
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 202.117.51.44

This content was downloaded on 24/10/2016 at 02:39

Please note that terms and conditions apply.

You may also be interested in:

Inverse Modeling: Functional analytic tools

G Nakamura and R Potthast

MAP estimators for piecewise continuous inversion

M M Dunlop and A M Stuart

A TV-Gaussian prior for infinite-dimensional Bayesian inverse problems and its numerical

implementations

Zhewei Yao, Zixi Hu and Jinglai Li

Inverse problems with Poisson data: statistical regularization theory, applications and algorithms

Thorsten Hohage and Frank Werner

An inverse time-dependent source problem for a time-fractional diffusion equation

T Wei, X L Li and Y S Li

Regularization strategy for an inverse problem for a 1 + 1 dimensional wave equation

Jussi Korpela, Matti Lassas and Lauri Oksanen

Reconstruction of two constant coefficients in linear anisotropic diffusion model

Gianluca Mola, Noboru Okazawa and Tomomi Yokota

Bayesian approach to inverse problems for functions with a variable-index Besov prior

View the table of contents for this issue, or go to the journal homepage for more

2016 Inverse Problems 32 085006

(http://iopscience.iop.org/0266-5611/32/8/085006)

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/book/978-0-7503-1218-9/chapter/bk978-0-7503-1218-9ch2
http://iopscience.iop.org/article/10.1088/0266-5611/32/10/105003
http://iopscience.iop.org/article/10.1088/0266-5611/32/7/075006
http://iopscience.iop.org/article/10.1088/0266-5611/32/7/075006
http://iopscience.iop.org/article/10.1088/0266-5611/32/9/093001
http://iopscience.iop.org/article/10.1088/0266-5611/32/8/085003
http://iopscience.iop.org/article/10.1088/0266-5611/32/6/065001
http://iopscience.iop.org/article/10.1088/0266-5611/32/11/115016
http://iopscience.iop.org/0266-5611/32/8
http://iopscience.iop.org/0266-5611
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Bayesian approach to inverse problems for
functions with a variable-index Besov prior

Junxiong Jia1, Jigen Peng1 and Jinghuai Gao2

1Department of Mathematics, Xi’an Jiaotong University, Xi’an 710049, Peopleʼs
Republic of China; Beijing Center for Mathematics and Information Interdisciplinary
Sciences (BCMIIS)
2 School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an
710049, Peopleʼs Republic of China; Beijing Center for Mathematics and Information
Interdisciplinary Sciences (BCMIIS)

E-mail: jjx323@xjtu.edu.cn, jgpeng@xjtu.edu.cn and jhgao@xjtu.edu.cn

Received 16 August 2015, revised 1 March 2016
Accepted for publication 31 May 2016
Published 23 June 2016

Abstract
The Bayesian approach has been adopted to solve inverse problems that
reconstruct a function from noisy observations. Prior measures play a key role in
the Bayesian method. Hence, many probability measures have been proposed,
among which total variation (TV) is a well-known prior measure that can
preserve sharp edges. However, it has two drawbacks, the staircasing effect and
a lack of the discretization-invariant property. The variable-index TV prior has
been proposed and analyzed in the area of image analysis for the former, and the
Besov prior has been employed recently for the latter. To overcome both issues
together, in this paper, we present a variable-index Besov prior measure, which
is a non-Gaussian measure. Some useful properties of this new prior measure
have been proven for functions defined on a torus. We have also generalized
Bayesian inverse theory in infinite dimensions for our new setting. Finally, this
theory has been applied to integer- and fractional-order backward diffusion
problems. To the best of our knowledge, this is the first time that the Bayesian
approach has been used for the fractional-order backward diffusion problem,
which provides an opportunity to quantify its uncertainties.

Keywords: Bayesian inverse problems, fractional-order backward diffusion,
variable Besov prior

1. Introduction

Inverse problems are defined, as the term itself indicates, as the inverse of direct or forward
problems. For forward problems, partial differential equations are useful tools for modeling
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real-world physical systems. The outcome of some measurements can be predicted by spe-
cifying the coefficients in partial differential equations (e.g., sound velocity in the acoustic
wave equation). Inverse problems aim to reconstruct the coefficients from some measure-
ments of the solutions of partial differential equations. The forward model described using
partial differential equations usually has a unique solution, while the inverse problem does not
[40]. In order to overcome the issue of non-uniqueness, some form of regularization is
required to ameliorate ill-posed behavior.

Regularization techniques are useful tools that produce a reasonable estimate of quan-
tities of interest based on the data available. Studies on regularization techniques have a long
history, dating back to A. N. Tikhonov in 1963 [42]. For a function u, Tikhonov regular-
ization usually has the form  u

L
2

2 or  u
L
2

2, which penalizes the L2 norm of the function or
the gradient of the function. It is well known that Tikhonov regularization always leads to
over-smoothing, and therefore, total variation (TV) regularization has been proposed in [37].
The TV penalty has gained increasing popularity because it can preserve important details
such as the edges of the image. In 1997, Blomgren, Chan, Mulet and Wong [3] noticed that
TV restoration typically exhibits ‘blockiness’, or a ‘staircasing’ effect, where the restored
image comprises piecewise flat regions. Therefore, they proposed a regularization term as
follows:

ò 
W

u xd , 1.1p u∣ ∣ ( )( )

where p monotonically decreases from 2, when  =u 0∣ ∣ , to 1, as  ¥u∣ ∣ . However, it is
difficult to study (1.1) mathematically because the lower semi-continuity of (1.1) is not
readily evident. Later in 2006, Chen, Levine and Rao [4] proposed another kind of variable-
index TV norm, using which they also constructed complete mathematical theories for the
variational model. In 2014, Tiirola [41] used a variable-index TV norm and variable-index
Besov regularization terms in image decomposition problems.

However, regularization techniques cannot be used for uncertainty analysis. Statistical
inversion theory reformulates inverse problems as problems of statistical inference using
Bayesian statistics. Dating back to 1970, Franklin [14] formulated PDE inverse problems in
terms of Bayes’ formula on some Hilbert space X. Franklin derived a regularization using the
Bayesian approach and obtained the relation between regularization techniques and the
Bayesian approach. Recently, Lasanen [26–29] developed a fully nonlinear theory. Cotter,
Dashti Robinson, Stuart, Law and Voss [5, 9, 39] established a mathematical framework for a
range of inverse problems for functions, given noisy observations. They revealed the rela-
tionship between regularization techniques and the Bayesian framework, and estimated the
error of finite-dimensional approximate solutions. Based on this framework, Cotter, Roberts,
Stuart and White [6] developed faster MCMC algorithms.

We now state the relationship between TV regularization and the Bayesian approach.
Solving an optimization problem with regularization terms (e.g., Tikhonov regularization, TV
regularization) could sometimes be seen as acquiring the maximum point of the posterior
probability measure [5, 21]. Under the Bayesian framework, except for the maximum point,
Bayesian conditional mean estimates can provide us valuable information. In [31], Lassas and
Siltanen found that TV regularization does not have the discretization-invariant property.
More specifically, Bayesian conditional mean estimates for the TV prior distribution are not
edge-preserving with very fine discretizations of the model space. In order to overcome this
deficiency, Lassas, Saksman and S. Siltanen [30] proposed the Besov prior B1,1

1 which has the
discretization-invariant property. Dashti, Harris and Stuart [8] studied the Besov prior under
the mathematical framework established in [5]. Under this framework, the Besov prior
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naturally has the discretization-invariant property because the framework is originally built on
infinite-dimensional space.

Considering the Besov and TV regularization techniques and Bayes’ inverse theory,
variable-index Besov prior theory does not seem to be available. As mentioned before,
variable-index TV and Besov regularization terms have been used in image analysis and
yielded good performance [41]. In this paper, we attempt to build a variable-index Besov
prior and generalize Bayes’ inverse theory by using this new prior probability measure. In
section 5, we apply our theory to integer-order backward diffusion problems and fractional-
order backward diffusion problems.

The main contributions of this paper are as follows:

1. We construct a variable-index Besov prior using wavelet characterization of the variable-
index Besov space and prove a Fernique-like result [7] for the variable-index Besov
prior.

2. Based on the variable-index Besov prior, we generalize the results in [39] to build Bayes’
inverse theory. Under the same conditions for the forward operator, we also prove the
convergence of variational problems using the variable-index Besov regularization term.

3. Although there are many studies on inverse problems for fractional diffusion equations
[44, 45], the number of studies on fractional-order backward diffusion problems under
the Bayes’ inverse framework is limited. Using our theory, we prove that a posterior
measure exists as well as the continuity of the posterior measure with respect to the data
for integer- and fractional-order backward diffusion problems.

The contents of this paper are organized as follows. In section 2, some basic knowledge
on the variable-index space is presented, and the wavelet characterization of the variable-
index Besov space on a periodic domain is proved. In section 3, we first construct the
variable-index Besov prior and prove a Fernique-like theorem. Second, we generalize
Bayesian inverse theory to our variable-index Besov prior setting. In section 4, under the
same conditions as in section 3 for the forward problem, we prove that the variational
problem with the variable-index Besov regularization term converges. In section 5, our theory
is applied to integer- and fractional-order backward diffusion problems. In the last section, we
provide some technical lemmas, and for the readerʼs convenience, we list some of the useful
theorems and lemmas used in our paper.

2. Variable-order space and wavelet characterization

In this section, we provide a short introduction to space of variable smoothness and integr-
ability on a periodic domain and then prove a wavelet characterization of the variable-index
Besov space on the periodic domain.

2.1. Modular spaces

Definition 2.1. [11] Let X be a vector space over  or . A function r  ¥X: 0,[ ] is
semimodular on X if the following properties hold:

1. r =0 0( ) .
2. r l r=f f( ) ( ) for all Îf X and l = 1∣ ∣ .
3. r l =f 0( ) for all l > 0 implies f = 0.
4. l r l f( ) is left continuous on ¥0,[ ) for every Îf X .
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A semimodular ρ is modular if

4. r =f 0( ) implies f = 0.

A semimodular ρ is continuous if

5. for every Îf X , the mapping l r l f( ) is continuous on ¥0,[ ).

A semimodular ρ can be additionally qualified by the term convex, which means, as
usual, that

r q q qr q r+ - + -f g f g1 1 ,( ( ) ) ( ) ( ) ( )

for all Îf g X, .
Once we have a semimodular in place, we obtain a normed space in the standard way:

Definition 2.2. [11] If r is (semi)modular on X , then

l r lÎ $ > < ¥rX x X x: 0,≔ { ( ) }

is called a (semi)modular space.

Theorem 2.3. [11] Let r be a convex semimodular on X . Then, rX is a normed space with
the Luxemburg norm given by

⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭l r
l

>r x xinf 0 :
1

1 .≔

2.2. Spaces with variable integrability

The variable exponents that we consider are always measurable functions on an n-dimen-
sional torus n with the range ¥1,[ ). We denote the set of such functions by  . We denote

=+
Îp p xesssupx n ( ) and =-

Îp p xessinfx n ( ). The function jp is defined as follows:

⎧
⎨⎪
⎩⎪

j =
Î ¥
= ¥

¥ = ¥ >
t

t p
p t
p t

, if 0, ,
0, if and 1,

, if and 1.
p

p

( )
( )

The convention =¥1 0 is adopted so that jp is left continuous. We now write t p instead of
j tp ( ). The variable-exponent modular is defined by

òr f f x xd .L
p x

p
n

( ) ≔ ∣ ( )∣ ( )(·)

The variable-exponent Lebesgue space L p (·) and its norm  f p (·) are defined by the modular,
as explained in the previous subsection.

We say that  g : n is locally log-Hölder continuous, abbreviated as Îg C n
loc
log ( ),

if there exists >c 0 such that

-
+ -

g x g y
c

e x ylog 1
∣ ( ) ( )∣

( ∣ ∣)

for all Îx y, n. We say that g is globally log-Hölder continuous, abbreviated as Îg Clog, if
it is locally log-Hölder continuous and there exists Î¥g such that

Inverse Problems 32 (2016) 085006 J Jia et al

4



-
+¥g x g

c

e xlog
∣ ( ) ∣

( ∣ ∣)

for all Îx n. The notation  log is used for the variable exponents Îp with Î C ;
p

1 log that

is to say,    < ¥- +p p x p1 ( ) and
p

1 is globally log-Hölder continuous.

2.3. Variable-index Besov space

Before we introduce the variable-index Besov space, we require the following definition of a
mixed Lebesgue-sequence space.

Definition 2.4. [1] Let Îp q, . The mixed Lebesgue-sequence space ℓ Lq p( )(·) (·) is defined
on sequences of L p (·)-functions by the modular

år l r l>f finf 0 1 .ℓ L v v
v

v L v vq p p
q

1{ }({ } ) ≔ ∣ ( )( )(·) (·) (·)
(·)

As usual, we denote the Fourier transform of a distribution or a function f as  f( ) or f̂ .
We denote the inverse Fourier transform of a distribution or a function f as f . Similar to the
constant-index case, we require the following definition of admissible functions.

Definition 2.5. [1] We say that a pair j F,( ) is admissible if j F Î, satisfy

•   j x xÌ Îsupp : 1 2 2nˆ { ∣ ∣ } and j x >c 0∣ ˆ ( )∣ when  x3 5 5 3∣ ∣ ,
•  x xF Ì Îsupp : 2nˆ { ∣ ∣ } and xF >c 0∣ ˆ ( )∣ when x 5 3∣ ∣ .

We set j jx x2 2v
vn v( ) ≔ ( ) for Îv and j Fx x0 ( ) ≔ ( ). Denote as  the Schwartz

function space and as ¢ the tempered distribution that is the dual space of  . Then, the
variable-index Besov space in our setting can be defined as follows.

Definition 2.6. [1] Letjv be defined as in definition 2.5. For  a : n and Îp q, , the
variable-index Besov space aBp q,(·) (·)

(·) consists of all distributions Î ¢f such that

j * < ¥aa   f f2 .B
v

v v ℓ L
p q

q p
,

≔ ( )(·)
( )(·) (·)

(·) (·) (·)

In the above definition, j * f xv ( ) can be simplified as


å p j p p

Î
a m2 2 e

m

n
m v

m x2 i2

n

( ) ˆ ( ) ·

with = å p
Îf x a em m

m xi2
n( ) · . For detailed information on the periodic space, we refer to

chapter 1 in [43].
In the case of p = q, we use the notation a aB Bq p q,≔(·)

(·)
(·) (·)
(·) . We can also associate the

following modular with the Besov space:

r r j *aa f2 ,b ℓ L
v

v v
p q

q p
,

≔ (( ) )( )
(·)

(·) (·)
(·) (·) (·)

which can be used to define the norm. For the readerʼs convenience, we also list the definition
of the variable-index Triebel–Lizorkin space aFp q,(·) (·)

(·) .
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Definition 2.7. [12] Let jv,  ÈÎv 0{ }, be defined as in definition 2.5. The Triebel–
Lizorkin space aFp q,(·) (·)

(·) is defined to be the space of all distributions Î ¢f with
< ¥a f Fp q,(·) (·)

(·) , where

j *aa    f f2 .F
v

v ℓ Lp q
q p

,
≔ (·)

(·) (·)
(·) (·) (·)

In the case of p = q, we use the notation a aF Fq q q,≔(·)
(·)

(·) (·)
(·) . In the rest of this paper, we set

»A B equal to  cA B CA where c C, are two constants.
In the following parts of this paper, for a function s (·), we always use =+

Îs s xsupx n ( )
and =-

Îs s xinfx n ( ).

2.4. Wavelet characterization

Now, we state some notations for wavelet theory and then prove a wavelet characterization of
variable-index Besov and Triebel–Lizorkin space on the periodic domain.

Let yM , yF be the Meyer or Daubechies wavelets described in proposition A.1 in the
appendix. Now, we define

* = =G F M G F M j, and , if 1,n j n0 { } { }

where ∗ indicates that at least one Gi of *= ÎG G G F M, , ,n
n

1( ) { } must be an M. It is
clear from the definition that the cardinal number of *F M, n{ } is -2 1n . Let Îx n be

 yY = -
=

x x m2 2 , 2.1Gm
j j

r

n
Gr j

r r
1

n
2( ) ( ) ( )

where ÎG G j, Îm n and Îj 0. Then,  Y Î Î Îj G G m: , ,Gm
j j n

0{ } is an
orthonormal basis in L n2 ( ).

Define

y y y y- -x x k x x k2 2 2 2j k
M M j

j k
F

j
F j

, , 2
j
2( ) ≔ ( ) ( ) ≔ ( )

where Îk . Then, we define

 
å åy y y+ = + -
Î Î

x x ℓ x ℓ k2 2 2.2j k
M

ℓ
j k
M j

ℓ

M j
, ,

n
2˜ ( ) ≔ ( ) ( ( ) ) ( )

and

 
å åy y y+ = + -
Î Î

x x ℓ x ℓ k2 2 . 2.3j k
F

ℓ
j k
F j

ℓ

F j
, ,

n
2˜ ( ) ≔ ( ) ( ( ) ) ( )

Obviously, yj k,
˜ , fj k,

˜ are 1-periodic functions belonging to L 0, 11([ ]).
Define

 yY = -
=

x x m2 2 . 2.4Gm
j j

r

n
Gr j

r r
1

n
2˜ ( ) ˜ ( ) ( )

By proposition A.1, we know that yM , yF is included in the functions with radial decreasing
L1-majorants; that is,

 y yx R x x R x ,M F
1 2∣ ( )∣ (∣ ∣) ∣ ( )∣ (∣ ∣)

where R1 and R2 are bounded decreasing functions belonging to ¥L 0,1([ )). We can use
theorem 5.9 in [17] to show that  ÈY Î Î Îj G G m: 0 , ,Gm

j j
j{ ˜ { } } with
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 = = -m m: 0, 1, 2, ,2 1j
j{ } as an orthonormal basis in L n2 ( ). Considering corollary

5 in [23] and definition A.1 in the appendix, we easily obtain the following theorem for the
wavelet characterization of the variable-index Besov and Triebel–Lizorkin space on a
periodic domain.

Theorem 2.8. Let ÇÎ ¥s L C n
loc
log(·) ( ) and  Îp nlog(·) ( ). The symbol A stands for B

or F , and a symbolizes b or f .
(i) Let < ¥q0 ( < ¥+p in the F-case) and

s s> - - +k s s in the F casemax , ,p p q,( ) ( ‐ )

where s = --n 1p p

1

min 1,( )( )
and s = --n 1p q p q,

1

min 1, ,( )( )
. Then,  Î ¢f n( ) belongs to

Ap q
s

,(·)
(·) if and only if it can be represented as


å å å l l= Y Î
=

¥

Î Î

-f a2 with , 2.5
j G G m

Gm
j j n

Gm
j

p q
s

0

2 ,
j

j

˜ ˜ ( )(·)
(·)

with  = = -m m: 0, 1, 2, , 2 1j
j{ } and where the series expansion (2.5) is

unconditionally convergent in  ¢ n( ) and in any space sAp q
n

, ( )(·)
(·) , where s <x s x( ) ( ) with

s- >s x xinf 0( ( ) ( )) and s x s x 0( ) ( ) for  ¥x∣ ∣ . The representation (2.5) is unique,
and we have

l l= = Yf f2 ,Gm
j

Gm
j j

Gm
jn

2( ) ⟨ ˜ ⟩

and

YI f f: 2 ,j
Gm
jn

2{ ⟨ ˜ ⟩}

is an isomorphic map from Ap q
s n

, ( )(·)
(·) onto ap q

s
,˜ (·)

(·) . If, in addition, < ¥+p qmax ,( ) , then

 Y Î Î ÎGm
j

j G G m, ,j j0{ ˜ } is an unconditional basis in Ap q
s n

, ( )(·)
(·) .

(ii) Let  Îq nlog(·) ( ) with < < ¥- +p p0 ,  < ¥- +q q0 , and let

s> - - +k s smax ,p q,( )

with s = -- -n 1p q p q,
1

min 1, ,( )( )
. Then,  Î ¢f n( ) belongs to Fp q

s n
, ( )(·) (·)

(·) if and only if it can

be represented as (2.5) with l Î f p q
s n

,
˜ ( )(·) (·)

(·)
and with unconditional convergence in  ¢ n( )

and in l Î f p q
s n

,
˜ ( )(·) (·)

(·)
. The representation (2.5) is unique, and we have

l l= = Yf f2 ,Gm
j

Gm
j j

Gm
jn

2( ) ⟨ ˜ ⟩

and

YI f f: 2 ,j
Gm
jn

2{ ⟨ ˜ ⟩}

is an isomorphic map from Fp q
s n

, ( )(·) (·)
(·) onto f p q

s n
,

˜ ( )(·) (·)
(·)

.

At the end of this section, we introduce the following notation, which is used frequently
subsequently.

 
ò å å år l c=

=

¥

Î Î

-
u x x2 d , 2.6B

j G G m

jq x s m
Gm
j q x

jm
0

2
q
s

n
j

j

j( ) ∣ ∣ ( ) ( )( ) ( ) ( )
(·)
(·)

where lGm
j are defined as in theorem 2.8.
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3. Bayesian approach with a variable-index Besov prior

In this section, we first explain the meaning of the variable-order Besov prior and prove some
important properties about the variable-order Besov prior. Because the variable-order space is
much more complex than the usual function space, this is the most difficult part of our work
and involves non-trivial generalizations of the previous results. Second, based on the state-
ments on the variable-order Besov prior, we may easily generalize the results in [5] and [8] to
the variable-order Besov prior setting. As the generalizations are not difficult, only a sketch of
the proof has been given in the appendix.

Before proceeding to the main part, we describe the general setting for the inverse
problems under the Bayesian framework. Denote using X, Y separable Banach spaces,
equipped with Borel σ-algebra, and let  X Y: be a measurable mapping. We wish to
solve the inverse problem of finding u from y where

 h= +y u 3.1( ) ( )

and h Î Y denotes noise. Applying the Bayesian approach to this problem, we let
Î ´u y X Y,( ) be a random variable and compute u y∣ . We specify the random variable u y,( )

as follows:

• Prior: m~u 0 measure on X.
• Noise: h ~ 0 measure on Y, and h ^ u.

The random variable y u∣ is then distributed according to the measure u, the translate of
0 by  u( ). We assume throughout that  u 0 for u m0-a.s. Thus, we define some
potential F ´ X Y: so that


 = -Fy u y

d

d
exp ; , 3.2u

0
( ) ( ( )) ( )

and

ò -F =u y yexp ; d 1. 3.3
Y

0( ( )) ( ) ( )

As in [5] and [8], we also make the following assumptions about the potential Φ.
Assumptions 1: Let X and Y be Banach spaces. The function F ´ X Y: satisfies the

following:
(i) there is an a > 01 and, for every >r 0, an ÎM , such that for all Îu X and for all

Îy Y such that < y rY ,

 aF -  u y M u; ;X1( )

(ii) for every >r 0, there exists = >K K r 0( ) such that for all Îu X , Îy Y with
<   u y rmax ,X Y{ } ,

F u y K; ;( )

(iii) for every >r 0, there exists = >L L r 0( ) such that for all Îu u X,1 2 and Îy Y
with <     u u y rmax , ,X X Y1 2{ } ,

F - F - u y u y L u u; ; ;X1 2 1 2∣ ( ) ( )∣

(iv) there is an a > 02 and, for every >r 0, a ÎC such that for all Îy y Y,1 2 with
<   y y rmax ,Y Y1 2{ } and for every Îu X ,
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 aF - F + -   u y u y u C y y, , exp .X Y1 2 2 1 2∣ ( ) ( )∣ ( )

Different choices of0 and m0 would lead to different Bayesian methods. How to choose
0 and m0 depends on the problems. In the following parts of this paper, we choose 0 to be
Gaussian, and in order to give variable-order Besov regularization a meaningful explanation
in the statistical world, we need to construct a new probability measure m0. The following
subsection accomplishes this task by using the wavelet characterization of the variable-order
Besov space.

3.1. Variable-order Besov prior

For the readerʼs convenience, we recall the general setting stated in [10] for our purpose.
Denote using J an index set, and let f Îj j J{ } denote an infinite sequence in the Banach space X,
with norm  · , of -valued functions defined on a domain D. For simplicity, we assume

=D n to be the n-dimensional torus. We normalize these functions so that f =  1j for
Îj J . We also introduce another element Îm X0 , not necessarily normalized to 1. Define

the function u by

å f= +
Î

u m u 3.4
j J

j j0 ( )

By randomizing Îu uj j J≔ { } , we create real-valued random functions on D. (The extension to
n-valued random functions is straightforward, but omitted for brevity.) We now define the
deterministic sequence g g= Îj j J{ } and the i.i.d. random sequence x x= Îj j J{ } , and we set

g x=uj j j. We assume that ξ is centered, i.e., that  x = 01( ) . Formally, we see that the average
value of u is then m0 so that this element of X should be thought of as the mean function.

In the following, we take X to be the Hilbert space

  
ò=  < ¥X L u u x x: : dn n2 2

n{ }≔ ( ) ∣ ( )∣

of real-valued periodic functions with dimension n with the inner product and norm denoted
using ,⟨· ·⟩ and  · , respectively. We then set =m 00 and let

= = J G ,j j j 0,1,{ }

with G j and j defined as in theorem 2.8. Consequently, for any Îu X , we have


å å å= Y = Y
=

¥

Î Î
u x u u uwith , , 3.5

j G G m
Gm
j

Gm
j

Gm
j

Gm
j

0 j
j

( ) ˜ ⟨ ˜ ⟩ ( )

where YGm
j˜ is the wavelet basis stated in theorem 2.8. Given a function  u : n and uGm

j{ }
as defined in (3.5), we define the Banach space Bq

t
(·)
(·) as

 =  < ¥ B u u: : 3.6q
t n

Fq q
t

,
{ } ( )(·)

(·)
(·) (·)
(·)

with

⎛
⎝⎜

⎞
⎠⎟


å j=
=

¥
 u u 2 , 3.7F

k
k

kt x q
q

L
0

1

q q
t

q n

,
∣( ˆ) ∣ ( )( ) (·)

(·)

( )
(·) (·)
(·)

(·)

where j j= -x x2j
j( ) ( ) and j (·) is a smooth decomposition of unity [2, 43]. By proposition

5.4 in [1], we can define the space Bq q
s

,(·) (·)
(·) appropriately, which is equivalent to Fq q

s
,(·) (·)

(·) if

Î ¥s L . We do not need to develop a full theory for the space Bq q
s

,(·) (·)
(·) , and we just understand
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it as Fq q
s

,(·) (·)
(·) . Hence, our space Bq

t
(·)
(·) defined in (3.6) is just the usual variable-index Besov

space with =p q(·) (·). (Although the space defined in [1] is in the whole space n, it can be
adapted to the periodic case n.)

As in the general setting, we assume that g x=uGm
j

Gm
j

Gm
j where

x x= = ¥ Î ÎGm
j

j G G m1,2, , , ,j j
{ } is an i.i.d. sequence and g g= = ¥ Î ÎGm

j
j G G m1,2, , , ,j j

{ } is

deterministic. We assume that xGm
j is drawn from the measure centered on  with density

proportional to ò k- x yexp dq y1

2 n( )∣ ∣ ( )( ) where    < ¥- +q q y q1 ( ) and k (·) is a
probability measure. We refer to the measure with the above density as a generalized
q (·)-exponential distribution. Note that if q is constant, it is just a q-exponential distribution
[10]. Hence, our generalized q (·)-exponential distribution is a natural extension of the q-
exponential distribution and includes the Gaussian and Laplace distributions as special cases.
For  >-s x s 0( ) and d > 0, we define

⎜ ⎟⎛
⎝

⎞
⎠g

d
= - + -- +

+

2
1

. 3.8Gm
j j s m n n q

q
2 2

1
j ( )( ( ) )

We now prove the convergence of the series


å å å g x= Y =
= Î Î

u u u, 3.9N

j

N

G G m
Gm
j

Gm
j

Gm
j

Gm
j

Gm
j

0 j
j

˜ ( )

to the limit function


å å å g x= Y =
=

¥

Î Î
u u u, , 3.10

j G G m
Gm
j

Gm
j

Gm
j

Gm
j

Gm
j

0 j
j

˜ ( )

in an appropriate space. To understand the sequence of functions uN{ } fully, we introduce the
following function space:

  l r lW ´ W  $ > < ¥L B u u; : : 0,q
q
t n

B
E

q
t( ) ≔ { ( ) }(·)

(·)
(·)

(·)
(·)

where

 




ò

ò ò

å

å

r l r l w

w w

= >

=

=

¥

W

-

W =

¥

u u

u x x

inf 0 : 2 d 1

2 , d d ,
3.11

B
E

k
k L k k

q kt

k

kt x q x
k

q x

0

1

0

q
t q

n

{ }( ) ( ) ( )

∣ ( )∣ ( )
( )

(·) (·)

( ) ( ) ( )

(·)
(·) (·)

with

j= u uk k( ˆ)

and jk defined as in (3.7). As mentioned in section 2.1, if r
B
E

q
t
(·)
(·) is a convex semimodular on

 WL B;q
q
t( )(·)
(·)
(·) , then  WL B;q

q
t( )(·)
(·)
(·) is a normed space with the Luxemburg norm given by

⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎫
⎬
⎭




m r
m

= >W u uinf 0 :
1

1 . 3.12L B B
E

;q
q
t

q
t ( )( )(·)

(·)
(·)

(·)
(·)

In order to preserve the fluency of our statement, we list the proof that r
B
E

q
t
(·)
(·) is a convex

semimodular in section A. We clarify the relation for our space  WL B;q
q
t( )(·)
(·)
(·) with the usual

constant q t, space  WL B;q
q
t( ) used in [8]. Setting q, t in (3.11) to be constants, we have
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ò òår w=

=
W =

¥

 

u u x

u

2 d d

.

B
E

k

ktq
k

q

B
q
0

q
t

n

q q
t
,

( ) ∣ ∣ ( )

( )

Hence, our variable space is indeed a natural generalization of the usual space  WL B;q
q
t( ).

Define

 l l l= < ¥Î Î Î  b : , 3.13q
E s

Gm
j

j G G m b, ,j j
q
E s

0
˜ ≔ { { } } ( )(·)

(·)
˜ (·)

(·)

where

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟




å å ål l c=
=

¥

Î Î

-  2 ,
b

j G G m

jqs m
Gm
j q

jm

q

L
0

2

1

q
E s

j
j

j

q n

(∣ ∣ ) (·)˜
( ) (·)

(·)

( )
(·)

(·)

(·)

and

 
òl l w w= d .Gm

j q x
Gm
j q x

n
(∣ ∣ ) ∣ ( )∣ ( )( ) ( )

With these definitions, before presenting the main results in this section, we need the
following lemma, which is proved in section A.

Lemma 3.1. Let ÇÎ ¥s L C n
loc
log(·) ( ) and  Îq nlog(·) ( ). Let

s> - - +k s smax , ,q( )

where s = --n 1q q

1

min 1,( )( )
. Then,  Î ¢f n( ) belongs to  WL B;q

q
s( )(·)
(·)
(·) if and only if it can

be represented as


å å å l l= Y Î
=

¥

Î Î

-f b2 with , 3.14
j G G m

Gm
j j

Gm
j

q
E s

0 j
j

n
2 ˜ ˜ ( )(·)

(·)

with  = = -m m: 0, 1, 2, ,2 1j
j{ } and where the series expansion (3.14) is

unconditionally convergent in  ¢ n( ). The representation (3.14) is unique, and we have

l l= = Yf f2 ,Gm
j

Gm
j j

Gm
jn

2( ) ⟨ ˜ ⟩

and

YI f f: 2 ,j n
Gm
j

2{ ⟨ ˜ ⟩}

is an isomorphic map from  WL B;q
q
s( )(·)
(·)
(·) onto bq

E s˜
(·)

(·)
.

We can prove the following theorem, which provides a sufficient condition, on t (·), for
the existence of the limiting random function.

Theorem 3.2. For  ÇÎ ¥t s C L, n n
loc
log ( ) ( ),  Îq nlog( ) and

⎛
⎝⎜

⎞
⎠⎟

- + <
Î

+
t x s x

n

q
sup 0,
x n

( ) ( )

the sequence of functions =
¥uN
N 1{ } given by (3.9) and (3.8) with xGm

j drawn from a centered

generalized q (·)-exponential distribution is Cauchy in the Banach space  WL B;q
q
t( )(·)
(·)
(·) .
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Thus, the infinite series (3.10) exists as a limit in the space  WL B;q
q
t( )(·)
(·)
(·) for

all  - + <Î +t x s xsup 0x
n

q
n ( )( ) ( ) .

Proof. By (3.10) and lemma 3.1, we obtain


»W   u u2 3.15L B

j
Gm
j

b;q
q
t

n

q
E s2{ } ( )( ) ˜(·)

(·)
(·)

(·)
(·)

For >M N , for every l > 0, we have the following estimate







 

 



ò

ò

å å å

å å å

å å

l g x c

l l d c

l l d

= + Î Î

+

-

= + Î Î

- +

-

= + Î

- + -

-

+ - - - +

+ - - - - +

x x

C x x

C

2 d

max , 2 d

max , 2 2

3.16

j N

M

G G m

q x jq x t m n
Gm
j q x

Gm
j q x

jm

q q

j N

M

G G m

jq x t m s m n q
jm

q q

j N

M

m

jq t m s m n q jn

1

2 2

1

1

2 2

1

1

2 2

n
j

j

j

n
j

j

j j

j

j j

∣ ∣ (∣ ∣ ) ( )

( ) ( )

( )

( )

( ) ( )( ( ) ) ( ) ( )

( )( ( ) ( ) )

( ( ) ( ) )

where we use

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

 



 

  



 

ò ò

ò ò

ò

ò

x x x k x

x x k x

x x x

x x x

-

+ -

-

+ - < ¥

Ç

Ç

Ç

Ç

x

x

x

x

>

>

+

-

+ -

- +

C x

C x

C

C

exp
1

2
d d

exp
1

2
d d

exp
1

2
d

exp
1

2
d .

Gm
j q x q q x

q q x

q q

q q

1

1

1

1

n

n

(∣ ∣ ) ∣ ∣ ∣ ∣ ( )

∣ ∣ ∣ ∣ ( )

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

( )
{∣ ∣ }

( )

{∣ ∣ }
( )

{∣ ∣ }

{∣ ∣ }

The sum on the last line of (3.16) tends to 0 as  ¥N , provided

⎛
⎝⎜

⎞
⎠⎟

- + <
Î

+
t x s x

n

q
sup 0.
x n

( ) ( )

Hence, by lemma 2.1.9. in [11], we obtain

- =
¥

 u ulim 2 0.
N

j
Gm
N j

Gm
M j

b

n

q
E s2{ ( )} ˜ (·)

(·)

Finally, by (3.15), we complete the proof. ,

Remark 3.3. We provide an intuitive meaning for the random series we defined in (3.10).
We assume that the probability measure k (·) in the centered generalized q (·)-exponential
distribution is a uniform measure that is k =x xd d( ) in n. Because YGm

j˜ is an orthonormal
basis and


å å å= Y
=

¥

Î Î
u u 3.17

j G G m
Gm
j

Gm
j

0 j
j

˜ ( )
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with x=
d

- + -- +
+

u 2Gm
j j s m n n q

q

Gm
j2 2 1 1j ( )( ( ) ) , using l = u2Gm

j j
Gm
jn

2 , we have

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎧⎨⎩
⎫⎬⎭

⎞
⎠⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠



 

 

 

 

ò

ò

ò

ò

  

  

  

  

x

g

d l

d l c

d d r

-

= -

= -

-

-

=

¥

Î Î

=

¥

Î Î

-

=

¥

Î Î

-

=

¥

Î Î

-

+
-

+

+
-

+

-

+

x

u x

x

x x

u

exp
1

2
d

exp
1

2
d

exp
1

2
2 d

exp
1

2
2 2 d

exp
1

2
min , .

j G G m
Gm
j q x

j G G m
Gm
j q x

Gm
j q x

j G G m

q x
q

jq x s n
q

Gm
j q x

j G G m

q x
q

jq x s n
q

Gm
j q x jn

jm

q
q

B

0

0

0

2

0

2

j
j

n

j
j

n

j
j

n

jm

j
j

n

jm

q
s

∣ ∣

∣ ∣ ∣ ∣

∣ ∣

∣ ∣ ( )

( )

( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

(·)
(·)

Thus, informally, the Lebesgue density of u can be controlled by a Lebesgue density

proportional to ⎜ ⎟
⎛
⎝

⎞
⎠d d r-

-
+ uexp min , B

1

2

q

q
q
s{ } ( )
(·)
(·) . Because r uBq

s ( )
(·)
(·) is related to the space

Bq
s n( )(·)

(·) (theorem 2.8), and the space Bq
s n( )(·)

(·) is a generalization of a constant-index space,
we guess that the Lebesgue density of u is related to a Lebesgue density similar to

⎜ ⎟
⎛
⎝

⎞
⎠d d r-

-
+ uexp min , B

1

2

q

q
q
s{ } ( )
(·)
(·) . At least, if q is a function with a constant value, we have an

equality that informally means that the Lebesgue density of u is proportional to
dr- uexp B

1

2 q
s( )( )(·) . Hence, the probability measure we defined may be related to the space

Bq
s n( )(·)

(·) . Therefore, we may say that u is distributed according to a Bq
s n( )(·)

(·) measure with

parameter δ, or, briefly, a d B, q
s n( ( ))(·)

(·) measure.

Remark 3.4. In this remark, a short verification has been provided for the non-Gaussian
natural of our d B, q

s n( ( ))(·)
(·) measure. According to the definition of Gaussian measures,

which can be found in [43], we know that a probability measure on a separable Banach space
being Gaussian indicates that any one-dimensional projection is Gaussian. In our setting, the
one-dimensional projection is g xuGm

j
Gm
j

Gm
j≔ ( j G m, , defined as in (3.5)). If uGm

j is drawn

from a one-dimensional Gaussian measure, xGm
j should also be drawn from a one-dimensional

Gaussian measure. However, xGm
j is drawn from the generalized q (·)-exponential distribution,

which is not Gaussian, except for q (·) that is a function with a constant value of 2. Therefore,
the d B, q

s n( ( ))(·)
(·) measure is non-Gaussian in general, or the variable-index Besov prior is

non-Gaussian.

Remark 3.5. We may need to demonstrate how to use our new prior in practical problems.
Let the index function q (·) be monotonically decreasing with = =q q M0 2, 1( ) ( ) where M
is a sufficiently large number. We consider that some information on the gradient of the target
function u (the function we need to reconstruct) can be obtained. We can then specify the
index function q (·) as q u(∣ (·)∣), where u is an estimated quantity of the target function u
(using some quick algorithms such as the canny edge detection algorithm in the MATLAB
toolbox). Then, our new prior may incorporate more information on the variation of u
compared with the Gaussian prior and constant-index Besov prior case. For more information
on the practical usage of the prior, we refer to [18]. Although this paper is on variable TV
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regularization, we do not perceive any conceptual difficulty in shifting to our variable-index
Besov case.

Theorem 3.6. Assume that u is given by (3.10) and that (3.8) with xGm
j for every j G m, ,{ } is

drawn from a centered generalized q (·)-exponential distribution with k =x xd d ;( ) that is to
say, k (·) is a uniform probability measure. In other words, u is distributed according to a
d B, q

s( )(·)
(·) measure. In addition, we assume  ÇÎ ¥t s C L, n n

loc
log ( ) ( ),  Îq nlog( ) and

- + ¹+t x s x 0n

q
( ) ( ) for every Îx n. Then, the following are equivalent:

1. r < ¥ -u a.s.;Bq
t ( )
(·)
(·)

2.  ar < ¥uexp Bq
t( ( ( )))
(·)
(·) for any a dÎ 0, 2 ;[ )

3.  - + <Î +t x s xsup 0x
n

q
n ( )( ) ( ) .

Proof. (3)  (2).
Because  - + <Î +t x s xsup 0x

n

q
n ( )( ) ( ) , there exists a negative constant b < 0 such

that  b- + <Î +t x s xsup 0x
n

q
n ( )( ) ( ) . Let K be a large enough positive constant; then,

we have

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟





 





 

 

  

 

  

 

ò

ò

ò ò ò

ò ò

ò ò ò

ò ò

  å

  å

 



ar

ad x c

ad x c

ad x x x

x x

ad x x x

x x

=

-

-

-

-

b

b

b

=

¥

Î

-

Î

- +

=

¥

Î

-

Î

=

¥

Î

-

=

¥
-

- - +

u

x x

x x

x x

x

x x

x

exp

exp 2 d

exp 2 d

exp 2 d d d

exp d d

exp 2 d d d

exp d d
.

B

j G G m

jq x t s n q
Gm
j q x

jm

j G G m

jq x
Gm
j q x

jm

j G G

jq x q x q x

q x

j

jq x q x q x

q x

K

0

1 2 2

0

1

0

1 1
2

1
2

0

1 1
2

1
2

q
t

j
j

n

jm jm

j
j

n

j

n n

n

n n

n

( )
( )

( )
( )

( ( ( )))

( ∣ ∣ ( ) )

∣ ∣ ( )

∣ ∣ ∣ ∣

∣ ∣

∣ ∣ ∣ ∣

∣ ∣

( )( ( ) ( ) ) ( )

( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

( )

(·)
(·)

If we want to prove that the above infinite product converges, we only need to prove that the
following summation converges [25].

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

  

  

ò ò ò

ò ò ò

å

å å

ad x x x

ad
x x x

- -

-

b

b

=

¥
-

=

¥

=

¥ -

x x

k
x x

exp 2 d 1 exp
1

2
d d

2 d exp
1

2
d d . 3.18

j

jq x q x q x

j k

k
jq x q x

k
q x

0

1

0 1

1

n n

n n

( )
( )

∣ ∣ ∣ ∣

( )
!

∣ ∣ ∣ ∣ ( )

( ) ( ) ( )

( ) ( ) ( )
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We now concentrate on the first summation term in the integral above.

⎛
⎝
⎜⎜
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⎟⎟















ò

ò

ò

ò

ò

å å

å å

å å

å

ad
x

ad
x

ad
x

ad
x

ad x

=

-

-

b

b

b

b

b

=

¥
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¥

=

¥ -

=

¥

=

¥ -

-

-

-

k
x

k
x

k
x

k
x

x

2 d

2 d

2 d

1

1 2
d

1

1 2
exp d .

j k

k
jq x q x

k

k

k

j

jq x q x
k k

k

k

k

j

jq x k

k

q x

k

q
k

k
q x

k

q
q x

0 1

1

1

1

0

1

1

1

0

1

1

1

1

n

n

n

n

n

( )
( )

( )
( )

( )
!

∣ ∣

( )
!

∣ ∣

( )
!

∣ ∣

( )
!

∣ ∣

∣ ∣
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Substituting the above inequality into (3.18), we obtain
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where we used ad <-1 1

2
.

(2)  (1).
If (1) does not hold, r uBq

t ( )
(·)
(·) is positive infinite on a set S with a positive measure. Then,

because for a > 0, ar = +¥uexp Bq
t( ( ))
(·)
(·) if r = +¥uBq

t ( )
(·)
(·) and

  ar aru uexp 1 exp ,B S Bq
t

q
t( ( ( ))) ( ( ( )))

(·)
(·)

(·)
(·)

we get a contradiction.
(1)  (3).
Because r < ¥uBq

t ( )
(·)
(·) , we easily know that
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Hence, for almost all Îx n, the integrand in the above formula is finite. Choose Îx n

such that
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Therefore, for every j, there is =m mx j, such that
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=
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j
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Î
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Because there exist c C, such that   x< < ¥c C0 Gm
j q x(∣ ∣ )( ) for every j G m, ,{ }, this

contradicts the law of large numbers, which is described in chapter 1 in [38]. Therefore, we
obtain - + <- - +t m s m n q2 2 0j

x j
j

x j, ,( ) ( ) for infinite j. By the definition of cjm (·), we know
that - m x2 ;j

x j, hence, we find that

- +
+

t x s x
n

q
0.( ) ( )

In addition, by our assumption and the continuity of t (·) and s (·), we finally obtain

- + <
+

t x s x
n

q
0( ) ( )

for every Îx n. ,

Remark 3.7. Theorem 3.6 assumes that - + ¹+t x s x 0n

q
( ) ( ) and k (·) is a uniform

probability distribution, which seems technically sound; however, for the constant q t s, ,
case, these conditions are all satisfied naturally. Removing these conditions is left to
future work.

In the previous two theorems, we proved basic properties for random variables con-
structed from infinite series (3.10). We now study a situation where the family YGm

j˜ has a
uniform Hölder exponent α and study the implications for the Hölder continuity of the
random function u. We assume that there are >C a b, , 0 and a Î 0, 1( ] such that for all
j 0,

 
 

Y Î

Y - Y - Îa

x C x

x y C x y x y

2 , ,

2 , , . 3.19
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Gm
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j jna n

∣ ˜ ( )∣

∣ ˜ ( ) ˜ ( )∣ ∣ ∣ ( )

We also assume that >a b as in [10].

Theorem 3.8. Assume that u is given by (3.10) and (3.8) with xGm
j drawn from a centered

generalized q (·)-exponential distribution. Suppose also that (3.19) holds and that

 ÇÎ ¥s C Ln n
loc
log ( ) ( ),  Îq nlog( ),  q> + + -Î +s x n b a binfx q

1 1

2
n ( )( ) ( ) for some

q Î 0, 2( ). Then, -a.s., we have Î bu C n( ) for all b < aq
2
.

Proof. We need to use theorem A.1 listed in the appendix, which is a variant of the
Kolmogorov continuity theorem. Presented as in theorem A.1 but using our series (3.10), we
obtain
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and
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+
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n q
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2 2 2
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2
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We require >c 01 and >c 02 , and by our assumption >a b, we only need >c 02 . Our

assumption  q> + + -Î +s x n b a binfx q

1 1

2
n ( )( ) ( ) just ensures that >c 02 . Therefore, by

theorem A.1, we can conclude our proof. ,

Remark 3.9. If the mean function is nonzero and satisfies




Î
- - Îa

m x C x D
m x m y C x y x y D

, ,
, , ,

0

0 0

∣ ( )∣
∣ ( ) ( )∣ ∣ ∣

then the result of theorem 3.8 still holds.

Theorem 3.10. Assume that u is given by (3.10) and (3.8) with xGm
j drawn from a cent-

ered generalized q (·)-exponential distribution. Suppose also that YGm
j˜ , with =j{

¥ Î Î G G m0, 1, , , ,j j}, forms a basis for Bq
t
(·)
(·) with >-t 0,  Îq nlog(·) ( ) and

 ÇÎ ¥t C Ln n
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- + <
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+
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q
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x n
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we have Îu Ct n( )(·) -a.s.

Proof. For any k 1, using the definition of r uBq
t ( )
(·)
(·) , we can write

⎜ ⎟⎛
⎝

⎞
⎠

 
ò å å år

x c

=

´

d
=

¥

Î Î

- +- -
+u C

x x

2

d .

B m
j G G m

jkq x t m s m n
q

Gm
j kq x

jm

,
0

2 2

kq
t

n
j

j

j j

( )

∣ ∣ ( )

( ) ( ) ( )

( )

(·)
(·)

For every Îk , there exist constants c C,m m such that   x< < ¥c C0 m Gm
j q x

m(∣ ∣ )( ) .
Because each term of the above series is measurable, we can swap the sum and the integration
and obtain

⎜ ⎟⎛
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From the above inequality, we obtain r < ¥uBkq
t ( )

(·)
(·) -a.s. Therefore, we know that

 < ¥ u Bkq
t n( )(·)
(·) -a.s. Because
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⎛
⎝⎜

⎞
⎠⎟

- + <
Î

+
t x s x

n

q
sup 0,
x n

( ) ( )

we can choose k to be large enough so that < - -s x t xn

kq x

n

q x
( ) ( )

( ) ( )
. Then, the embedding

B Ckq
t t n1 ↪ ( )(·)

(·) (·) [1] for any t1 satisfying + < < -t x t x s xn

kq x

n

q x1( ) ( ) ( )
( ) ( )

implies that

 < ¥ u Ct n( )(·) -a.s. It follows that Îu Ct n( )(·) -a.s. ,

Remark 3.11. If the mean function m0 belongs to Ct n( )(·) , the result of the above theorem
holds for a random series with a nonzero mean function as well.

3.2. The Bayesian approach to inverse problems

In the previous subsection, we constructed the probability measure m0, which is supported on
a given variable-order Besov space Bq

t
(·)
(·) . We can now present the following theorem for the

well-defined problem. The proof is very similar to the one proved in [8]; however, con-
sidering that we may need to use some properties of the variable-order Besov space, a sketch
of the proof has been given in the appendix.

Theorem 3.12. Let F satisfy (3.3) and Assumptions 1 (i)–(iii). Suppose that for some
 Îq nlog( ),  ÇÎ ¥t C Ln n

loc
log ( ) ( ), Bq

t
(·)
(·) is continuously embedded in X . There exists

*d > 0 such that if m0 is a d B, q
s( )(·)

(·) measure with

⎛
⎝⎜

⎞
⎠⎟

- + <
Î

+
t x s x

n

q
sup 0
x n

( ) ( )

and *d d> , then my is absolutely continuous with respect to m0 and satisfies

m
m

= -Fu
Z y

u y
d

d

1
exp ; 3.20

y

0

( )
( )

( ( )) ( )

with the normalizing factor

ò m= -F < ¥Z y u y uexp ; d . 3.21
X

0( ) ( ( )) ( ) ( )

The constant *d a=
- +

c c2 max ,q q
e e 1{ } , where ce is the embedding constant satisfy-

ing    u c uX Be
q
t
(·)
(·).

Now, we can show the well-posedness of the posterior measure my with respect to the
data y. Recall that the Hellinger metric dHell [15] is defined by

⎛
⎝⎜

⎞
⎠⎟òm m

m
n

m
n

n¢ = -
¢

d ,
1

2

d

d

d

d
d ,Hell

2

( )

where ν is the reference measure with respect to which both μ and m¢ are absolutely
continuous.

The following theorem can be proved by using similar ideas to those used for theorem
3.3 of [8]. The minor difference is that we need to use r uBq

t ( )
(·)
(·) instead of Bq

t
(·)
(·) when we need

to bound  u X . The same situation appears in the proof of theorem 3.12, and therefore, we
omit the details of the proof.
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Theorem 3.13. Let F satisfy (3.3) and Assumptions 1 (i)–(iv). Suppose that for some
 Îq nlog( ),  ÇÎ ¥t C Ln n

loc
log ( ) ( ), Bq

t
(·)
(·) is continuously embedded in X . There exists

*d > 0 such that if m0 is a d B, q
s( )(·)

(·) measure with
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( ) ( )
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m m - ¢¢  d C y y,y y
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where =C C r( ) with ¢   y y rmax ,Y Y{ } . The constant *d =
- +

c c2 max ,q q
e e{ }

a a+ 21 2( ), where ce is the embedding constant satisfying    u c uX Be
q
t
(·)
(·).

For the approximation of the posterior, let FN be an approximation of Φ. Define my N, by

m
m

= -Fu
Z y

u
d

d

1
exp , 3.22

y N

N
N

,

0

( )
( )

( ( )) ( )

and

ò m= -FZ y u uexp d . 3.23N

X

N
0( ) ( ( )) ( ) ( )

We do not use the dependence of Φ and FN on y here, as it is considered fixed.

Theorem 3.14. Assume that the measures m and mN are both absolutely continuous with
respect to m0 given by (3.20) and (3.22), respectively. Suppose that Φ and FN satisfy
Assumption 1 (i) and (ii), uniformly in N , and that there exist a 03 and ÎC such that

 a jF - F + u u u C Nexp ,N
X3∣ ( ) ( )∣ ( ) ( )

where j N 0( ) as  ¥N . Suppose that for some  ÇÎ ¥t C Ln n
loc
log ( ) ( ),  Îq nlog( ),

Bq
t
(·)
(·) is continuously embedded in X . Let m0 be a d B, q

s( )(·)
(·) measure with

⎛
⎝⎜

⎞
⎠⎟

- + <
Î

+
t x s x

n

q
sup 0
x n

( ) ( )

and d a a> +
- +

c c2 max , 2q q
e e 1 3{ }( ) where ce is the embedding constant satisfying

   u c uX Be
q
t
(·)
(·). Then, there exists a constant independent of N such that

m m jd C N, .N
Hell ( ) ( )

The proof of the above theorem is similar to the proof of theorem 3.3 of [39], and the
differences and difficulties can be overcome by the same idea used in the proof of theo-
rem 3.12.

4. Variational methods

The MAP estimator in Bayesian statistics literature [21] is an important concept. It specifies
the relationship between the Bayesian approach and the classical regularization technique. It
is well known that for a non-Gaussian prior, we can hardly obtain a rigorous relation between
the prior measure and regularization term in infinite dimensions. Even for a simple constant-
index Besov prior, theoretical study is not complete [8]. Tapio Helin and Martin Burger [16]
addressed this issue in some sense only recently. Here, as stated in remark 3.3, we can get an
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upper bound for the probability density, and for the constant q case, we can get an equality.
This is a more complex situation than the constant-index Besov prior case, and in this section,
we provide only a partial illustration.

We define the following functional:

r= F +I u u u
1

2
. 4.1Bq

s( ) ( ) ( ) ( )
(·)
(·)

Intuitively, the minimizers of the above functional or some variant of (4.1) may have the
highest probability measure for a small ball centered on such minimizers. For more
explanations, we refer to the Gaussian case [9]. For this functional, we have the following
result, which provides an abstract theory for the existence of the MAP estimator, linked in a
fundamental way to the natural assumption 1 in section 3, which implies that the posterior
measure is well defined and well posed.

Theorem 4.1. Let Assumptions 1 (i), (ii) hold,  ÇÎ ¥s C Ln n
loc
log ( ) ( ),  Îq nlog( ),

 < < ¥- +q q x q1 ( ) and Bq
s
(·)
(·) be compactly embedded in X . Then, there exists

Îu Bq
s¯ (·)

(·) such that

= ÎI u I I u u Binf : .q
s( ¯) ¯ ≔ { ( ) }(·)

(·)

Furthermore, if un{ } is a minimizing sequence satisfying I u I un( ) ( ¯), then there is a
subsequence ¢un{ } that converges strongly to ū in Bq

s
(·)
(·).

Before proving this theorem, we need to prove the following lemma, which is of inde-
pendent interest.

Lemma 4.2. Let  ÇÎ ¥s C Ln n
loc
log ( ) ( ),  Îq nlog( ), and  < < ¥- +q q x q1 ;( )

then, the dual space of Bq
s
(·)
(·) is ¢

-Bq
s

(·)
(·), where

+
¢
=

q x q x

1 1
1.

( ) ( )

Proof. Step 1. Let ÇÎ ¥s C Lloc
log , Îq log. We prove in this step that

 Ì ¢-B Bq
s n

q
s n( ) ( )(·)

(·)
(·)
(·) , where  ¢Bq

s n( )(·)
(·) stands for the dual space of -Bq

s n( )(·)
(·) . Let

Î ¢
-f B ;q

s n( )(·)
(·) define j= å =- +

f fk r k r1
1 ( ˆ ) , wherejℓ is defined as in (3.7) and j is a smooth

decomposition of unity [2, 43]. Then, we know that

 å j= ¢
=

¥
f f in 4.2

k
k k

n

0

( ˆ ) ( ) ( )

and

⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨⎪

⎩⎪

⎫
⎬⎪

⎭⎪



 









ò

ò

å

å

l
l

j

l
j

= >

>
l

-

=

¥ - ¢

¢
 ¢

=

¥ - ¢

¢
 ¢

¢ ¢

-

 

 

f

f x x

C f x x

C f

2

inf 0 :
2

d 1

inf
2

0 :
2

d 1

. 4.3

s
k L ℓ

j

js x q x

q x j k
q x

j

js x q x

q x k
q x

B

,

0

0
2

q n q

n

n

q
s

( )

∣( ˆ ) ( )∣

∣( ˆ ) ( )∣

( )

(·)
( )

( ) ( )

( )
( )

( ) ( )

( )
( )

(·) (·)

(·)
(·)

Inverse Problems 32 (2016) 085006 J Jia et al

20



Take  j Î n( ). We have the following:
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Hence, we have now proved that  Ì ¢-B Bq
s n

q
s n( ) ( )(·)

(·)
(·)
(·) .

Step 2. In this step, we need to prove  ¢ Ì -B Bq
s n

q
s n( ) ( )(·)

(·)
(·)

(·) . Because

 jÎ  
=

¥f B f2q
s n s k

k k 0( ) { ( ˆ ) }(·)
(·) (·) is a one-to-one mapping from Bq

s n( )(·)
(·) onto a subspace
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subspace. By the Hahn–Banach theorem, g can be extended to a continuous linear functional
on L ℓ,q n q( )(·) (·) , where the norm of g is preserved. If  j Î n( ), considering corollary 1 of
theorem 8 in Chapter 13 of [13], we have
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where the last inequality follows from lemma 5.4 of [12]. (We need a small modification of
lemma 5.4 of [12]; however, the modification is straightforward, and therefore, we omit it.)
With the above estimates, the proof is completed. ,
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Although the above proof applies to the whole space n, it is also valid for the periodic
domain n. We return to the proof of theorem 4.1.

Proof. For any d > 0, there is d=N N1( ) such that

  d+ "I I u I n N, .n 1¯ ( ) ¯

Thus,

 r d+ "u u n N
1

2
.B n 1

q
s ( ) ¯
(·)
(·)

The sequence un{ } is bounded in Bq
s
(·)
(·). By the above lemma 4.2, we know that Bq

s
(·)
(·) is

reflexive and that there exists Îu Bq
s¯ (·)

(·) such that u un ¯ in Bq
s
(·)
(·). By the compact embedding

of Bq
s
(·)
(·) in X, we deduce that u un ¯, strongly in X. Notice that r uBq

s ( )
(·)
(·) is lower semi-

continuous by theorem 2.2.8 of [11]. We can use similar ideas to those used for theorem 2.7
in [5] to complete the proof. ,

5. Application to the backward diffusion problem

In this section, our theory is applied to backward diffusion problems for integer-order
equations and fractional-order equations.

5.1. Integer-order diffusion equation

For simplicity, only the periodic domain n is considered. Define the operator A as follows:






=

=- D =

 H L

A A H

, , ,

, .

n

n

2

2

( ( ) ⟨· ·⟩ · )
( ) ( )

Consider the diffusion equation on n with periodic boundary conditions as an ordinary
differential equation in H:

+ = =
t
v Av v u

d

d
0, 0 . 5.1( ) ( )

Define = -G u ue A( ) , ℓ to be an operator defined as follows

= ℓ G u G u x G u x G u x, , , 5.2K
T

1 2( ( )) ( ( )( ) ( )( ) ( )( )) ( )

where K is a fixed constant. Then, we have the relationship

h= +y ℓ G u 5.3( ( )) ( )

where h h= =j j
K

1{ } is a mean zero Gaussian with covariance Γ and = =y yj j
K

1{ } are the data
that we measured. We can show the well-definedness of the posterior measure and its
continuity with respect to the data for the above inverse diffusion problem.

Theorem 5.1. Consider the inverse problem for finding u from noisy observations of
=G u v 1,( ) ( ·) in the form of (5.3). Let m0 be distributed as a variable-index Besov prior

d B, q
s( )(·)

(·) with  ÇÎ ¥s C Ln n
loc
log ( ) ( ),  Îq nlog( ),  >Î +s xinfx

n

q
n ( ) and d > 4. Then, the

measure m udy ( ) is absolutely continuous with respect to m0 with the Radon–Nikodym
derivative satisfying
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2
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2
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1 2 2 1 2 2
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q
t

( ) ∣ ( ( ( )))∣ ∣ ∣ ( )
(·)
(·)

with  - + <Î +t x s xsup 0x
n

q
n ( )( ) ( ) . Furthermore, the posterior measure is continuous in

the Hellinger metric with respect to the data

m m - ¢¢d C y y, .y y
Hell ( ) ∣ ∣

Proof. First, we prove two properties of the operator ℓ G( (·)).
Property 1: For large enough >ℓ 0 and a small constant  > 0, by the Sobolev

embedding theorem, we have
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q
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∣ ( ( ))∣ ( )

( )
(·)
(·)

where we used the fact that g l-A e A, l > 0, is a bounded linear operator from B a
2,2 to B b

2,2,
with any g Îa b, , . We also used embedding theorems for the variable-index Besov
space [1].

Property 2: Let u1, u2 be two different initial data points for the diffusion equations.
Similar to the proof of Property 1, we have





- -
= -
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¥

¥

 
 
 

ℓ G u ℓ G u K G u G u

K G u u

C u u . 5.5

L

L

B

1 2 1 2

1 2

1 2
q
t

∣ ( ( )) ( ( ))∣ ( ) ( )
( )

( )
(·)
(·)

Let =X Bq
t
(·)
(·) . With Property 1 and Property 2, it is straightforward that F u y;( ) satisfies

Assumption 1 (i)–(iv) with a = 01 and a = 12 . By theorem 3.12 and theorem 3.13, we
immediately obtain our desired results. ,

5.2. Fractional-order diffusion equation

There is a vast amount of literature on fractional-order diffusion equations. For the well-
posedness theory, we refer to [19, 32–34]. We treat fractional diffusion equations on the
periodic domain as follows:

 ¶ + -D = Î
=

a bv t x v t x t x
v u

, , 0, 0, ,
0 , 5.6

t
n( ) ( ) ( )

( ) ( )

where a<0 1 and b<0 1 and ¶a
t stands for the Caputo derivative of the α order,

which can be defined as follows
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¶

G -
- ¢a a-f t t s f s s

1

1
d ,t

t

0
( ) ≔

( )
( ) ( )

where G(·) is the usual Gamma function. Define the operator A as follows:






=

= -D =b b

 H L

A A H

, , ,

, .

n

n

2

2

( ( ) ⟨· ·⟩ · )
( ) ( ) ( )

Consider the heat conduction equation on n with periodic boundary conditions as an
ordinary differential equation in H:

¶ + = =av Av v u0, 0 . 5.7t ( ) ( )

If A is a bounded operator, e.g., a positive number, then the solution of the above
equation (5.7) has the following form:

= -a
av t E At u,( ) ( )

where aE (·) is the Mittag-Leffler function defined as

å a
=

G +
a

=

¥

E z
z

k 1
.

k

k

0

( )
( )

For more properties of the Mittag–Leffer function, we refer to [24, 36]. [35] proposed a
fractional operator semigroup that characterizes the solution of the abstract fractional Cauchy
problem (5.7). Because operator A in our setting can generate a fractional operator semigroup,
we can define = -aG u E A u( ) ( ) , ℓ to be an operator defined as follows:

= ℓ G u G u x G u x G u x, , , 5.8K
T

1 2( ( )) ( ( )( ) ( )( ) ( )( )) ( )
where K is a fixed constant. Then, we have the relationship

h= +y ℓ G u 5.9( ( )) ( )

where h h= =j j
K

1{ } is a mean zero Gaussian with covariance Γ and = =y yj j
K

1{ } are the data we
measured. Reviewing the proof of theorem 5.1, the key points are the estimates of the
operator ℓ G( (·)). In more complicated situations, fractional diffusion equations do not have
the strong smoothing effects that normal diffusion equations have. For a more complete
illustration, we refer to [20]. The Mittag–Leffer function appears naturally in fractional
diffusion equations and only has a polynomial decay rate, which restricts the smoothing
effect. More precisely, we list the following decay rate estimates.

Lemma 5.2. [36] If a< <0 2, m is an arbitrary real number such that
pa

m p pa< <
2

min , .{ }

Then, for an arbitrary integer p 1, when  ¥z∣ ∣ , the following expansion holds:

åa b a
= -

G -
+a

=

-
- -a

E z
z

k
O z

1
e ,z

k

p k
p

1

11( )
( )

(∣ ∣ )

where  mzarg∣ ( )∣ .

Based on the above observation, we must restrict the fractional-order α, β to some
appropriate interval to gain enough smoothing effects so that the forward operator is Lipschitz
continuous. More precisely, we can obtain the following result.
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Theorem 5.3. Assume the dimension n 3. Consider the inverse problem for determining u
from noisy observations of =G u v 1,( ) ( ·) in the form of (5.9) with a<0 1 and

b< 1n

4
. Let =X L n2 ( ), m0 be distributed as a variable-index Besov prior d B, q

s( )(·)
(·)

with  ÇÎ ¥s C Ln n
loc
log ( ) ( ),  Îq nlog( ),  >Î +s xinfx

n

q
n ( ) and d > 4. Assume

 ÇÎ ¥t C Ln n
loc
log ( ) ( ) and

- < < -
-

- + -
+

n

q

n
t t s

n

q2
.

Then, the measure m udy ( ) is absolutely continuous with respect to m0 with the Radon–
Nikodym derivative satisfying

m
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where
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2
1 2 2 1 2 2( ) ∣ ( ( ( )))∣ ∣ ∣

and
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⎝

⎞
⎠ò m= - G - + G- -Z y y ℓ G u y uexp

1

2

1

2
d .

X

1 2 2 1 2 2
0( ) ∣ ( ( ( )))∣ ∣ ∣ ( )

Furthermore, the posterior measure is continuous in the Hellinger metric with respect to the
data

m m - ¢¢d C y y, .y y
Hell ( ) ∣ ∣

Proof. In order to prove the above theorem, we first provide the following estimates. Let
Îf ℓ Zℓ

n( ) be the Fourier coefficient of function f. Then, we have
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where we used lemma 5.2. Considering - < < -- + -
- +t t sn

q

n n

q2
, for an arbitrary small

positive number  > 0, we know that

- + --
-

B B X.q
t t n

q
n

2,2
2↪ ↪(·)

(·)

Using (5.10), we easily have
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ℓ G u K G u E A u

AE A u E A u

C u , 5.11

L L

L L

L

2 2

2

∣ ( ( ))∣ ( ) ( )
( ) ( )

( )

where we used b > n

4
to obtain the first inequality. Similarly, we can obtain

- - ℓ G u ℓ G u C u u .L1 2 1 2 2∣ ( ( )) ( ( ))∣

At this stage, we can complete the proof easily, similar to the integer case. ,
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6. Conclusion

In this paper, the d B, q
s( )(·)

(·) measure has been constructed by using wavelet representations for
the function space on a periodic domain. Roughly speaking, it can be seen as a counterpart of
variable regularization terms. Using the new non-Gaussian measure as our prior measure, we
establish the ‘well-posedness’ theory for inverse problems, similar to the work of [10]. The
new non-Gaussian prior measure we provide may lead to better understanding of variable-
order space regularization terms.

Our theory has been used for integer- and fractional-order backward diffusion problems.
In particular, the ‘well-posedness’ theory for the fractional-order backward diffusion problem
under a Bayesian inverse framework has been constructed, provided we restrict the time
derivative to 0, 1( ] and the space derivative to ⎤⎦, 2n

2( (n is the space dimension). Our study
also reflects that fractional-order problems are not a straightforward generalization of integer-
order problems. For fractional-order problems, fractional-order equations have completely
different regularization properties compared to integer-order equations.

Acknowledgments

The authors would like to thank the anonymous referees for their comments and suggestions,
which helped to improve the paper significantly. J Gao was supported partially by the
National Natural Science Foundation of China under grant no. 41390454. J Jia was supported
by the National Natural Science Foundation of China under grant no. 11501439 and the
Postdoctoral Science Foundation Project of China under grant no. 2015M580826. J Peng was
supported partially by the National Natural Science Foundation of China under grant no.
11131006, 41390454 and 91330204.

Appendix

A.1. Properties of ρE
Bt ð�Þ
q ð�Þ

appearing in section 3

Lemma A.1. Let    < ¥- +q q q1 (·) and Ît C n(·) ( ). Then, r
B
E

q
t
(·)
(·) is modular and

continuous.

Proof. Properties (1) and (2) in definition 2.1 are obviously satisfied. To prove (3), we
suppose that

r l =u 0B
E

q
t ( )
(·)
·

for all l > 0. Clearly, for some k0,

 
ò ò l w w r l =

W
u x x u2 , d d 0q x k t x q x

k
q x

B
E

n q
t0

0∣ ( )∣ ( ) ( )( ) ( ) ( ) ( )
(·)
·

Because    < ¥- +q q q1 (·) and Ît C n(·) ( ), we easily obtain that =u 0k0 . Hence,
we obtain u = 0. Let m  1. We need to prove r l ru u

B
E

B
E

q
t

q
t( ) ( )

(·)
(·)

(·)
(·) . Fix  > 0, choose

>N 0, and let m < 1 and close enough to 1 such that

Inverse Problems 32 (2016) 085006 J Jia et al

26

















ò ò

ò ò

å

å

r w w

l w w

r l

< +

< +

< +

W =

W =

u u x x

u x x

u

2 , d d

2 , d d 2

2 .

B
E

k

N
kt x q x

k
q x

k

N
q x kt x q x

k
q x

B
E

0

0

q
t

n

n

q
t

( ) ∣ ( )∣ ( )

∣ ( )∣ ( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

(·)
(·)

(·)
(·)

Hence, we find that r lu
B
E

q
t ( )
(·)
(·) is left continuous with respect to λ. We can similarly show that

it is right continuous. ,

Lemma A.2. Let Îq . Then, r
B
E

q
t
(·)
(·) is convex.

Proof. Let q Î 0, 1( ). Then,
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,

In our case, the parameter p (·) in [1] is equal to q ;(·) therefore, we only need  -q1 not
 -q2 as indicated by theorem 3.6 in [1].

A.2. Proof of lemma 3.1

For the proof of lemma 3.1, we provide the following two important lemmas.

Lemma A.3. Let    < ¥- +q q q1 (·) , d > 0. For any sequence =
¥gj j 0{ } of non-

negative measurable functions on n, assume the following:

åw w= d
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- -G x g x, 2 , .j
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k j
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q q
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Proof. It is obvious that we only need to provide the following estimates:
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Lemma A.4. Let Îq C nlog(·) ( ) with  < < ¥- +q q q1 (·) . Then, the inequality

 h * Î Î   f C fv R j j L ℓ j j L ℓ, q
E
q q

E
q

0 0
{ } { }( ) ( )(·) (·) (·) (·)

holds for every sequence w Îf x,j j 0{ ( )} of L loc
1 -functions for variable x and -measurable

functions for variable w.

Proof. The proof of this lemma is similar to the proof of lemma 5.4 in [12]. Here, we only
provide the difference. Let i denote all dyadic cubes with side length -2 i and
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where II is exactly the same as in the proof for lemma 5.4 in [12]. Next, we only provide an
estimate for the term I.
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With these estimates, it is easy to recover the whole proof. ,

With the two lemmas, following the proofs of theorems 4.4 and 4.5, we can obtain the
local mean characterizations of  WL B;q

q
s( )(·)
(·)
(·) by using our lemma A.3 and lemma A.4

instead of lemmas 4.2 and 4.3 in [22]. Replacing lemmas 5 and 9 in [23] by our lemmas A.3
and A.4, we can use the proofs for corollarys 2 and 3 in [23] to provide the proof for
lemma 3.1. As the proof is very long and does not involve any new component other than
lemmas A.3 and A.4, we omit it here.
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A.3. Proof of theorem 3.12

In the following, a short proof of theorem 3.12 is given.

Proof. Define p m= Äu y u yd , d d d0 0 0( ) ( ) ( ) and p m=u y u yd , d d du0( ) ( ) ( ). Assumption
1 (iii) provides the continuity of Φ on X, and because m =X 10 ( ) , we find that F X: is
m0-measurable. Therefore, p p 0 and π have a Radon–Nikodym derivative given by (3.2).
Theorem 6.29 of [39] implies that m udy ( ) is absolutely continuous with respect to m ud0 ( ). This
same lemma also gives (3.20) provided that the normalization constant (3.21) is positive, which
we now establish. Because m =B 1q

t
0 ( )(·)

(·) , we note that all the integrals over X may be replaced

by integrals over Bq
t
(·)
(·) for any  - + <Î +t x s xsup 0x
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n ( )( ) ( ) . By Assumption 1 (i), we note
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This upper bound is finite by theorem 3.6 because d a>
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Now, we prove that the normalization constant does not vanish. Let  r=R uBq
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which is positive. ,
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A.4. Some basic facts about wavelets

Proposition A.1. [23] (i) There is a real scaling function  j ÎF ( ) and a real associated
wavelet  j ÎM ( ) such that their Fourier transforms have compact support,j =0 1Fˆ ( ) and

⎡
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⎤
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⎤
⎦⎥Èj p p p pÌ - -supp

8

3
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3

2

3
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8

3
.Mˆ

(ii) For any Îk , there exist a real, compactly supported scaling function j Î CF
k ( ) and

a real, compactly supported associated wavelet j Î CM
k ( ) such that j =0 1Fˆ ( ) and

ò j = Î -x x x ℓ kd 0 for all 0, 1, , 1 .ℓ
M ( ) { }

In both cases, we observe that  Èj Î Îv m: 0,vm{ } is an orthonormal basis in L2 ( )
where
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2 2 , if ,vm
F

M
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( ) ≔
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and the functions jM , jF are according to (i) or (ii).

The wavelets in the first part of the above proposition are called Meyer wavelets. They do not
have compact support but are fast-decaying functions, and jM has infinitely many moment
conditions. The wavelets in the second part of the above proposition are called Daubechies
wavelets. The functions j j,M F have compact support but only have limited smoothness.

Definition A.1. [23] Let ÇÎ ¥s L C n
loc
log(·) ( ), < ¥q0 and  Îp n(·) ( ) with

 < ¥- +p p0 . Let  = = -m m: 0, 1, 2, ,2 1j
j{ }.

(i) Then,

 l l l= < ¥Î Î Î  b :p q
s

Gm
j

j G G m b, , ,j j
p q
s

0 ,
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(ii) For < ¥+p , we define
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with  Îq n(·) ( ).
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A.5. A useful corollary of Kolmogorov’s continuity criterion

Let us consider a random function u given by the random series


åx y=u A.3
k

k k
0

( )

where xk k{ } is an i.i.d. sequence and the yk are real- or complex-valued Hölder functions on
the bounded open ÌD n satisfying, for some a Î 0, 1( ],

y y a y- - Îax y h x y x y D, , ; A.4k k k∣ ( ) ( )∣ ( )∣ ∣ ( )

of course, if a = 1, the functions are Lipschitz functions.

Theorem A.1. [10] Let xk k 0{ } be countably many centered i.i.d. random variables with
bounded moments of all orders. Moreover, let yk k 0{ } satisfy (A.4). Suppose there is some
d Î 0, 2( ) such that


å y < ¥¥ S , A.5
k

k L1
0

2≔ ( )

and


å y a y < ¥d d-

¥ S h , . A.6
k

k L k2
0

2≔ ( ) ( )

Then, u defined by (A.3) is a.s. finite for every Îx D, and u is Hölder continuous for every
Hölder exponent smaller than ad 2.
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