency from the zero frequency is quite challenging in many situations, and may even be 
impossible when the spectra excessively overlap as a result of complex reflectivity and 
warped surface. Consequently, measurement accuracy deteriorates seriously. In addition, 
much attention has to be paid to the manual selection of proper window size and position of 
the filter. 

MO-BEMD is applied in this example to filter out the zero-frequency components 
automatically. The pattern is decomposed by MO-BEMD after low-pass denoising. The IMF 
and residue are shown in Figs. 9(c) and 9(d), respectively. The residue is very close to the 
intensity distribution of the plaster model under white light, as shown in Fig. 9(b). To 
demonstrate that the IMF is locally symmetrical to the zero plane, the phase is retrieved by 
merely extracting the half plane of the 2D FFT spectrum of the IMF, as shown in Fig. 9(e). 

For comparison, 2D DWT, frequency domain smoothing and BEMD are utilized to 
separate the background. In the DWT, a db9 wavelet is chosen to implement a 6-level 
decomposition. The background component is reconstructed by approximation coefficients at 
the 6th level, as shown in Fig. 9(f). The second method utilizes a Gaussian window with a 
carefully selected length to separate the zero-frequency component from others in frequency 
domain. The background is then recovered by 2D inverse FFT, as shown in Fig. 9(g). 
Evidently, the results from both the DWT and the FFT have a more blurred appearance than 
the result from the MO-BEMD. It should be noted that forcing a sharper background will 
inevitably cause the background and the fringes to mix because fringes are globally broad 
band signals, and any filter with a constant band cannot completely separate different 
components everywhere in a pattern. At last, BEMD decomposes the pattern to five IMFs and 
a residue. Figures 9(h)-9(l) shows the different combinations of them, wherein 1st, 1-2nd. 1-
3rd, 1-4th, 1-5th IMFs are subtracted from the pattern, respectively. As expected, the mode 
mixing occurs and no meaningful components are obtained. 

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)  

Fig. 9. Decomposition of a projected fringe pattern on a plaster model. (a) Original fringe 
pattern; (b) the model under white light illumination; (c) the single IMF and (d) the residue by 
MO-BEMD; (e) the wrapped phase of the single IMF; (f) the reconstructed background by 
approximation coefficients at the 6th level of 2D DWT using a db9 wavelet; (g) the extracted 
background by Frequency domain filtering; (h)-(l) the results of the BEMD by subtracting 
from the pattern 1st, 1-2nd. 1-3rd, 1-4th, 1-5th IMFs, respectively. 
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5. Discussion 

5.1 Number of sifting iterations 

A key parameter of EMD is the number of iterations in a sifting process that determines when 
the iteration should be stopped. Generally, sifting can be controlled in two ways, namely, 
using the stop criterion, which was introduced in section 2.1, or using a fixed iteration 
number. However, the threshold of the stop criterion is an empirical value, and can sometimes 
cause over sifting of data [28, 29] and heavy computation. Using a fixed number of sifting 
iterations is normally a practical solution to this problem. Thus, the question of what is the 
appropriate number of iterations arises. For MO-BEMD, we examine MSE between the IMF 
and the ideal carrier component as a function of the number of iterations. Take the fringe 
pattern in Fig. 2(a) as an example. The curve of MSE against the sifting iteration number from 
1 to 15 is plotted in Fig. 10. The MSE becomes smaller when the number increases. 
Noticeably, the decay of MSE dramatically slows down after four iterations. Therefore, a 
fixed number of four iterations for most situations is chosen upon considering the balance of 
accuracy and computation time. 

 

Fig. 10. The relationship between the number of sifting iterations and MSE of the extracted 
IMF of the pattern in Fig. 2(a) 

5.2 Window size 

Window size ( , )L x y  in Eq. (9) is crucial for the weighted moving average algorithm because 
it determines the smoothness of the resulting envelopes. On the one hand, an overly large 
window size may slow down the convergence, consequently increasing the number of sifting 
iterations. On the other hand, an IMF will fail to satisfy the condition of zero local mean if the 
window size is too small. An empirical value of coefficient a  ranges from 1.2 to 1.4. 
However, a theoretical analysis should be conducted in the future. 

5.3 Extension to natural images 

Although the proposed MO-BEMD was initially intended for the analysis of fringe patterns, 
this method can also be extended to natural scene images without too much modification. The 
main difference is that the number of IMFs might not be limited to only one. Despite this, the 
algorithm still maintains the advantages of fast speed and good performance when handling 
textured images. Figures 11(a)-11(c) illustrate the decomposition of a fingerprint image, 
which is often used for testing the background removal of textures. As shown in the figure, 
uneven illumination is eliminated by separating the texture into the IMF. Detailed tests on this 
topic will be conducted in a separate paper. 
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(a) (b) (c)  

Fig. 11. Decomposition of a fingerprint image by MO-BEMD. (a) Original image; (b) the IMF; 
(c) the residue. 

6. Conclusion 

A modified BEMD, namely MO-BEMD, was proposed for background removal of fringe 
patterns. The main contributions to the conventional BEMDs are 1) the sift process employs 
morphological operations to detect the ridges and troughs of fringe patterns, and 2) the 
envelopes of the IMF are estimated by using weighted moving averaging algorithm. 

The results from the simulations and the real example indicate that both the carrier 
frequency pattern (exclude the mixed carrier pattern) and the closed pattern are successfully 
decomposed into a single IMF and a residue. One corresponds to the fringe component, and 
the other is interpreted as background variation. Manually combining the IMFs as in the 
previous BEMD techniques is not necessary. 

The comparative study shows that the local and adaptive operations provide MO-BEMD 
the ability to separate the components of fringe patterns that cannot be separated by global 
processing methods such as Fourier transform or by dyadic filter banks such as DWT. 
Moreover, no priori knowledge of parameters such as that of frequency bands and orientation 
of fringe patterns has to be known, thereby facilitating automatic processing. The manual 
intervention is much less than the conventional BEMDs. However, the preprocessing for 
noise reduction is necessary in the case of heavy noise. 

The 2D convolution-based fast algorithm was also provided to speed up the calculation. 
Sifting an image of 512 512×  pixels took a few seconds on a laptop with a 2.4-GHZ CPU. 
This method is faster than the surface interpolation-based BEMDs, which normally take at 
least several minutes. 

Acknowledgments 

This research is supported by the National Natural Science Foundation (Grant No. 51105301) 
and the National Basic Research Program (Grant No. 2011CB706805) of China. We also 
acknowledge the support from the Innovation Fund for Undergraduate Research Training and 
Practice, Xi’an Jiaotong University. 

 

#172970 - $15.00 USD Received 20 Jul 2012; revised 27 Aug 2012; accepted 9 Sep 2012; published 8 Oct 2012
(C) 2012 OSA 22 October 2012 / Vol. 20,  No. 22 / OPTICS EXPRESS  24262




