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Critical dynamics research of recurrent neural networks (RNNs) is very meaningful in both theoretical
importance and practical significance. Due to the essential difficulty in analysis, there were only a few
contributions concerning it. In this paper, we devote to study the critical dynamics behaviors for RNNs
with general forms. By exploring some intrinsic features processed naturally by the nonlinear activation
mappings of RNNs, and by using matrix measure theory, new criteria are found to ascertain the globally
exponential stability of RNNs under the critical conditions. The results obtained here either yield new,
or sharpen, extend or unify, to a large extent, most of the existing non-critical conclusions as well as the
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1. Introduction

Recurrent neural networks (RNNs) are dynamic systems that
can be implemented by physical means, and they are mainly used
to model dynamic process associated with control process, per-
form associative memory and solve optimization problems. In the
present paper, we consider the generic continuous-time RNNs
modeled by the following nonlinear differential equation:

% = —Dy(t)+ WFAy(t)+b)+q, yo€ RN, @))
where y=(y{,¥2 ...,.yy)] is the neural network state, D=
diag(dy,d,, .. .,dy) is a positive matrix with each d; being the state
feedback coefficients, W =(wj)y,.n is the connective weight
matrix, A is an N x N diagonal matrix, b,q are two fixed external
bias vector and F : RN - RN is the nonlinear activation mapping.

As we know, there are two fundamental models which can
summarize most of the existing RNNs specials [23], i.e., depend-
ing upon whether neural states or local fields states are taken as
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basic variables, a RNN can frequently be classified either as a local
field neural network model or as a static neural network model.
These two basic RNNs models are extensively applied in learning,
pattern recognition, associative memory, solving optimization
problems, etc. It should be noted that by taking A=I and b=0,
model (1) corresponds the local field neural network model, and
by choosing W=I and q =0, model (1) refers to the static neural
network model. Actually, model (1) describes uniformly various
continuous-time RNNs models studied in literature, for example,
Hopfield-type neural networks, recurrent back-propagation
neural networks, mean-field neural networks, recurrent correla-
tion associative memories neural networks, bound-constraints
optimization solvers, convex optimization solvers, brain-state-in-
a-box neural networks, cellular neural networks, and so on.

The analysis of the dynamical behaviors, such as the global
convergence, asymptotic stability and exponential stability is a
first and necessary step for any practical design and application of
RNNs. In recent years, considerable efforts have been devoted to
the analysis on the stability and convergence of RNNs without
and with delay (see, e.g., the contributions of [2-4,6-8,11,13,
17,18] and the references therein). If we define

AAW + (AAW)T
-
where both A and P are positive definite diagonal matrices, and
W is the weight matrix of the network, then by generalizing
these existing stability results of RNNs, it should be noticed that
most of them are on the exponential stability analysis under the

S(A,P)=ADP~ ' —
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conditions that for one positive definite diagonal matrix A, S(A,L) is
positive definite, where L = diag{L,,L,, ...,Ly} with each L; > 0 being
the Lipschitz constant of f; and F = (f.f5,....fy) is the activation
mapping of the network. On the other hand, [18,14] have proved that
a RNN will be globally exponentially unstable if there is a positive
definite diagonal matrix A such that S(A,V) is negative definite,
where V =diag{rq,r3,...,ry} with each r; >0 being the inversely
Lipschitz constant of f; (i.e., for all s,te RN, |fi(©)—fi(s)| =ri[t—s|).
From the definitions of Lipschitz constant and inversely Lipschitz
constant, we have r; <L;. For any positive definite diagonal matrix
Q =diag{q,,q>, . ..,qy} With each g; satisfying

risqisL,», i=1,2,...,N,

then by using A <B to denote the condition that matrix B—A is
nonnegative definite, it is clear that in the sense of nonnegative
definition, there holds the following inequality relation:

S(A,L) <5(A4,Q) < 5(A,V),

where A is a given positive definite diagonal matrix. Since S(A,L) > 0
(i.e., S(A,L) is positive definite) is sufficient for the globally exponen-
tial stability of RNNs, and S(A4,V)>0 (i.e. S(4,V) is nonnegative
definite) is necessary for RNNs to have globally stable dynamics, the
questions then arise: what kinds of asymptotic behavior of RNNs will
hold when S(A,L)<0 (ie., S(A,L) is negative semi-definite) and
S(A,V) = 0? In particular, what happens in the case that S(4,Q)=0
(i.e., for any x e RN, xTS(A,Q)x = 0)? The dynamics analysis of RNNs
under such conditions is referred to as the critical dynamics analysis. It
should be remarked that it is by no means easy to conduct a
meaningful critical dynamics study for RNNs since such exploration
has essential difficult in analysis.

In comparison to the general critical condition that S(4,Q)=0,
S(A,L) =0 is the primary case of it, and a RNN is globally exponential
stability when S(A,L) > 0, so recently, special attentions have been
focused on the dynamics investigations of RNNs under the particular
critical condition that S(A,L) > 0. Even so, it is still much more
difficult than the dynamics analysis under the non-critical condition
that S(A,L) > 0. Up to now, there are only a few critical stability and
convergence analysis of RNNs in the sense that S(,L) is nonnegative
definite. For a local field neural network model with hyperbolic
tangent activation function, [4,5,12] have achieved the globally
asymptotical stability and globally exponential stability of the unique
equilibrium point of the network under some specific conditions of
S(A,L) > 0. Ref. [24] have gotten the globally exponential stability of
a static neural network with projection operator under the condition
that [-W is nonnegative (which is a special case of S(A,L) > 0).
Ref. [14] have proved that a local field neural network model with
Sigmoidal activation mapping has a globally attractive equilibrium
state, and when W is quasi-symmetric (i.e., there exists a positive
definite diagonal matrix D, such that DW is symmetric), then a static
neural network model with nearest point projection activation
mapping is global convergence on a region defined by the network.
For a RNN with projection activation mapping, the quasi-symmetric
requirement of W in [14] has been removed by [15], and some
further study of such RNNs has been conducted in [16].

For all that, there are still many important dynamics questions
of RNNs unsettled under the critical conditions. For example, with
what additional requirement will the Sigmoidal RNNs be globally
exponential stability when S(A,L) > 0, and what kinds of asymp-
totical behavior will be when S(A,Q) = 0? For a RNN with general
projection mapping, does there exist some convergence results
when S(A,L) <0, or, under the general critical condition that
S(A,Q) = 0? Further, for neural network with a generic activation
mapping, what asymptotic behaviors of it will be under the
critical conditions that S(A,L) > 0, or further, S(A,Q) = 0? All these
are under our current investigation.

In the current paper, we devote to answer the question that what
dynamics behavior will happen for RNNs when S(A,L)>0.
By exploring some intrinsic features processed naturally by nonlinear
activation mappings, e.g., the decreasing anti-monotone as well as
the uniformly anti-monotone properties, and by applying the energy
function method, it is shown that a RNN has a unique equilibrium
state and which is globally asymptotically stable if there exists a
positive definite diagonal matrix A, such that S(A,L) is nonnegative
definite. What is more important, based on matrix measure theory,
we get that a RNN is globally exponentially stable under the
conditions that one matrix (which is defined by the network and is
very similar to S(A,L)) is positive definite at the unique equilibrium
state. The results obtained here sharpen and generalize, to a large
extent, most of the existing non-critical conclusions (see,
e.g.,[1-3,6-8,10,11,13,17,18,22,23] and the references quoted there)
as well as the latest critical results given by [4,5,12,14,24]. Further-
more, they can provide a wider application range for RNNs and can
be applied directly to many concrete RNN models, e.g., the well-
known recurrent back-propagation neural networks, Hopfield-type
neural networks, recurrent correlation associative memories with
exponential activation mapping, etc.

2. Preliminaries

In the present investigation, we denote by RN the N-dimen-
sional real vector space with norm Il - Il. Given any N x N matrix A,
let AT be its transpose, ¢(A) be its spectral set (i.e., all eigenvalues
of A), IAIl and u(A) be its matrix norm and matrix measure that
are, respectively, defined by

I+ 7Al-1

A ’
where [ is the identity matrix. Use o(A) = max{Re 1: 1e d(A)} to
denote the maximum abscissa of g(A). Associated with a mapping

F, denoted by D(F) and R(F) its domain and range, respectively. F is
said to be diagonally nonlinear if F is defined componentwise by

FX) = (f1(x1).f2(X2), ... [y

where each f; is a one-dimensional nonlinear function. Assume
that f; is Lipschitz continuous. L;, the minimum Lipschitz constant of
f;, is defined as follows

Ifi()—fi(5)]
t=s|

Al = sup IIAxI

lIxlh=1

and uA)= Alir(1)1+

(2)

Li= sup

tseR,t#S
Without loss of generality, through out this paper, we let
L=diag{L,,L,, ...,Ly} and assume that each L; > 0. The equili-
brium state set of system (1) is denoted by .

Definition 1 (Qiao et al. [18]). F is said to be f-uniformly
anti-monotone (f-UAM) if there is a positive constant f > 0, such
that for any x,y € D(F), it satisfies

|Fo—F) | < B- <FR)—~F)x—y>. A3)

Obviously, a f~-UAM mapping is a monotone mapping.

Definition 2. For a given point x* € D(F), F is called C~decreasing
anti-monotone (C~-DAM) at x*, if there exists a constant Cr >0
and a monotonically decreasing function pf,. : [0, +o00)—(0,Cf]
which attains its maximum only at zero (i.e., f,+(t) = Cr if and
only if t=0), such that

IF)—F)2 < B(lx—x*1) - {F(X)—F(x*),x—x*>, V¥x e D(F).

Definition 3. For a given point x* e D(F), F is called diagonally Cg-
decreasing anti-monotone (diagonally C~DAM) at x* if it is
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diagonally nonlinear, and there exists a positive matrix
Cr =diag{C;, ,Cy,, ...,Cy,} such that each f; is Cr,-DAM at x;'.

Remark 1. Many typical activation mappings naturally process
the decreasing anti-monotone property, e.g., Sigmoidal mappings
[14, Lemma 1], the nearest point projection mappings, etc. The
following example shows the DAM property possessed by 1-D
nearest point projection. Consider:

fxy=3(x+1|=|x=1]).
Define:

2(1-Y, 0<t<«1,
ﬁx*a):{ :

1
+ t>1.

Let x* =0 and Gr=2. Obviously, f,. : [0,40c0)—(0,C;] is monotoni-
cally decreasing and satisfies f3,:(0) = Cy. Further, for any t >0,
Py (t) € (0,Cy) holds always. This is, f is C~DAM.

In fact, the RNNs whose activation mappings owning the
decreasing anti-monotone property are very usual, and the typical
models include: Hopfield-type neural networks, recurrent
back-propagation neural networks, bidirectional associative
memory neural networks, bound-constraints optimization neural
networks, brain-state-in-a-box /domain type neural networks,
cellular neural networks and so on. All these RNNs models have
been widely applied in various fields of science and engineering.

3. Main results

The following lemma gives the globally asymptotic stable result
of network (1). To begin with, it should be noted that network (1)
has at least one equilibrium state. In fact, when R(F) is bounded,
the operator G defined by G(y)=D"'(y+WF(Ay +b)+q) is com-
pact. Hence, by the well-known Brouwer fixed point theorem, G
has at least one fixed point; that is, network (1) has at least one
equilibrium state y*. If we can prove that any trajectory of (1) will
converge to y* as t— 4 oo, then, by the arbitrariness of y* and the
boundedness of R(F), it follows that y* is the unique equilibrium
state of (1) and it is globally asymptotically stable.

Lemma 1. Suppose that A = diag{a;,a,, .. .,an}, f; is continuous and
strictly monotonically increasing, R(F) is bounded. Let L=
diag{L,,L,, ...,Ln}, where each L; is the minimum Lipschitz constant
of f;, and y* € Q. If F is diagonal L-DAM at x*(:= Ay*+b), then y* is the
unique equilibrium state of network (1), and it is globally asympto-
tically stable whenever there is a positive definite diagonal matrix
A =diag{21,22, ...,An} such that

_AAW 4 (AAW)'

S(A,L)=ADL™! 5 “4)

is nonnegative definite.

Proof. The main object of the proof is to show that any trajectory
of (1) converges to y* as t— +oo.

First, by the assumption that F is diagonal L-DAM at x*, we have
F is diagonally nonlinear and there exist monotonically decreas-
ing functions f,. :[0,4+00)—(0,L;] (i=1,2,...,N) satisfying
B (D)€ (O.L;) for all £ >0, f,(0)=L; and

Fi©)=FiD|* < Bel|s—x:)) - <Fi9—fi0)s—xF >, Vs eD(f).

Define

N
By =>4 [
i=1 a;

a;y;i(t)+b;
(fi(s)—fi(aiyF +by)) ds, (5)

yi+b;

then
dE N
(gt(t)) =Y Alfiay (O +b)—fi(ay; +bp)a;
i=1
= (AA(F(Ay(t)+b)—F(Ay* +b)),—D(y(t)-y*)
+W(F(Ay(t)+b)—F(Ay* +b))>. (6)
Let Bx* = dlag{ﬁx’;(‘xl (t)_XT ‘)vﬁxé(‘XZ(t)_xz |)v s 'ﬁx‘;\‘/(‘xN(t)_X;fj )}.
where x(t) = Ay(t)+b. Since S(A,L) is nonnegative definite, thus
from (6), we have

IO _ ¢ Fx(t)—Fox), ADGx(t)-x")>

dyi(H-y)H)
dt

+(F(x(£)—F(x*))T ADL™" (F(x(£)—F(x*))
—(F(£)—F(xX*)"S(A,L)(F(x(£)—F(x*))
< — (F(x()—F(x*), ADB.! (Fx(£)—F(x*)) >
+ (F(x(t)—F(x*))" ADL™" (F(x(t))—F(x*))
—(Fx(t))—F(x*)) S(A,L)(F(x(t)—F(x*))
< — (F(x(0)—F(x*), ADBy! =L~ )(Fx(£)—F(x*)) > 7
By the definition of By, it follows that E(y(t)) is monotonically
decreasing and lim¢_, , . E(y(t)) exists since E(y(t)) is nonnegative
(which can be deduced from Lemma 3 in [15] directly). In
addition, we will show that the limit of E(y(t)) equals to 0. If we
can prove that there is a subsequence {t,} such that
limy, 4 o lIF(x(tn))—F(x*)Il = 0, then from the boundedness of x(t),
we may assume that there exists a subsequence {t,,} of {t,} such
that limy_, | ooX(ty,) =limy_, ; (Ay(tn,)+b) :=s* and by the con-
tinuity of F, we have F(x*)=F(s*). Hence x* =s* because of the
strictly increasing property of each f. From (5), one know
limy_, ; o E((ty))=0, and combining with the result that
lim;_, ; E(y(t)) exists, implies that lim;_, . E(y(t)) =0. Applying
Lemma 3 in [15] to (5), we have
N A N A
E(y(t) = 2Z—L’i(fi<aiyi<t)+bi>ffi(aiy7+b,->>2 = lz—ii(fi<xi(r>)fff<x?‘)>2.

Thus
0= lim E(y(0) = 2717 lim suplF(x(t))—F(x*)I > 0,
-t t— 400

in which r=min; ;. N{iiLﬂ} > 0. Consequently,
Jim IFG(t)—F(x*)Il = 0. ®)

On the other hand, we know that y(t), as a trajectory of (1),
solves the following integral equation:

ot
YO—y* = e Dy _yy ¢ / €90 . W(F(x(s))—F(x*) ds.

Obviously, it holds that
ot
Iy(H)—y*Il < e=Etmin |y —y*|| 4 / e~ E=SMmin |WI| . IIF(x(s))—F(x*)Il ds,
to
9

in which d;;; = min; _; < n{d;}. By (8), for any ¢ >0, there is a
T. > 0 such that, whenever t > T,

% & dmin
IF(x(t))—F(x™)Il < Wi

Therefore, we conclude from (9) that ly(t)—y*Il < e~ (=to)dmn
lyo—y*Il+¢&, when t > ty > T,. Letting t — + oo in the above inequality
yields lim;_, ; o lly(t)—y*I < ¢, which then implies lim;_, , ,,y(t) = y*
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since ¢ is arbitrary. That is, when t— +oco, any trajectory of (1)
converges to y*.

Now to complete the proof. We need to verify that there exists a
subsequence {t;,} such that limy,_ ,lIF(x(ty))—Fx*)I =0.
Obviously, if for all ie {1,2, ..., N3,

lim inflf,(x,(0)~f ()] =0, (10)

then the above proposition holds clearly. In what follows, we will
show the correctness of (10).

If (10) were not true for some i € {1, 2, ...,N}, then there would
be two positive constants to and ¢, such that

i &ip () —f3,(X5)| = 0, amn

whenever t > ty. This, combined with the definition of minimum
Lipschitz constant of f; and the monotonically decreasing prop-
erty of ﬁxf , leads to the fact that for any t > tg, \x,'o(t)—x}’; | > p- L,-;l,
and further, ﬁxro(\x,-u(t)—xj‘ h< ﬁxfu(g) . L,-‘Ol). Thus, by (7), we have

dE(y(t _
P < i B %05 =L DIF 6 O)=F, 65

< —z,»odm(ﬁ;;:(go L D=L D[y i () ()|

Since lim,_. , E(y(1)) exists and B (¢ - L") > L;.!, when integrate
both side of the above inequalify from to to +oo, it can be
deduced that

+oo
Jim E((0)—E(/(to) < —iydiy (B! (9 - L D=L, /t iy i (0)=Fi, (x5 *de

<~ dy (B0 Lo [ e (12)
o Jto
The left side of (12) is a constant, while the right side of it
approaches to —oco, which is a contradiction. The result of (10) is
thus proved. This completes the proof of the lemma. O

Based on Lemma 1, we further give the globally exponential
stability conclusion of network (1). In what follows, when the
nonlinear activation mapping F(x) is locally continuously differ-
entiable at x* then F'(x)| the derivative of F(x) at x* is
denoted by F'(x*).

X =x*

Theorem 1. Assume that A =diag{a,,a,,...,ay}, R(F) is bounded
and y* € Q. Let L=diag{L,,L,, ...,Ly} with each L; being the mini-
mum Lipschitz constant of f;. If F is diagonal L-DAM at x*(:= Ay* +b)
and locally continuously differentiable at x*, each f; is continuous and
strictly monotonically increasing, then y* is the unique equilibrium
state of network (1) and it is globally exponentially stable if there
exist two positive definite diagonal matrices I' and A, such that
S(I''Ly=I'DL™'—TAW +(I'AW)" /2 is nonnegative definite and
K(A,F (x*)) = AD(F'(x*)) "' = AWA +(AWA)T /2 is positive definite.

Proof. Note first that F'(x*) is a positive definite diagonal matrix
since F is diagonal nonlinear and each f; is strictly monotonically
increasing.

By Lemma 1, we already known that network (1) has a unique
equilibrium state y* and it is globally asymptotically stable on RN
when S(I''L) >0, F is diagonal L-DAM at x* with R(F) being
bounded, and each f; is continuous and strictly monotonically
increasing. Thus, we only need to show y* is ultimately globally
exponentially stable under the assumption that K(A,F'(x*)) is
positive definite and F is locally continuously differentiable at
x*. This is equivalent to justify the unique equilibrium state of the
following network:

A% = —ADy(t) + AWFAy(t)+ b)+Aq, yoeRN, (13)

i.e., y* is globally exponentially stable, where A is the chosen
diagonal matrix with which matrix K(A,F'(x*)) is positive definite.
Define T : RN RN by

T(y) = —ADy+ AWF(Ay+b)+ Aq.

Obviously, T is locally continuously differentiable at y*. Let T'(y*) be
the derivative of T(y) at y*. According to the theory developed
recently in [21], we only need to justify o(T'(y*)) <0, and then, the
globally exponential stability of network (1) can be verified. Since A
and F'(x*) all are diagonal matrices, a direct calculation gives that

ouT' (y*)) = o(—AD + AWF'(x*)A) = ou(— AD + AWAF' (x*)).

Next, we will show that o(—AD+AWAF (x*))<0 when
K(A,F (x*)) > 0. Let K(A,F'(x*)) = —K(A,F (x*)). By the positive defi-
nition assumption of K(A,F (x*)), it follows that A(K(A,F (x*))), the
eigenvalues of K(A,F'(x*)), all are negative, namely,

T
AR (AF (%)) = A <—AD(F’(X*))1 + W)

_ ((—AD(F’(X*))‘l + AWA)+ (—AD(F (x*)) ™! +AWA)T>
= 5 .
<0. 14)
For any real matrix Myxn, U,(M), the matrix measure induced by
the 2-norm Iixl, = (XN, [x]*)'2, is defined as
1 (M) = li% H1+pM\I2—1’
p—

and it has the property z,(M) = max;;(M+MT)/2). When all the
eigenvalues of (M+MT)/2 are negative, we know u,(M) < 0. Thus,
by (14), we have p,(—AD(F'(x*))"1 + AWA) <0, i.e.,

Uy (—AD + AWAF (x*))F (x*)"1) < 0.

Let H=(hj)y,n = —AD+AWAF'(x*) and Y=diag(y,ys....Vn}
N | A2 g 1/2,1/2 1/2
=F(x*)™", then u,(HY) <0. Define Y"/* =diag{y,’",y,’",....v4}-
Denote by p, the matrix measure induced by the vector norm
lIxlly=11Y"12xll,, one can get that

ot = lim I+ pHI y—1
p—

SUPjy, — 1 1T+ pH)XIH—1

= lim
p—07" P
~1/2
— lim SUP, 124, | 72U+ pH)XI 1
p—07" P
~1/2 A/2y~1/2
i SUP, 12, _ 4 I Y204+ pHY 2 Y )il 1
p—0* P
. SUP 172y 71“(1+p)’”UZHYUZ)(TI/ZX)“z—]
= lim 2=
p—0* p
y::;'%x lim SUPiylz =1 Id+p Y 2HY )yl —1
p—-0~" 1Y
~1/2194/2)
- lim I+ pY V2HY2I, 1:;12()”/2HY1/2)
p—07 P
= D (Y V2HY2 4 Y 2HT Y172
= D P2 T HY - HD Y12y, (15)

In accordance with the fact that for any N x N matrix M and any
invertible matrix Pyxy, the eigenvalues of PAP~! are equal to that
of A, it can be deduced from (15) that

P H) =1 2o (Y THY+HT) = Lo Y (HY+(HY))). (16)
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We now prove that when My, is a Hermite matrix and By,y is
a positive definite diagonal matrix, then
T

1 . X' Mx
s B M) =3

Since for any invertible matrix Q P(QP)P~'=PQ, thus
A(QP) = A(PQ). By the definition of Rayleigh quotient, it follows
that

Zmax(B™'M) = Amax(B™/?B1>M) = Amax(B~/*(B~1/2M))

y'(B2MB 1y

= Amax(B~1*MB~1/?) = max
Amax( ) V0 yTy
x2B12y xTMx
= A NBx arn

By (16) and (17) and the fact that maxy,ox"(HY+HY)x <0
(which is deduced by u,(HY) <0), we have

T T
1y (H) = %maxx (HY+HY) x
X

#0 xTYx
< 1 max x"(HY+HY)x - minx" Y 1x < 0. (18)
2x#0 x#0
On noting that for any real matrix B,
a(B)= inf u(B),
IIle ¥
where ¥ denotes the set of all equivalent norm of Il - Il [19,20],

then
o(H) = o(— AD + AWAF (x*)) < 0.
This completes the proof of Theorem 1. O

The following corollary replaces verifying the positive defi-
niteness of matrix K(A,F (x*)) with certifying the relationship of
two matrices defined by the network in the sense of component-
wise comparison, and it is more available for applications.

a
7
6 \\ -1
\ Y2
51
;‘\1 \
o 4 \\
c \
© 3
= \
2 \
b\
0 5 10 15
t
C
5
0 - // T —
. |/
= /
he) /
c /
& -10 |/
= /
-15 —V1
/ - Y2
-20
0 5 10 15

t

Corollary 1. Consider network (1) with A=I. Assume that R(F) is
bounded and y* € Q. Let L = diag{L,,L, ...,Ly} with each L; being the
minimum Lipschitz constant of f;. If F is diagonal L-DAM at x*(:=
Ay*+b) and locally continuously differentiable at x*, every f; is
continuous and strictly monotonically increasing, then y* is the
unique equilibrium state of network (1), and it is globally exponen-
tially stable if L > F'(x*) in the sense of componentwise comparison
and there exists a positive definite diagonal matrix I', such that
S(I',Ly=I'DL~'—(FAW +(I'AW)T) /2 is nonnegative definite.

Proof. It is obvious that S(I',L) = K(I',L) when A=I, and if L > F'(x*)
in the sense of componentwise comparison, then the nonnegative
definiteness of S(I',L) implies the positive definiteness of
K(I',F'(x*)). Thus, Corollary 1 follows from Theorem 1 directly. O

Remark 2. Lemma 1, Theorem 1 and Corollary 1 give some
definite answers to the problem that what kinds of dynamics
behavior will be for network (1) under the critical conditions. In
addition, as the special cases of network (1), the two basic RNN
models: local field neural network model and static neural net-
work model, are extensively applied in learning, pattern recogni-
tion, associative memory, solving optimization problems, etc.
The applicability and efficiency of such applications crucially
hinge upon their dynamics, and therefore the analysis of dyna-
mical behaviors of such two networks becomes imperative
(actually is a first step) for any practical design and application
of the networks. Due to their intrinsic difficulty, these two RNN
models have been fallen short of a generic, in-depth theoretical
analysis under the critical conditions. While, by Lemma 1,
Theorem 1 and Corollary 1, we can easily provide the correspond-
ing dynamic results for them and the results are original. Either
Lemma 1, Theorem 1 and Corollary 1, or the results achieved for
local field neural network model and static neural network model
can not only sharpen and extend most of the existing non-critical
conclusions, but also generalize, the latest critical results for
RNNs, see, e.g., [1-8,10-14,17,18,22-24].
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Fig. 1. Transient behaviors of RNN in network (19) with random initial points.
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4. Illustrative example

In what follows, we provide an illustrative example to demon-
strate the validity of the critical dynamics results formulated in
Section 3. Consider the following Hopfield-type RNN:

WOy, (O)+f 101 (0)+3f2(12(0))—(4+1n 3),
Y20 — _y, (6)—f1 (1 (D) +0.2f 5(y5(t)) +0.8—In 3,

where f;(s)=(4/(1+e7%)) (i=1,2).

In this example, D=A=1, W=(!, 2), b=0, q=(3 -3,
each L; =1 and the equilibrium state set is Q. = {(—In 3,—In 3)7}.

For any positive definite diagonal matrix I, it is easy to verify
that I'L™'—('W+WT'T)/2 is not positive definite, so almost all of
the exponential stability conclusions of such kind of RNN are not
suitable here, see, e.g., [9,18,23]. Meanwhile, by the results
established in [14], one can only get the globally attractive
conclusions of network (19), and, it is easy to verify that the
critically exponentially stable conditions used in [3] do not
satisfied for this example. We will show Theorem 1 established
in Section 3 can be applied here to achieve the globally exponen-
tial stability for network (19).

By choosing I' = diag{1, 3}, we have

T'w+w'r
——F=>0.
2
On the other hand, for y*=(—In3,-In3)"eQ., we know

(19)

rr!

3
x*=Ay*+b=(-In3,-In3)" and further, Fx*)=@ 9. It follows
7
that

T'w+w'r
e

Meanwhile, by the definition of f;, it is clear that each f; is
continuous and strictly monotonically increasing, F is locally
continuously differentiable at y*. Since f; is sigmoidal, then by
Remark 1, it is L;-DAM. That is, the conditions in Theorem 1 all
hold. According to Corollary 1, network (19) is globally exponen-
tially stable. The following Fig. 1 depicts the time responses of
state variables of the network with random initial points, which
can confirm that the proposed conditions in Theorem 1 ensure the
globally exponential stability of RNNs.

T'F(x*~! > 0.

5. Conclusion

In this work, we have developed the critical stability theory of
RNNs with general forms. Based on exploring some intrinsic
properties of the networks, and by using the energy function
method and matrix measure theory, it is shown that a RNN with
decreasing anti-monotone activation mapping has a unique
equilibrium state and which is globally asymptotically stable
under the critical conditions. Further, the RNN is globally expo-
nentially stable under the conditions that a discriminant matrix
determined by the network is positive definite at the unique
equilibrium state. The obtained critical dynamics results extend
directly the existing non-critical conclusions without adding any
further requirements, and at the same time, they generalize
almost all of the critical conclusions. The achieved conclusions
can not only provide a wider application range for RNNs, but also
can be applied directly to many concrete RNN models.
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