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The purpose of this paper is to establish improved bounds for restricted isometry constants δk.
Our results, to some extent, improve and extend the well-known bound (δk < 0.307) in (Cai et al.,
2010) to δk < 0.308.

1. Introduction

Consider the following equation:

y = Aβ + z, (1.1)

where the matrix A ∈ R
n×m (n < m) and z ∈ R

n is a vector of measurement errors. If z = 0,
then (1.1) is an underdetermined linear system with fewer equations than unknowns. The
task is to reconstruct the signal β ∈ R

m based on the matrix A and the vector y. Usually, we
consider �0 minimization problem:

min
̂β∈Rn

∥

∥

∥

̂β
∥

∥

∥

0
, subject to y = Âβ + z and ‖z‖2 ≤ ε, (1.2)

where ‖ · ‖0 denotes the �0-norm of a vector, that is, the number of its nonzero components.
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We need to solve this problem and find the sparsest solution among all the possible
solutions. But it requires a combinatorial search and remains an NP-hard problem that cannot
be solved in practice. Naturally, an alternative strategy is to find �1 minimization problem:

min
̂β∈Rn

∥

∥

∥

̂β
∥

∥

∥

1
, subject to y = Âβ + z and ‖z‖2 ≤ ε, (1.3)

and we expect to find the sparsest solution.
In order to exactly recover the sparsest solution in �1 minimization, Candès and Tao [1]

introduced restricted isometry property (see Restricted Isometry Constants in Definition 2.1).
So far, there are various methods [1–9] to give the sufficient conditions on δ2k: Candès [3]
established that δ2k <

√
2 − 1 ≈ 0.4142 is the sufficient condition of exactly recover k-sparse

vectors via �1 minimization (a vector x is k-sparse if ‖x‖0 ≤ k). This sufficient condition was
later improved to δ2k < 2(3 − √

2)/7 ≈ 0.4531 in [6] and to δ2k < 3/(4 +
√
6) ≈ 0.4652 in [5].

Later, the sufficient condition was improved to δ2k < 1/(1 +
√
1.25) ≈ 0.4721 in [10] for the

special case that k is a multiple of 4 or k is very large and to δ2k < 4/(6 +
√
6) ≈ 0.4734 in [5].

Naturally, we want to give the sufficient condition about δk. To the best of our knowledge, T.
T. Cai et al. [2] firstly show that the restricted isometry constant δk ofA satisfies δk < 0.307 for
general k, then k-sparse signals are guaranteed to be recovered exactly via �1 minimization.
Based on this motivation, we construct a different partition of {1, 2, . . . , m} and then discuss
the error between original signal β and recover signal ̂β in (1.3). Themainwork of this paper is
to improve the condition to δk < 0.308 and to prove that the k-sparse signals can be recovered
exactly via �1 minimization in no noise case and be estimated stably under the perturbation
of noise.

To state our main results, we firstly give the following preliminaries.

2. Preliminaries

In 2005, Candès and Tao [1] firstly present the definition of the restricted isometry constant.

Definition 2.1 (see [1], restricted isometry constants). Let F be the matrix with finite collection
of vectors (vj)j∈J ∈ R

n as columns. For every integer 1 ≤ S ≤ |J |, the S-restricted isometry
constants δS are defined as the smallest quantity such that FT obeys

(1 − δS)‖c‖22 ≤ ‖FTc‖22 ≤ (1 + δS)‖c‖22 (2.1)

for all subsets T ⊂ J of cardinality at most S and all real coefficients (cj)j∈T . Similarly, we
define the S,S’-restricted orthogonality constants θS,S′ for S+S′ ≤ |J | to be the smallest quantity
such that

∣

∣

〈

FTc, F
′
Tc

′〉∣
∣ ≤ θS,S′ ‖c‖2 ·

∥

∥c′
∥

∥

2 (2.2)

holds for all disjoint sets T, T ′ ⊆ J of cardinality |T | ≤ S and |T ′| ≤ S′.
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In addition, we can easily check the following monotone properties:

δk ≤ δk1 , if k ≤ k1 ≤ n,

θk,k′ ≤ θk1,k′
1
, if k ≤ k1, k

′ ≤ k′
1, k1 + k′

1 ≤ n.
(2.3)

Apart from the above relationship, Candès and Tao [1] proved that the restricted
orthogonality constant θk,k′ and the restricted isometry constant δk are related by the fol-
lowing lemma.

Lemma 2.2 (see [1]). One has θS,S′ ≤ δS+S′ ≤ θS,S′ +max(δS, δS′) for all S, S′.

In the sequel, a useful inequality between �1-norm and �2-norm will be introduced.

Proposition 2.3 (see [2]). For any x ∈ R
n,

‖x‖2 −
‖x‖1√

n
≤

√
n

4

(

max
1≤i≤n

|xi| − min
1≤i≤n

|xi|
)

. (2.4)

At the last of preliminaries, we introduce the square root lifting inequality [10].

Lemma 2.4 (see [10]). For any a ≥ 1 and positive integers k, k′ such that ak′ is an integer, then

θk,ak′ ≤ √
aθk,k′ . (2.5)

3. Improved Bounds for Restricted Isometry Constants

In this section, we discuss the new restricted isometry constant δk for sparse signal recovery
via �1 minimization in (1.3).

Theorem 3.1. Suppose β is k-sparse. Then the �1 minimizer ̂β defined in (1.3) satisfies

∥

∥

∥β − ̂β
∥

∥

∥

2
≤ 2

√
2
√

1 + δk
1 − 13/4δk

ε, (3.1)

where δk is the k-restricted isometry constant of A in (1.3).

Proof. Let h = ̂β − β ∈ R
m. Partition {1, 2, . . . , m} into the following sets:

T0 = {1, 2, . . . , k}, T1 =
{

k + 1, . . . , k +
k

2

}

, T2 =
{

k +
k

2
+ 1, . . . , 2k

}

, . . . , (3.2)
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where k is an even number. And rearranging the indices if necessary, |h(1)| ≥ |h(2)| ≥ · · · ,
where |h(i)|, i = 1, 2, . . . , m is the ith entry of the above vector by rearranging the indices.
Then by Proposition 2.3, we obtain

∑

i≥1
‖hTi‖2 ≤

1
√

k/2

∑

i≥1
‖hTi‖1 +

√

k/2
4

(

|h(k + 1)| −
∣

∣

∣

∣

h

(

k +
k

2

)∣

∣

∣

∣

)

+ · · · . (3.3)

By the triangle inequality for ‖ · ‖1, we have

∣

∣

∥

∥β
∥

∥

1 − ‖−hT0‖1
∣

∣ ≤ ∥

∥β + hT0

∥

∥

1. (3.4)

Since T0
⋂

Tc
0 = ∅, we have

∥

∥β
∥

∥

1 − ‖hT0‖1 +
∥

∥

∥hTc
0

∥

∥

∥

1
≤
∥

∥

∥β + hT0 + hTc
0

∥

∥

∥

1
=
∥

∥β + h
∥

∥

1 =
∥

∥

∥

̂β
∥

∥

∥

1
≤ ∥

∥β
∥

∥

1. (3.5)

The last inequality holds because ̂β solves (1.3). Then the result is that

∥

∥

∥hTc
0

∥

∥

∥

1
≤ ‖hT0‖1. (3.6)

Substituting (3.6) into (3.3), we get

∑

i≥1
‖hTi‖2 ≤

1
√

k/2

∥

∥

∥hTc
0

∥

∥

∥

1
+

√

k/2
4

|h(k + 1)|

≤ 1
√

k/2
‖hT0‖1 +

√

k/2
4

· ‖hT0‖2√
k

≤ 1
√

k/2
·
√

k‖hT0‖2 +
1

4
√
2
‖hT0‖2

≤ 9
√
2

8
‖hT0‖2.

(3.7)

And note that

|〈Ah,AhT0〉| ≥ |〈AhT0 , AhT0〉| −
∑

i≥1
|〈AhTi , AhT0〉|. (3.8)

From (2.2) and (2.5) in Lemma 2.4, we have

|〈AhTi , AhT0〉| ≤ θk/2,k‖hTi‖2 · ‖hT0‖2. (3.9)

By Lemma 2.2, we have

θk/2,k = θk/2,2·k/2 ≤
√
2δk/2+k/2 =

√
2δk. (3.10)
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From (3.7)–(3.10), we have

|〈Ah,AhT0〉| ≥ (1 − δk)‖hT0‖22 − θk/2,k‖hT0‖2
∑

i≥1
‖hTi‖2

≥ (1 − δk)‖hT0‖22 −
√
2δk‖hT0‖2 · 9

√
2/8‖hT0‖2

≥
(

1 − 13δk
4

)

‖hT0‖22.

(3.11)

From (1.3), we have

‖Ah‖2 =
∥

∥

∥A
(

̂β − β
)∥

∥

∥

2
≤
∥

∥

∥Âβ − y
∥

∥

∥

2
+
∥

∥Aβ − y
∥

∥

2 ≤ 2ε. (3.12)

In addition, we obtain the following relation by simple calculation

∥

∥

∥hTc
0

∥

∥

∥

2

2
=
(

|h(k + 1)|2 + |h(k + 2)|2 + · · ·
)

≤ max
i≥k+1

|h(i)| · (|h(k + 1)| + |h(k + 2)| + · · · )

= max
i≥k+1

|h(i)| ·
∥

∥

∥hTc
0

∥

∥

∥

1

≤ ‖hT0‖1
k

·
∥

∥

∥hTc
0

∥

∥

∥

1
.

(3.13)

Since ‖hTc
0
‖1 ≤ ‖hT0‖1, we have

∥

∥

∥hTc
0

∥

∥

∥

2

2
≤ ‖hT0‖21

k
. (3.14)

By the norm inequality ‖hT0‖21 ≤ k‖hT0‖22 and (3.14), we have

∥

∥

∥hTc
0

∥

∥

∥

2

2
≤ ‖hT0‖22. (3.15)

From (3.7), (3.11)-(3.12), and (3.15), we have

‖h‖2 ≤
√
2‖hT0‖2 ≤

√
2|〈Ah,AhT0〉|

(1 − 13δk/4)‖hT0‖2
≤

√
2‖Ah‖2 · ‖AhT0‖2

(1 − 13δk/4)‖hT0‖2

≤
√
2 · 2ε ·

√

1 + δk‖hT0‖2
(1 − 13δk/4)‖hT0‖2

≤ 2
√
2
√

1 + δk
1 − 13δk/4

ε.

(3.16)

Remark 3.2. If ε = 0, it is the case where the k-sparse signals are guaranteed to be recovered
exactly via �1 minimization under no noise situation.
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Corollary 3.3. Let y = Aβ + z with ‖z‖2 ≤ ε. Suppose β is k-sparse with k > 1. Then under the
condition δk < 0.308 the constrained �1 minimizer ̂β given in (1.3) satisfies

∥

∥

∥β − ̂β
∥

∥

∥

2
≤ 3.2344

0.308 − δk
ε. (3.17)

Proof. The proof of this corollary can be easily obtained if we put δk < 0.308 into the inequality
(3.1) in Theorem 3.1.
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[9] C. Dossal, M.-L. Chabanol, G. Peyré, and J. Fadili, “Sharp support recovery from noisy random
measurements by �1-minimization,” Applied and Computational Harmonic Analysis, vol. 33, no. 1, pp.
24–43, 2012.

[10] T. T. Cai, L. Wang, and G. Xu, “Shifting inequality and recovery of sparse signals,” IEEE Transactions
on Signal Processing, vol. 58, no. 3, pp. 1300–1308, 2010.


