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a b s t r a c t

Critical dynamics research of recurrent neural networks (RNNs) is very meaningful in both theoretical

importance and practical significance. Due to the essential difficulty in analysis, there were only a few

contributions concerning it. In this paper, we devote to study the critical dynamics behaviors for RNNs

with general forms. By exploring some intrinsic features processed naturally by the nonlinear activation

exponential stability of RNNs under the critical conditions. The results obtained here either yield new,

or sharpen, extend or unify, to a large extent, most of the existing non-critical conclusions as well as the

latest critical results.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Recurrent neural networks (RNNs) are dynamic systems that
can be implemented by physical means, and they are mainly used
to model dynamic process associated with control process, per-
form associative memory and solve optimization problems. In the
present paper, we consider the generic continuous-time RNNs
modeled by the following nonlinear differential equation:

dyðtÞ

dt
¼�DyðtÞþWFðAyðtÞþbÞþq, y0ARN , ð1Þ

where y¼ ðy1,y2, . . . ,yNÞ
T is the neural network state, D¼

diagðd1,d2, . . . ,dNÞ is a positive matrix with each di being the state
feedback coefficients, W ¼ ðoijÞN�N is the connective weight
matrix, A is an N�N diagonal matrix, b,q are two fixed external
bias vector and F : RN-RN is the nonlinear activation mapping.

As we know, there are two fundamental models which can
summarize most of the existing RNNs specials [23], i.e., depend-
ing upon whether neural states or local fields states are taken as
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ic Research Program of China

ature Science Foundation of

arch Funds for the Central

iao),
basic variables, a RNN can frequently be classified either as a local
field neural network model or as a static neural network model.
These two basic RNNs models are extensively applied in learning,
pattern recognition, associative memory, solving optimization
problems, etc. It should be noted that by taking A¼ I and b¼~0,
model (1) corresponds the local field neural network model, and
by choosing W¼ I and q¼~0, model (1) refers to the static neural
network model. Actually, model (1) describes uniformly various
continuous-time RNNs models studied in literature, for example,
Hopfield-type neural networks, recurrent back-propagation
neural networks, mean-field neural networks, recurrent correla-
tion associative memories neural networks, bound-constraints
optimization solvers, convex optimization solvers, brain-state-in-
a-box neural networks, cellular neural networks, and so on.

The analysis of the dynamical behaviors, such as the global
convergence, asymptotic stability and exponential stability is a
first and necessary step for any practical design and application of
RNNs. In recent years, considerable efforts have been devoted to
the analysis on the stability and convergence of RNNs without
and with delay (see, e.g., the contributions of [2–4,6–8,11,13,
17,18] and the references therein). If we define

SðL,PÞ ¼LDP�1
�
LAWþðLAWÞT

2
,

where both L and P are positive definite diagonal matrices, and
W is the weight matrix of the network, then by generalizing
these existing stability results of RNNs, it should be noticed that
most of them are on the exponential stability analysis under the
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conditions that for one positive definite diagonal matrix L, SðL,LÞ is
positive definite, where L¼ diagfL1,L2, . . . ,LNg with each Li40 being
the Lipschitz constant of fi and F ¼ ðf 1,f 2, . . . ,f NÞ

T is the activation
mapping of the network. On the other hand, [18,14] have proved that
a RNN will be globally exponentially unstable if there is a positive
definite diagonal matrix L such that SðL,VÞ is negative definite,
where V ¼ diagfr1,r2, . . . ,rNg with each ri40 being the inversely
Lipschitz constant of fi (i.e., for all s,tARN , 9f iðtÞ�f iðsÞ9Zri9t�s9).
From the definitions of Lipschitz constant and inversely Lipschitz
constant, we have rirLi. For any positive definite diagonal matrix
Q ¼ diagfq1,q2, . . . ,qNg with each qi satisfying

rirqirLi, i¼ 1;2, . . . ,N,

then by using ArB to denote the condition that matrix B�A is
nonnegative definite, it is clear that in the sense of nonnegative
definition, there holds the following inequality relation:

SðL,LÞrSðL,Q ÞrSðL,VÞ,

where L is a given positive definite diagonal matrix. Since SðL,LÞ40
(i.e., SðL,LÞ is positive definite) is sufficient for the globally exponen-
tial stability of RNNs, and SðL,VÞZ0 (i.e., SðL,VÞ is nonnegative
definite) is necessary for RNNs to have globally stable dynamics, the
questions then arise: what kinds of asymptotic behavior of RNNs will
hold when SðL,LÞr0 (i.e., SðL,LÞ is negative semi-definite) and
SðL,VÞZ0? In particular, what happens in the case that SðL,Q Þ ¼ 0
(i.e., for any xARN , xT SðL,Q Þx¼ 0)? The dynamics analysis of RNNs
under such conditions is referred to as the critical dynamics analysis. It
should be remarked that it is by no means easy to conduct a
meaningful critical dynamics study for RNNs since such exploration
has essential difficult in analysis.

In comparison to the general critical condition that SðL,Q Þ ¼ 0,
SðL,LÞ ¼ 0 is the primary case of it, and a RNN is globally exponential
stability when SðL,LÞ40, so recently, special attentions have been
focused on the dynamics investigations of RNNs under the particular
critical condition that SðL,LÞZ0. Even so, it is still much more
difficult than the dynamics analysis under the non-critical condition
that SðL,LÞ40. Up to now, there are only a few critical stability and
convergence analysis of RNNs in the sense that SðL,LÞ is nonnegative
definite. For a local field neural network model with hyperbolic
tangent activation function, [4,5,12] have achieved the globally
asymptotical stability and globally exponential stability of the unique
equilibrium point of the network under some specific conditions of
SðL,LÞZ0. Ref. [24] have gotten the globally exponential stability of
a static neural network with projection operator under the condition
that I�W is nonnegative (which is a special case of SðL,LÞZ0).
Ref. [14] have proved that a local field neural network model with
Sigmoidal activation mapping has a globally attractive equilibrium
state, and when W is quasi-symmetric (i.e., there exists a positive
definite diagonal matrix D, such that DW is symmetric), then a static
neural network model with nearest point projection activation
mapping is global convergence on a region defined by the network.
For a RNN with projection activation mapping, the quasi-symmetric
requirement of W in [14] has been removed by [15], and some
further study of such RNNs has been conducted in [16].

For all that, there are still many important dynamics questions
of RNNs unsettled under the critical conditions. For example, with
what additional requirement will the Sigmoidal RNNs be globally
exponential stability when SðL,LÞZ0, and what kinds of asymp-
totical behavior will be when SðL,Q Þ ¼ 0? For a RNN with general
projection mapping, does there exist some convergence results
when SðL,LÞo0, or, under the general critical condition that
SðL,Q Þ ¼ 0? Further, for neural network with a generic activation
mapping, what asymptotic behaviors of it will be under the
critical conditions that SðL,LÞZ0, or further, SðL,Q Þ ¼ 0? All these
are under our current investigation.
In the current paper, we devote to answer the question that what
dynamics behavior will happen for RNNs when SðL,LÞZ0.
By exploring some intrinsic features processed naturally by nonlinear
activation mappings, e.g., the decreasing anti-monotone as well as
the uniformly anti-monotone properties, and by applying the energy
function method, it is shown that a RNN has a unique equilibrium
state and which is globally asymptotically stable if there exists a
positive definite diagonal matrix L, such that SðL,LÞ is nonnegative
definite. What is more important, based on matrix measure theory,
we get that a RNN is globally exponentially stable under the
conditions that one matrix (which is defined by the network and is
very similar to SðL,LÞ) is positive definite at the unique equilibrium
state. The results obtained here sharpen and generalize, to a large
extent, most of the existing non-critical conclusions (see,
e.g.,[1–3,6–8,10,11,13,17,18,22,23] and the references quoted there)
as well as the latest critical results given by [4,5,12,14,24]. Further-
more, they can provide a wider application range for RNNs and can
be applied directly to many concrete RNN models, e.g., the well-
known recurrent back-propagation neural networks, Hopfield-type
neural networks, recurrent correlation associative memories with
exponential activation mapping, etc.
2. Preliminaries

In the present investigation, we denote by RN the N-dimen-
sional real vector space with norm J � J. Given any N � N matrix A,
let AT be its transpose, sðAÞ be its spectral set (i.e., all eigenvalues
of A), JAJ and mðAÞ be its matrix norm and matrix measure that
are, respectively, defined by

JAJ¼ sup
JxJ ¼ 1

JAxJ and mðAÞ ¼ lim
l-0þ

JIþlAJ�1

l
,

where I is the identity matrix. Use aðAÞ ¼maxfRe l : lAsðAÞg to
denote the maximum abscissa of sðAÞ. Associated with a mapping
F, denoted by DðFÞ and RðFÞ its domain and range, respectively. F is
said to be diagonally nonlinear if F is defined componentwise by

FðxÞ ¼ ðf 1ðx1Þ,f 2ðx2Þ, . . . ,f NðxNÞÞ
T ,

where each fi is a one-dimensional nonlinear function. Assume
that fi is Lipschitz continuous. Li, the minimum Lipschitz constant of
fi, is defined as follows

Li ¼ sup
t,sAR,ta s

9f iðtÞ�f iðsÞ9
9t�s9

: ð2Þ

Without loss of generality, through out this paper, we let
L¼ diagfL1,L2, . . . ,LNg and assume that each Li40. The equili-
brium state set of system (1) is denoted by O.

Definition 1 (Qiao et al. [18]). F is said to be b-uniformly
anti-monotone (b-UAM) if there is a positive constant b40, such

that for any x,yADðFÞ, it satisfies

:FðxÞ�FðyÞ:2rb �/FðxÞ�FðyÞ,x�yS: ð3Þ

Obviously, a b-UAM mapping is a monotone mapping.

Definition 2. For a given point xnADðFÞ, F is called CF-decreasing
anti-monotone (CF-DAM) at xn, if there exists a constant CF 40
and a monotonically decreasing function bxn : ½0,þ1Þ-ð0,CF �

which attains its maximum only at zero (i.e., bxn ðtÞ ¼ CF if and
only if t¼0), such that

JFðxÞ�FðxnÞJ2rbxn ðJx�xnJÞ �/FðxÞ�FðxnÞ,x�xnS, 8xADðFÞ:

Definition 3. For a given point xnADðFÞ, F is called diagonally CF-
decreasing anti-monotone (diagonally CF-DAM) at xn, if it is
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diagonally nonlinear, and there exists a positive matrix
CF ¼ diagfCf 1

,Cf 2
, . . . ,Cf N

g such that each fi is Cf i
-DAM at xn

i .

Remark 1. Many typical activation mappings naturally process
the decreasing anti-monotone property, e.g., Sigmoidal mappings
[14, Lemma 1], the nearest point projection mappings, etc. The
following example shows the DAM property possessed by 1-D
nearest point projection. Consider:

f ðxÞ ¼ 1
2ð9xþ19�9x�19Þ:

Define:

bxn ðtÞ ¼
2ð1�t

2Þ, 0rtr1,
1
t , t41:

(

Let xn ¼ 0 and Cf¼2. Obviously, bxn : ½0,þ1Þ-ð0,Cf � is monotoni-
cally decreasing and satisfies bxn ð0Þ ¼ Cf . Further, for any t40,
bxn ðtÞAð0,Cf Þ holds always. This is, f is Cf-DAM.

In fact, the RNNs whose activation mappings owning the

decreasing anti-monotone property are very usual, and the typical

models include: Hopfield-type neural networks, recurrent

back-propagation neural networks, bidirectional associative

memory neural networks, bound-constraints optimization neural

networks, brain-state-in-a-box /domain type neural networks,

cellular neural networks and so on. All these RNNs models have

been widely applied in various fields of science and engineering.

3. Main results

The following lemma gives the globally asymptotic stable result
of network (1). To begin with, it should be noted that network (1)
has at least one equilibrium state. In fact, when RðFÞ is bounded,
the operator G defined by GðyÞ ¼D�1

ðyþWFðAy þbÞþqÞ is com-
pact. Hence, by the well-known Brouwer fixed point theorem, G

has at least one fixed point; that is, network (1) has at least one
equilibrium state yn. If we can prove that any trajectory of (1) will
converge to yn as t-þ1, then, by the arbitrariness of yn and the
boundedness of RðFÞ, it follows that yn is the unique equilibrium
state of (1) and it is globally asymptotically stable.

Lemma 1. Suppose that A¼ diagfa1,a2, . . . ,aNg, fi is continuous and

strictly monotonically increasing, RðFÞ is bounded. Let L¼

diagfL1,L2, . . . ,LNg, where each Li is the minimum Lipschitz constant

of fi, and ynAO. If F is diagonal L-DAM at xnð:¼ Ayn
þbÞ, then yn is the

unique equilibrium state of network (1), and it is globally asympto-

tically stable whenever there is a positive definite diagonal matrix

L¼ diagfl1,l2, . . . ,lNg such that

SðL,LÞ ¼LDL�1
�
LAWþðLAWÞT

2
ð4Þ

is nonnegative definite.

Proof. The main object of the proof is to show that any trajectory
of (1) converges to yn as t-þ1.

First, by the assumption that F is diagonal L-DAM at xn, we have

F is diagonally nonlinear and there exist monotonically decreas-

ing functions bxn

i
: ½0,þ1Þ-ð0,Li� (i¼ 1;2, . . . ,N) satisfying

bxn

i
ðtÞAð0,LiÞ for all t40, bxn

i
ð0Þ ¼ Li and

9f iðsÞ�f iðx
n

i Þ9
2rbxn

i
ð9s�xn

i 9Þ �/f iðsÞ�f iðx
n

i Þ,s�xn

i S, 8sADðf iÞ:

Define

EðyðtÞÞ ¼
XN

i ¼ 1

li

Z aiyiðtÞþbi

aiy
n

i
þbi

ðf iðsÞ�f iðaiy
n

i þbiÞÞ ds, ð5Þ
then

dEðyðtÞÞ

dt
¼
XN

i ¼ 1

liðf iðaiyiðtÞþbiÞ�f iðaiy
n

i þbiÞÞai

dðyiðtÞ�yn

i Þ

dt

¼/LAðFðAyðtÞþbÞ�FðAyn
þbÞÞ,�DðyðtÞ�ynÞ

þWðFðAyðtÞþbÞ�FðAyn
þbÞÞS: ð6Þ

Let Bxn ¼ diagfbxn

1
ð9x1ðtÞ�xn

19Þ,bxn

2
ð9x2ðtÞ�xn

29Þ, . . . ,bxn

N
ð9xNðtÞ�xn

N9Þg,
where xðtÞ ¼ AyðtÞþb. Since SðL,LÞ is nonnegative definite, thus

from (6), we have

dEðyðtÞÞ

dt
¼�/FðxðtÞÞ�FðxnÞ,LDðxðtÞ�xnÞS

þðFðxðtÞÞ�FðxnÞÞ
TLDL�1

ðFðxðtÞÞ�FðxnÞÞ

�ðFðxðtÞÞ�FðxnÞÞ
T SðL,LÞðFðxðtÞÞ�FðxnÞÞ

r�/FðxðtÞÞ�FðxnÞ,LDB�1
xn ðFðxðtÞÞ�FðxnÞÞS

þðFðxðtÞÞ�FðxnÞÞ
TLDL�1

ðFðxðtÞÞ�FðxnÞÞ

�ðFðxðtÞÞ�FðxnÞÞ
T SðL,LÞðFðxðtÞÞ�FðxnÞÞ

r�/FðxðtÞÞ�FðxnÞ,LDðB�1
xn �L�1

ÞðFðxðtÞÞ�FðxnÞÞS: ð7Þ

By the definition of Bxn , it follows that EðyðtÞÞ is monotonically

decreasing and limt-þ1EðyðtÞÞ exists since EðyðtÞÞ is nonnegative

(which can be deduced from Lemma 3 in [15] directly). In

addition, we will show that the limit of EðyðtÞÞ equals to 0. If we

can prove that there is a subsequence ftng such that

limn-þ1JFðxðtnÞÞ�FðxnÞJ¼ 0, then from the boundedness of x(t),

we may assume that there exists a subsequence ftnk
g of ftng such

that limk-þ1xðtnk
Þ ¼ limk-þ1ðAyðtnk

ÞþbÞ :¼ sn, and by the con-

tinuity of F, we have FðxnÞ ¼ FðsnÞ. Hence xn ¼ sn because of the

strictly increasing property of each fi. From (5), one know

limk-þ1Eðyðtnk
ÞÞ ¼ 0, and combining with the result that

limt-þ1EðyðtÞÞ exists, implies that limt-þ1EðyðtÞÞ ¼ 0. Applying

Lemma 3 in [15] to (5), we have

EðyðtÞÞZ
XN

i ¼ 1

li

2Li
ðf iðaiyiðtÞþbiÞ�f iðaiy

n

i þbiÞÞ
2
¼
XN

i ¼ 1

li

2Li
ðf iðxiðtÞÞ�f iðx

n

i ÞÞ
2:

Thus

0¼ lim
t-þ1

EðyðtÞÞZ2�1r lim sup
t-þ1

JFðxðtÞÞ�FðxnÞJ2
Z0,

in which r¼min1r irNfliL
�1
i g40. Consequently,

lim
t-þ1

JFðxðtÞÞ�FðxnÞJ¼ 0: ð8Þ

On the other hand, we know that y(t), as a trajectory of (1),

solves the following integral equation:

yðtÞ�yn ¼ e�ðt�t0ÞDðy0�ynÞþ

Z t

t0

e�ðt�sÞD �WðFðxðsÞÞ�FðxnÞÞ ds:

Obviously, it holds that

JyðtÞ�ynJre�ðt�t0ÞdminJy0�ynJþ

Z t

t0

e�ðt�sÞdminJWJ � JFðxðsÞÞ�FðxnÞJ ds,

ð9Þ

in which dmin ¼min1r irNfdig. By (8), for any e40, there is a

Te40 such that, whenever tZTe,

JFðxðtÞÞ�FðxnÞJr
e � dmin

JWJ
:

Therefore, we conclude from (9) that JyðtÞ�ynJoe�ðt�t0Þdmin

Jy0�ynJþe, when t4t0ZTe. Letting t-þ1 in the above inequality

yields limt-þ1JyðtÞ�ynJoe, which then implies limt-þ1yðtÞ ¼ yn
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since e is arbitrary. That is, when t-þ1, any trajectory of (1)

converges to yn.

Now to complete the proof. We need to verify that there exists a

subsequence ftng such that limn-þ1JFðxðtnÞÞ�FðxnÞJ¼ 0.

Obviously, if for all iAf1;2, . . . ,Ng,

lim inf
t-þ1

9f iðxiðtÞÞ�f iðx
n

i Þ9¼ 0, ð10Þ

then the above proposition holds clearly. In what follows, we will

show the correctness of (10).

If (10) were not true for some i0Af1;2, . . . ,Ng, then there would

be two positive constants t0 and Y, such that

9f i0
ðxi0 ðtÞÞ�f i0

ðxn

i0
Þ9ZY, ð11Þ

whenever tZt0. This, combined with the definition of minimum

Lipschitz constant of f i0
and the monotonically decreasing prop-

erty of bxn

i0

, leads to the fact that for any tZt0, 9xi0 ðtÞ�xn

i0
9ZY� L�1

i0
,

and further, bxn

i0

ð9xi0 ðtÞ�xn

i0
9Þrbxn

i0

ðY � L�1
i0
Þ. Thus, by (7), we have

dEðyðtÞÞ

dt
r�li0 di0 ðb

�1
xn

i0

ð9xi0 ðtÞ�xn

i0
9Þ�L�1

i0
Þ9f i0
ðxi0 ðtÞÞ�f i0

ðxn

i0
Þ92

r�li0 di0 ðb
�1
xn

i0

ðY � L�1
i0
Þ�L�1

i0
Þ9f i0
ðxi0 ðtÞÞ�f i0

ðxn

i0
Þ92
:

Since limt-þ1EðyðtÞÞ exists and b�1
xn

i0

ðY � L�1
i0
Þ4L�1

i0
, when integrate

both side of the above inequality from t0 to þ1, it can be

deduced that

lim
t-þ1

EðyðtÞÞ�Eðyðt0ÞÞr�li0
di0 ðb

�1
xn

i0

ðY � L�1
i0
Þ�L�1

i0
Þ

Z þ1
t0

9f i0
ðxi0 ðtÞÞ�f i0

ðxn

i0
Þ92

dt

r�li0 di0 ðb
�1
xn

i0

ðY � L�1
i0
Þ�L�1

i0
ÞY2

Z þ1
t0

dt: ð12Þ

The left side of (12) is a constant, while the right side of it

approaches to �1, which is a contradiction. The result of (10) is

thus proved. This completes the proof of the lemma. &

Based on Lemma 1, we further give the globally exponential
stability conclusion of network (1). In what follows, when the
nonlinear activation mapping F(x) is locally continuously differ-
entiable at xn, then F 0ðxÞ9x ¼ xn , the derivative of F(x) at xn, is
denoted by F 0ðxnÞ.

Theorem 1. Assume that A¼ diagfa1,a2, . . . ,aNg, RðFÞ is bounded

and ynAO. Let L¼ diagfL1,L2, . . . ,LNg with each Li being the mini-

mum Lipschitz constant of fi. If F is diagonal L-DAM at xnð:¼ Ayn
þbÞ

and locally continuously differentiable at xn, each fi is continuous and

strictly monotonically increasing, then yn is the unique equilibrium

state of network (1) and it is globally exponentially stable if there

exist two positive definite diagonal matrices G and L, such that

SðG,LÞ ¼GDL�1
�GAWþðGAWÞT=2 is nonnegative definite and

KðL,F 0ðxnÞÞ ¼LDðF 0ðxnÞÞ
�1
�LWAþðLWAÞT=2 is positive definite.

Proof. Note first that F 0ðxnÞ is a positive definite diagonal matrix
since F is diagonal nonlinear and each fi is strictly monotonically
increasing.

By Lemma 1, we already known that network (1) has a unique

equilibrium state yn, and it is globally asymptotically stable on RN

when SðG,LÞZ0, F is diagonal L-DAM at xn with RðFÞ being

bounded, and each fi is continuous and strictly monotonically

increasing. Thus, we only need to show yn is ultimately globally

exponentially stable under the assumption that KðL,F 0ðxnÞÞ is

positive definite and F is locally continuously differentiable at

xn. This is equivalent to justify the unique equilibrium state of the

following network:

L
dyðtÞ

dt
¼�LDyðtÞþLWFðAyðtÞþbÞþLq, y0ARN , ð13Þ
i.e., yn, is globally exponentially stable, where L is the chosen

diagonal matrix with which matrix KðL,F 0ðxnÞÞ is positive definite.

Define T : RN-RN by

TðyÞ ¼�LDyþLWFðAyþbÞþLq:

Obviously, T is locally continuously differentiable at yn. Let T 0ðynÞ be

the derivative of T(y) at yn. According to the theory developed

recently in [21], we only need to justify aðT 0ðynÞÞo0, and then, the

globally exponential stability of network (1) can be verified. Since A

and F 0ðxnÞ all are diagonal matrices, a direct calculation gives that

aðT 0ðynÞÞ ¼ að�LDþLWF 0ðxnÞAÞ ¼ að�LDþLWAF 0ðxnÞÞ:

Next, we will show that að�LDþLWAF 0ðxnÞÞo0 when

KðL,F 0ðxnÞÞ40. Let ~K ðL,F 0ðxnÞÞ ¼�KðL,F 0ðxnÞÞ. By the positive defi-

nition assumption of KðL,F 0ðxnÞÞ, it follows that lð ~K ðL,F 0ðxnÞÞÞ, the

eigenvalues of ~K ðL,F 0ðxnÞÞ, all are negative, namely,

lð ~K ðL,F 0ðxnÞÞÞ ¼ l �LDðF 0ðxnÞÞ
�1
þ
LWAþðLWAÞT

2

 !

¼ l
ð�LDðF 0ðxnÞÞ

�1
þLWAÞþð�LDðF 0ðxnÞÞ

�1
þLWAÞT

2

 !
:

o0 : ð14Þ

For any real matrix MN�N , m2ðMÞ, the matrix measure induced by

the 2-norm JxJ2 :¼ ð
PN

i ¼ 1 9xi9
2
Þ
1=2, is defined as

m2ðMÞ ¼ lim
r-0þ

JIþrMJ2�1

r
,

and it has the property m2ðMÞ ¼maxiliððMþMT
Þ=2Þ: When all the

eigenvalues of ðMþMT
Þ=2 are negative, we know m2ðMÞo0. Thus,

by (14), we have m2ð�LDðF 0ðxnÞÞ
�1
þLWAÞo0, i.e.,

m2ðð�LDþLWAF0ðxnÞÞF 0ðxnÞ
�1
Þo0:

Let H¼ ðhijÞN�N :¼ �LDþLWAF 0ðxnÞ and U¼ diagfg1,g2, . . . ,gNg

:¼ F 0ðxnÞ
�1, then m2ðHUÞo0. Define U1=2

¼ diagfg1=2
1 ,g1=2

2 , . . . ,g1=2
N g.

Denote by mU the matrix measure induced by the vector norm

JxJU ¼ JU�1=2xJ2, one can get that

mUðHÞ ¼ lim
r-0þ

JIþrHJU�1

r

¼ lim
r-0þ

supJxJU ¼ 1JðIþrHÞxJU�1

r

¼ lim
r-0þ

sup
JU�1=2xJ2 ¼ 1JU

�1=2
ðIþrHÞxJ2�1

r

¼ lim
r-0þ

sup
JU�1=2xJ2 ¼ 1JU

�1=2
ðIþrHU1=2U�1=2

ÞxJ2�1

r

¼ lim
r-0þ

sup
JU�1=2xJ2 ¼ 1JðIþrU

�1=2HU1=2
ÞðU�1=2xÞJ2�1

r

¼
y:¼U�

1
2x

lim
r-0þ

supJyJ2 ¼ 1JðIþrU
�1=2HU1=2

ÞyJ2�1

r

¼ lim
r-0þ

JIþrU�1=2HU1=2J2�1

r
¼ m2ðU

�1=2HU1=2
Þ

¼ 1
2lmaxðU�1=2HU1=2

þU1=2HTU�1=2
Þ

¼ 1
2lmaxðU1=2

ðU�1HUþHT
ÞU�1=2

Þ: ð15Þ

In accordance with the fact that for any N�N matrix M and any

invertible matrix PN�N , the eigenvalues of PAP�1 are equal to that

of A, it can be deduced from (15) that

mUðHÞ ¼
1
2 lmaxðU�1HUþHT

Þ ¼ 1
2lmaxðU�1

ðHUþðHUÞT ÞÞ: ð16Þ
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We now prove that when MN�N is a Hermite matrix and BN�N is

a positive definite diagonal matrix, then

lmaxðB
�1MÞ ¼max

xa0

xT Mx

xT Bx
:

Since for any invertible matrix Q, PðQPÞP�1
¼ PQ , thus

lðQPÞ ¼ lðPQ Þ. By the definition of Rayleigh quotient, it follows

that

lmaxðB
�1MÞ ¼ lmaxðB

�1=2B�1=2MÞ ¼ lmaxðB
�1=2
ðB�1=2MÞÞ

¼ lmaxðB
�1=2MB�1=2

Þ ¼max
ya0

yT ðB�1=2MB�1=2
Þy

yT y

¼
x9B�1=2y

max
xa0

xT Mx

xT Bx
: ð17Þ

By (16) and (17) and the fact that maxxa0xT ðHUþðHUÞT Þxo0

(which is deduced by m2ðHUÞo0), we have

mUðHÞ ¼
1

2
max
xa0

xT ðHUþðHUÞT Þx
xTUx

r
1

2
max
xa0

xT ðHUþðHUÞT Þx �min
xa0

xTU�1xo0: ð18Þ

On noting that for any real matrix B,

aðBÞ ¼ inf
J�JAC

mðBÞ,

where C denotes the set of all equivalent norm of J � J [19,20],

then

aðHÞ ¼ að�LDþLWAF 0ðxnÞÞo0:

This completes the proof of Theorem 1. &

The following corollary replaces verifying the positive defi-
niteness of matrix KðL,F 0ðxnÞÞ with certifying the relationship of
two matrices defined by the network in the sense of component-
wise comparison, and it is more available for applications.
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Fig. 1. Transient behaviors of RNN in netw
Corollary 1. Consider network (1) with A¼ I. Assume that RðFÞ is

bounded and ynAO. Let L¼ diagfL1,L2, . . . ,LNg with each Li being the

minimum Lipschitz constant of fi. If F is diagonal L-DAM at xnð:¼
Ayn
þbÞ and locally continuously differentiable at xn, every fi is

continuous and strictly monotonically increasing, then yn is the

unique equilibrium state of network (1), and it is globally exponen-

tially stable if L4F 0ðxnÞ in the sense of componentwise comparison

and there exists a positive definite diagonal matrix G, such that

SðG,LÞ ¼GDL�1
�ðGAWþðGAWÞT Þ=2 is nonnegative definite.

Proof. It is obvious that SðG,LÞ ¼ KðG,LÞwhen A¼ I, and if L4F 0ðxnÞ

in the sense of componentwise comparison, then the nonnegative
definiteness of SðG,LÞ implies the positive definiteness of
KðG,F 0ðxnÞÞ. Thus, Corollary 1 follows from Theorem 1 directly. &

Remark 2. Lemma 1, Theorem 1 and Corollary 1 give some
definite answers to the problem that what kinds of dynamics
behavior will be for network (1) under the critical conditions. In
addition, as the special cases of network (1), the two basic RNN
models: local field neural network model and static neural net-
work model, are extensively applied in learning, pattern recogni-
tion, associative memory, solving optimization problems, etc.
The applicability and efficiency of such applications crucially
hinge upon their dynamics, and therefore the analysis of dyna-
mical behaviors of such two networks becomes imperative
(actually is a first step) for any practical design and application
of the networks. Due to their intrinsic difficulty, these two RNN
models have been fallen short of a generic, in-depth theoretical
analysis under the critical conditions. While, by Lemma 1,
Theorem 1 and Corollary 1, we can easily provide the correspond-
ing dynamic results for them and the results are original. Either
Lemma 1, Theorem 1 and Corollary 1, or the results achieved for
local field neural network model and static neural network model
can not only sharpen and extend most of the existing non-critical
conclusions, but also generalize, the latest critical results for
RNNs, see, e.g., [1–8,10–14,17,18,22–24].
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4. Illustrative example

In what follows, we provide an illustrative example to demon-
strate the validity of the critical dynamics results formulated in
Section 3. Consider the following Hopfield-type RNN:

dy1ðtÞ
dt ¼�y1ðtÞþ f 1ðy1ðtÞÞþ3f 2ðy2ðtÞÞ�ð4þ ln 3Þ,

dy2ðtÞ
dt ¼�y2ðtÞ�f 1ðy1ðtÞÞþ0:2f 2ðy2ðtÞÞþ0:8�ln 3,

8<
: ð19Þ

where f iðsÞ ¼ ð4=ð1þe�sÞÞ (i¼1,2).

In this example, D¼ A¼ I, W ¼ ð 1
�1

3
0:2Þ, b¼~0, q¼ ð�4

0:8
�ln 3
�ln 3Þ,

each Li ¼ 1 and the equilibrium state set is Oe ¼ fð�ln 3,�ln 3ÞTg.
For any positive definite diagonal matrix G, it is easy to verify

that GL�1
�ðGWþWTGÞ=2 is not positive definite, so almost all of

the exponential stability conclusions of such kind of RNN are not
suitable here, see, e.g., [9,18,23]. Meanwhile, by the results
established in [14], one can only get the globally attractive
conclusions of network (19), and, it is easy to verify that the
critically exponentially stable conditions used in [3] do not
satisfied for this example. We will show Theorem 1 established
in Section 3 can be applied here to achieve the globally exponen-
tial stability for network (19).

By choosing G¼ diagf1;3g, we have

GL�1
�
GWþWTG

2
Z0:

On the other hand, for yn ¼ ð�ln 3,�ln 3ÞT AOe, we know

xn ¼ Ayn
þb¼ ð�ln 3,�ln 3ÞT and further, F 0ðxnÞ ¼ ð

3
4
0

0
3
4

Þ. It follows

that

GF 0ðxnÞ
�1
�
GWþWTG

2
40:

Meanwhile, by the definition of fi, it is clear that each fi is
continuous and strictly monotonically increasing, F is locally
continuously differentiable at yn. Since fi is sigmoidal, then by
Remark 1, it is Li-DAM. That is, the conditions in Theorem 1 all
hold. According to Corollary 1, network (19) is globally exponen-
tially stable. The following Fig. 1 depicts the time responses of
state variables of the network with random initial points, which
can confirm that the proposed conditions in Theorem 1 ensure the
globally exponential stability of RNNs.
5. Conclusion

In this work, we have developed the critical stability theory of
RNNs with general forms. Based on exploring some intrinsic
properties of the networks, and by using the energy function
method and matrix measure theory, it is shown that a RNN with
decreasing anti-monotone activation mapping has a unique
equilibrium state and which is globally asymptotically stable
under the critical conditions. Further, the RNN is globally expo-
nentially stable under the conditions that a discriminant matrix
determined by the network is positive definite at the unique
equilibrium state. The obtained critical dynamics results extend
directly the existing non-critical conclusions without adding any
further requirements, and at the same time, they generalize
almost all of the critical conclusions. The achieved conclusions
can not only provide a wider application range for RNNs, but also
can be applied directly to many concrete RNN models.
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