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On the global well-posedness of a generalized
2D Boussinesq equations
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Abstract. In this paper, we consider the global solutions to a generalized
2D Boussinesq equation

Ow+u-Vw+vA%w = 0,,,

U=Vt = (=0, 00))0,  Av = A (log(I - A))w,
0 +u- VO + kA0 =0,

w(z,0) =wo(x), 6(x,0) = 0o(x),

witho >0,y>0,v>0,k>0,a<land §<1. Wheno =0,v >0,
a €[0.95,1) and 8 € (1 —a, g(a)), where g(a) < 1 is an explicit function
as a technical bound, we prove that the above equation has a global and
unique solution in suitable functional space.
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1. Introduction

The aim of this paper is prove that the following generalized 2D Boussinesq
equation has a global solution in suitable functional settings.

Ow +u-Vw+vA% =6,

U=V = (=05, 00, )0, A= A7(log(I - A))w,
00 +u- VO + rkAH =0,

w(z,0) =wo(x), O(x,0)=0(x),

(1.1)

where w = w(z,t), ¥ = ¢(z,t) and § = 0(z,t) are scalar functions of z € R?
andt > 0, u = u(z,t) : R? = R?is a vector field, 0 <a < 1,0< < 1,0 >0
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and v > 0 are real parameters, and A = (fA)% and A? are Fourier multiplier
operators with

A7 f(&) = €17 f ().

This generalized 2D Boussinesq equation proposed in [1] firstly. Chae
and Wu [1] proved that the above vorticity equation does have the velocity
formation as follows

v +ut (V- v) + vA = —Vp + ey,
V-v=0, u=A%(log(I—A))v,

00 +u- VO + kAP0 =0,

v(z,0) = vo(z), O(z,t) = bo(z).

Obviously, the above model can be seen as a generalization of the 2D
Boussinesq equations.

From physical view, Boussinesq type equations model the oceanic and
atmospheric motions [2]. From the mathematical view, the fully viscos model
with v > 0, Kk > 0, @« = 3 = 2 is the simplest one to study. And the most
difficult one for the mathematical study is the inviscid model, that is when
v = k = 0. In addition, the 2D Boussinesq equations acts very similar to
the 3D Euler and Navier—Stokes equations, so it is hoped that the study of
the 2D Boussinesq equations may shed light on the global regularity problem
concerning the 3D Euler and Navier—Stokes equations.

Now, there are numerous studies about 2D Boussinesq equations. Chae
[3] proved the global in time regularity for the 2D Boussinesq system with ei-
ther the zero diffusivity or the zero viscosity. In 2010, further progress has been
made by Hmidi et al. who proved the global regularity when the full Lapla-
cian dissipation is replaced by the critical dissipation represented in terms of
V—A [4,5]. Recently, Miao and Xue [6] generalized the results to accommo-
date both fractional dissipation and fractional thermal diffusion. Some results
about 3D case have been obtained in [8] by Hmidi et al. At the same time,
some other generalized models have been considered. Lai et al. [9] studied the
initial boundary value problem of 2D Boussinesq equations over a bounded
domain with smooth boundary. Wang and Zhang [7] discussed the global well-
posedness for the 2D Boussinesq system with the temperature-dependent vis-
cosity and thermal diffusivity. Wu and Xue [10] showed that there is a global
unique solution to the two-dimensional inviscid Bénard system with fractional
diffusivity system.

We note that Chae and Wu [1] only studied system (1.1) in the case
v >0, k=0, a = 0. Concerning the other cases, can we get similar results as
in 2D Boussinesq system for system (1.1) which is a meaningful generalization.
In this paper, we focus on the case v > 0,k > 0,0 < a<land 0 < g < 1.
Obviously, a and ( should satisfy the relation a4+ 3 > 1, for the maximal gain
of a derivative from the dissipation term should at least roughly compensate
the loss of one derivative in € in the vorticity equation of system (1.1) with the
help of the diffusion effect in the temperature equation. For brevity, we always
set v = k = 1 in the following. We shall adopt the subtle method used in

(1.2)
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[1,4-6] to study the coupled effects of the generalized system. More precisely,
we have the following result.

Theorem 1.1. Consider the generalized Boussinesq equations (1.1) with c=0

and vy > 0. Let a € [13.1), B € (1 — a, g(a)) with g(e) := min{2 — 20, § o — 2,

20°
510{ 110a)} Assume the initial data (wo,0o) satisfies wg € L2NLP for any p > 2

and 6y € H'=*nN B;O"f‘“ for arbitrary small € > 0. Then (1.1) has a unique
global solution (w,0) satisfying for any t > 0,

weL®L*NLPLP N L} B‘M
0 € LE(H' N B ) nLi(H'~+ nBL {77,

For the definitions of Besov space B, ,, generalized Besov space B,'J and
mixed space—-time Besov space see the next section below. Now, we should give
some comments.

Remark 1.2. We know that the case fora <1, 8 <1 and a+£ > 1 is nontriv-
tal. Until now there is no effective way to treat this case, for the reqularization
from the fractional diffusion term not strong enough. So we have to exploit the
structure of the system to overcome the difficulty. In this paper, the method is
workable but very restrictive.

Remark 1.3. In our theorem, we need 3 smaller than a very complicated func-
tion. It is a technical assumption. In common sense, the term AP is a good
term when 3 is large. So we can gauss that the result in Theorem 1.1 is hold

forae[3.1), Be(l—-a,l).

To prove Theorem 1.1, there are two main difficulties. Firstly, following
the procedure as in [1], we will encounter the operator like R, = A~*9; which
is different from Riesz Transform and is not a bounded operator in LP space.
So the technique used in [1] can not be used here without significant changes.
On the other hand, considering the structure of the system (1.2), we hardily
obtain the L? estimates of v. Hence, the techniques used in [6] also need lots
of nontrivial changes.

The paper is organized as follows. In Sect. 2, we list some useful results
about Besov space and some estimates which will be used in our proof. Sec-
tion 3 is devoted to prove some priori estimates which are the main part of
this paper. In Sect. 4, we give the proof of the uniqueness part of Theorem
1.1. Finally, some technical lemmas are shown in Sect. 5.

2. Preliminaries

Throughout this paper we will use the following notations.

e For any tempered distribution u both @ and Fu denote the Fourier trans-
form of w.
e For every p € [1,00], || - ||L» denotes the norm in the Lebesgue space LP.
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e The norm in the mixed space-time Lebesgue space LP([0,T]; L"(RY)) is
denoted by || - ||z 1~ (with the obvious generalization to [ - || » x for any
normed space X).

e For any pair of operators P and @ on some Banach space X, the com-
mutator [P, Q] is given by PQ — QP.

Then, we give a short introduction to the Besov type space. Details about

Besov type space can be found in [11] or [12]. There exist two radial positive
functions y € D(R?) and ¢ € D(RY\{0}) such that

o X(§) + 22,50 #(279€) = 1; Vg > 1, suppx Nsuppp(277-) = ¢,
o suppp(277) Nsuppp(2~*) = ¢, if |j — k| > 2,
For every v € S'(R%) we set
A_jv=xD)v, YgeN, Ajv=¢2 D)y and §;= Z A,
—1<m<j—1
The homogeneous operators are defined by
Aqv = ¢(27D)v, Sj = Z Aju Vg € Z.
m<j—1
One can easily verifies that with our choice of ¢,

AALF=0 if [j—k[>2 (2.1)

Aj(Sk—1fArf)=0 if [j—k|>5. (2.2)
As in Bony’s decomposition, we split the product wv into three parts
wv = Tyv + Tyu + R(u,v),
with
T.v = Z Sj—1ul\jv,
J

R(u,v) = Z Ajugjv
J

Where Kj = Aj,1 —+ Aj + Aj+1.

Let us now define inhomogeneous Besov spaces. For (p, q) € [1,+00]? and
s € R we define the inhomogeneous Besov space B, ; as the set of tempered
distributions u such that

HUHB;q = (2js||Aju||Lp)eq < +o00.

The homogeneous Besov space B;q is defined as the set of u € ' (R%)
up to polynomials such that
el = (27 Agullzo)en < +oo.
Notice that the usual Sobolev spaces H*® coincide with B3, for every
s € R and that the homogeneous spaces H® coincide with B§2
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For s € (0,1) and 1 < p,q < 0o, we can define Besov spaces equivalently

as follows
_ \q 1/‘1
lully = < / d (lufe +1) = u(z)|cr) dt) , (2.3)

|t|d+sq

u(z —u(z)||rr)? /a
||U||B;q = |l + (/Rd ([[u(z +1) (@)l r) dt) . (2.4)

e

When g = oo, the expressions are interpreted in the normal way.
We shall need some mixed space-time spaces. Let 7' > 0 and p > 1, we
denote by L%B;q the space of distribution u such that

lull g gy = 1271 Ajul Lo )eall g, < +o0.
We say that u belongs to the space E’}Bz,q if
lullzgss = (27| Aull g 1o )ea < 400.
Through a direct application of the Minkowski inequality, the following
links between these spaces is true [13]. Let £ > 0, then

4B, = IhBy, = I4By a2 p,

LGBt — L4.Bs  — LhBS,, ifp>q.

Then, we give the definition of a generalized Besov spaces which include
an algebraic part of the modes. For 5,7 € R and 1 < p, g < oo, the generalized
Besov spaces By 7 and BpJ are defined by

lull a7 = 12721 + i)V 1A 5wz flex < o0,
lull g2y 1= 127 (1 + 1317 |1 Agullzelles < oo.

P3sy TPIISY TP TPI3sY S ;
The space Ly By7, Ly Byo, Ly By and Ly BpY are defined similar as in
Besov space.
Bernstein type inequalities for fractional derivatives and Osgood inequal-
ity are often used in our proof. For reader’s convenience, we list them here.

Lemma 2.1. Let > 0. Let 1 < p < g < 0.
(1)  If u satisfies
supa C {geRd g < K27},
for some integer j and a constant K > 0, then
1(=2)ull paggay < C12%TH9G ™D |lu| o ray.
(2)  If u satisfies
supu C {§ eR?: K27 < €] < K22j}
for some integer j and constants 0 < Ky < Ko, then
C12% ul| oy < [1(—A)ull pagray < C222°9 TG =[] 1 (gay

where Cy and Cs are constants depending on «, p and q only.
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Lemma 2.2. Let a(t) > 0 be a locally integrable function. Assume w(t) > 0
satisfies

Suppose that p(t) > 0 salisfies
t
pt) < at [ alshulp(s) ds
to
for some constant a > 0. Then if a =0, then p =0; if a > 0, then

—Q(p(#)) + Qa) < / a(r) dr,

to

Q(z):/:w(lﬂdr

At the end of this section, we collect some useful estimates for the smooth
solutions of the following linear transport—diffusion equation

00 +u-VO+A9=f [ecl01]
divu =0, 6(z,0) = y(x).

where

(2.5)

The following Lemmas can be found in [6,14-16].

Lemma 2.3. Let u be a smooth divergence-free vector field of R and 6 be a
smooth solution of Eq. (2.5). Then for every p € [1,00] we have

t
16| ze < 160l z» +/0 1 (D)l e dr.

Lemma 2.4. Let u be a smooth divergence-free vector field of R® with vorticity
w be a smooth solution of Eq. (2.5). Then for every (p,p) € (1,00) x [1, 0],
we have
¥}

sup 2 | Ajullyre S 100l + [10llzoe lwllzi e + ([ f1ILi 2o-

j€
Lemma 2.5. Let —1 < s < 1, (p,p1,p,7) € [1,00]*, p1 < p and u be a
divergence-free vector field belonging to Li (RT; Lip(RY)). We consider a
smooth solution 0 of the Eq. (2.5), then there exists C > 0 such that for
every t € R,

10z, + 1= A1)l s < Ce™ (6]
P,q LB P

t=P,q

5y, +If sy, ) -

and

< CeCU®) .
0o < OO (Wallgg, +1A1 s )

tBP>lZ t p,q

where U(t) := fg [Vu(r)| Lo dr.
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3. Commutator estimates

First we recall a pseudo-differential operator R, defined by R, := A~“0,
0 < a < 1. Considering R, = A'~“R, where R is the usual Riesz transform,
we call R, the modified Riesz transform. The following theorem can be found
in [6].

Theorem 3.1. Let 0 < a < 1, ¢ € N and R, := % be the modified Riesz
transform.

(1) Let x € D(R?). Then for every (p,s) € [1,00] x (o —1,00),

HAsx(Q_qA)RaHA(LP) < 9a(s+l-a)

(2)Let C be a ring. Then there exists ¢ € S(R?) whose spectrum does not
meet the origin such that

Rou = 29410 5(940.) 5y,
for every w with Fourier variable supported on 29C.
The following Lemma is useful in dealing with the commutator terms.
Lemma 3.2. Let p € [1,00] and 6 € (0,1).
(1) If |z|°¢ € L', f € Bﬁ,oo and g € L, then
6% (f9) = f(@*g)lle < Cllal’dllellfll g5 _llgllze~. (3.1)
In the case when 6 = 1, we have
¢+ (£9) = f(¢* g)llzr < Cllelll [V £llzollglizes. (3.2)

(2) If |z|°¢ € L', f € BS, _ and g € LP, then

6+ (£9) = F(& 9w < Clll*Blicall 1l s, _llollze- (3.3)
In the case when 6 = 1, we have

¢ * (fg) = F(¢xg)llr < Clllzl@l L[Vl llgllzr- (3.4)

The first part is proved in [1], so we just prove the second part of the
above Lemma.
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Proof. By Minkowski’s inequality, for any p € [1, o],

16+ (fg) = f(¢* g)llLv

U‘/@b (IZ))Q(IZ)dzpdxr/p
/L/W @—z»mx—afdﬁvp@
f{/”f"WAJ“”““VP¢@N(/me—znmm)”pdz

< lef gl sup WO ZICZDle, )

|z]>0 I |6
< Cllel gl flae_lgller

In the last inequality, we use the definition of Bgo’oo. O

The next Theorem concerns the crucial commutators involving R,.

Theorem 3.3. Let o € (0,1),e > 0 taken to be small enough, u be a smooth
divergence-free vector field of RY and 6 be a smooth scalar function. Then,

(1) For every (s,p,q) € (—=1,a —0) X [2,00] X [1,00] and take € > 0 satisfy
5+ 0+ e < a we have

IRasu-V10lBs , S llull g1z (II9|

pepeere + 0l ) . (35)

(2) In the 2 dimensional case, if u = V+ATIAT (log(ld— A)) w , w:=G +
Rab and 0 < o < a < 1. Then for every 0 < s < a — o, taking arbitrary
small € > 0 such that s + 0 + € < «, we have

IRa, ulbllms S NGlL2l101 pssgre—o + 10 Lo 10]] rosrsose—e (3.6)
+ Gl 21101l (3.7)

Lla

Proof. (1) Due to Bony’s decomposition we split the commutator term into
three parts

[Rett- V0= [Ra,Sp1t- VAL + > [Ra, Ayu- V]S, 10
neN neN
+ > [Ra, Anu- VA0
n>—1
— I+ 114111

For I, since for every n € N the Fourier transform of S,,_juA,0 is sup-
ported in a ring of size 2", then from Theorem 3.1 and Lemma 3.2, we have
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for every j > —1
18T S > Ndn*, Snoru- VAL Lo
[n—jl<4

< Z gn(ote—a) ||u||B;;g,752nHAn9HL°°
[n—j|<4 |

d

5 Cj2_j5||11,||B;;ngE B;j:g«}»e«i»lfu’

where ¢,,(z) := 2M(dH1=0) ¢ (27) with ¢ € S and (¢;)j>—_1 with ||cj|lea = 1.
Thus we obtain

s, S llullgy—o-

1]

0||Bg‘g:g+e+lfoc.
For II, similar to I we have

A 11| e
S Z [[@n*, Apu - V]S 10|l Lr

In—j|<4,neN
5 Z 2n(a+€_a)”u||3;;§'f€
In—jl<4

S lullgyg-279 37 2pleremem gt et AL | .
—1<n/ <j+2

VS_10|| L

Thus using discrete Young’s inequality we obtain

1115, S llull gy 16]

p,q

B;{»g+e+lfa .
For III, we further write

IT1 = div[Ra, ApulAnf + D [0iRa, A 1u']A 46
n>0 1<i<n
=III"+1171°.
Considering Bernstein’s inequality and Theorem 3.1, we deal with the
term IT1' as follows

|AGITTY| o
S Y IAdIVRG(AnuA )|+ Y [ Adiv(ALURGALO) L
n>j—3,n>0 n>37—3,n>0
5 Z (2j(2—a)+2j2n,(1—a))2—n(1—a—e)HAnAl—n—euHLp”EnQHLOO
n>j—3
5 HUHB;7£7527J-S Z (2(jfn)(s+2704)+2(j7n)(s+1))2n(s+1+a+efo¢)”AnHHLW'

n>j—4
Thus we obtain for every s > —1

| 1117

B, S Hu”B;;g*é||9|\B;;ryé+a+efa

p,q ™
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Choosing a suitable function xy € D(R?), we have

1117 = 3" [0Rax(D), A_u']A_.

1<i<n

By Theorem 3.1, we know that 0;Rqx(D) is a convolution operator with
kernel h satisfying

|h(z)] < C(1+ |z))~%2%*,  for all z € R™

Next, from the fact that A;I11? = 0 for every j > 3 and using Lemma
3.2, we have

I, < T, A_yu]A 10| o
Szl Al [A1ull grg -

O\l oo -

A_10]|p~

< lull gy -z

Hence, the proof of the first part is complete.
(2) As in the first part, we can get the following equality by Bony’s
decomposition.

[Rosulf = > [Ray Sn-1t]An0 + > [Ra, Apt]Suo10+ > [Ra, Apul A0

neN neN n>—1
=1+ 1I+11I.
For brevity, let P(A) := A% (log(Id —A))”. For I, denote I, :=

[Ra, Sn—1u]A,0. Since for each n € N the Fourier transform of S,_jul,6
is supported in a ring of size 2", from Theorem 3.1 there exists ¢ € S(R?)
whose spectrum is away from the origin such that

Iy = [pn*, Su_1 VEATIP(A)GIA L0 + [, St VEATP(A)R0)A,0,

where ¢, (z) = 2MdH1=0)p(2ny), Using Lemma 3.2 and Theorem 3.1, we
obtain

1 Zallzz S M2l Gullpr [AT 7St VAT P(A)G 12| An )|
e Pl L AT TS VAT P(A)R a8 e [| A6 2
S 27|z T ] 1 |G 2| A6 o
+ 20t 0= g0 1a]|6]] e || A 12
S 20N |G| 2 | Anb] L + 27T D29 oo | A6 2
Thus, we can obtain
1T < G216l et emes + 18] e 6] es0es1-20.
For II, denote I, := [Ra, AnulS,—10. As in I, we have
I, = [pn*, Ay AT 'VEP(A)G]S,-10 + [dnx, Ay AT VEP(A) RG] Sp—160
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By Lemma 3.2, we get
1 Zallze S 27 PullLa |AT 77 AL VAT P(A)G | 2]| 16| L
2l Gl [ATTTTAVEATEP(A) R0 12| Sn—1 ] £
< 2| G L2 | Sna O poe + 27T D2 AL 0| L2 ]|0] oe-
Hence, by discrete Young’s inequality, we have

11z S Gl 6]

Bij,g+£7a + ||9||Loo H9||Hs+l+o+672a.

We further write III as follows
1T =Y Ra(Anuln0) + > AjuRaAL0 + [Ra, A_ju]A_10

n>0 n>0
=III'"+ [I1I* + 117°.
First, we note that for every n > 0
[Anullzs S 2"+ D ALE L2+ 27+ A6
Then by a direct computation we have
2% A 11T 1
SPEH0 ST Al | Anfl|

n>j—3,n>0
<2 N (9n DAL G a4+ 27D A0 12 ) [[Bnf]
n>j—3
< Z 2(j—n)(s+1—a)<2n(s+0+€—04)||An0||Lm||G||L2
n>j—4

22 A, )] 2 6] ).
Thus discrete Young’s inequality yields
I e S NGllL2 10l prgre—o + 101 0]l mresrsose—sa.
For I11?, similar to I11' and using Theorem 3.1 we have
29| AT 12
S0 3 l1Anu el RaA6 e
n>j—3,n>0

<20 3 (2 A6 + 2T A6 g ) 20 B

n>j—3
€ 3 20 (2 Al G
n>j—4

+ T2 A G| 0] ).

Using convolution inequality, we obtain

11| e S NG 210

Biig+sfa + HHHLOC ||9||Hs+l+o+672a.
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For III3, since A]-III3 = 0 for every j > 3, then from Bernstein’s in-
equality we immediately have

ITI || gs < | Ra(A_1uA_10)| 12 + [|A_1uRGA_10| 12
SNA_1uA 0] L2 + |A_1uRGA 10|12
S NGz M0 2 + 110112161, 2. -
Here, we used the following fact
1A uA 102 S A yull Lo | A_10]| e
S IAZIAT ]| g [|A 16 oo
S A 1wllze A 16][ s
SIAGlLe [|A-10] o2 + A1 RO Lo [A-16]|Lra
SNGlzea|10llzez + (101 Les 0] ez,

1,1 1 1,1 1, 1— : _ 2 .
where ot =3 and T T 5+ 5> And taking p; = 2, p» = 1= in our
deduction. From all the above statements, we can obtain our conclusion. [

4. Some priori estimates

First we need to introduce some notations. Let G := w — R,0. Considering
the vorticity equation

Ow +u-Vw+ A% = 010,
and the acting of R, on the temperature equation
RO+ u- VRO + AR = —[Ru,u- Vb,
we directly have
G +u-VG+ AG = [Ra,u-V]0 + A°R.0 (4.1)
4.1. Estimation of ||G]||L=
We present a Lemma that is proved in [6], for it is useful in our proof.

Lemma 4.1. Let (w,8) be a smooth solution of the system (1.1). Then for every
m € [2,00] and t € RT

16l ;2 < ll6ol e (4.2)
and for p € [1,00]
10120 < 1ol - (43)

The following is our estimation about ||G||Lz.

Theorem 4.2. Consider (1.1) with o = 0 and v > 0. Assume that (wg,0)
satisfies the conditions in Theorem 1.1. Let (w, 0) be the corresponding solution
of (1.1), G is defined as above. Then if o, B satisfies (o, 3) € (3,1) x (1 —
a,min {3a — 2,2 — 2a})].
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Then the following inequality holds true

t
1G]z +/0 IG(7)II%, 5 dr < B(t) (4.4)
where B(t) is a smooth function of t depending on the initial data only.

Proof. Multiplying G to Eq. (4.1) and integrating with spatial variable, we
obtain
1d 2 o 2 B—a
§£||GHL2+||A2G||L2= [Ra,u-V])§Gdx+ [ AP~¢0,0 Gdx
=I1+1I

For I, we have

|| = ‘/div[Ra,u]Hde

< AT G2 [Ra w6l o

2
%aflfe

Choosing p3 > and using Theorem 3.3, we obtain

I[Ra, ulfll -5
< ||G|\L2||9\|Bii;ga 101161 yore- g0 + G210 L2 + (1012 [10]] L2
S G z200les + 10z 101l jovem 50 + Gl L2]16] L2 + 1161 £2(16]| 22,
where € > 0 is an arbitrary small number. For II, choosing s; € [0, §], we have
[T < [[AY G g2 [ AP 70510)] o.

From above statements, we can obtain

1d a
5 = IGIZ: + 3G

S IGlz21100es + 101l Lo 101l 21— 50
+ 1G 1 L2l16ll L2 + 1101 2110l 2 + 1A™ Gl L2101 s s-a-s
From interpolation inequality and Young’s inequality, we obtain
Gl g

201 1_2s1
< CllONl grss—a-s IGN S5 I1GI 2

161l gr1+9-a—1

1
< CllOFo-0-u + CIGIT: + 71G 5 -
Using Young’s inequality and the above inequality, we have
d o
—GlL= + 1A% G
< ClGIZ2 + Clibollzonzes + ClONI oy go + ClONrba—ans, -
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Gronwall’s inequality thus leads to

t
nGam§+1A\MfG@ﬂﬁﬂh

L2H?Te 3

< O (01 g+ 100 pinin )

If% <a< %, for 1 —a < 8 < 3a— 2, then clearly for € > 0 small enough
we have

0<1+4+p3-

)

0<2+¢e—

N | Ot
o [\DQ\OJ

< B
-2
<8
-2
Using Lemma 4.1 and interpolation inequality we easily get

o) 02, g S 1+

5
L%H27§a+e

If% < a <1, wechoose 51 =2—2a € (0,5),and for 1 —a < 3 < 2-2a,
then

0§5—1+o¢§§.

Using Lemma 4.1 and interpolation inequality we get
2 2

1602151+ 1612, o g ST

Hence, the proof is complete. O

4.2. Estimation of ||G||L« for ¢ in suitable range

This subsection presents the estimate of |G|z« for ¢ in some suitable range.
Before the main theorem, we need two Lemmas [6,17].

Lemma 4.3. Suppose that s € [0,1], and f, (—=A)"f € LP(R?), p > 2. Then

2 -
P22 f(—A)fdx > = —A)2|f|2)*dx
Lisescaysa=2 [ (-aiiza

Lemma 4.4. Let v € [2,00), s € (0,1), a € (:;—:‘21,2). Then for every smooth
function f we have

— —2
1L 2f||Hs S Hf”lf”a ||f||Hs+(%—%><2—a>-

The main theorem in this subsection can be stated as follows.

Theorem 4.5. Consider (1.1) with o = 0 and v > 0. Assume that (wg,0)
satisfies the conditions in Theorem 1.1. Let (w, 0) be the corresponding solution
of (1.1), G is defined as in (4.1). If o, (B satisfies

9q — 12 . 5¢ — 4 1—a
1 1-— 2—2 -2,
(a,ﬁ)e(sq_g, )X( a, min { a,3q_4a 7§(1_1)_2}>

q
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for some q € |2, 29—0). Then for every q € [2,q], we have for every t € RT

IG(t) / GO 4y dr < BO). (4.5)

Proof. Multiplying (4.1) by |G|?~2G and integrating in the spatial variable we
obtain for every so,s3 € (0, §] (s3 < 52 and both will be chosen later)

L6 / AGIGJT2G(t) da

g/ div[Ra,u]6|G|q_2G(t)dx+/ AP=99,0|G|"2G(¢) d
R2 R2

< [Rers O(0) | e

Lemma 4.3 and continuous embedding H$ < L7= lead to

(G20 s + 10O g5 [1GI72G 01

ACGIGI2G(t) de Z |G
R2 L2—a
Using Lemma 4.4 we obtain
G 2G s S IIGIIq NGl eva-2r0-my =23,
From the above statements, we have
d
& a q
GIGONL +IGI
N H[Ravu]a(t)HHlfsz HG(t)” fe2ta-He-a HG(t)”i?fqa
-2
GO esra-2r@-m [GON 20
L2

0@ r+s-acs

Then we choose so such that so + (1 — f)(2 — ) = § which calls for
s2= 5§ —(1-2)(2—a) € (0, 5], this is plausible if @ € (3 q 8.1) for q € [2,4).
Slnce s3 < 89 by 1nterpolat10n we have

IGOIear0-2)m0) S IIG( Yys IG@I°
BOIGWOIY, 5,

where ¢ := (s;; +(1- )( )) Form the definition, we know that ¢ < 1.

Also noting that if a € (
3.3 and estimation of ||G||L2 we further get

1[Recv, ulO(E)] prr—s
S NGOl 221101l p1-sa-ere + 0@ [[L=[|0)]] rr2-s2 -2

+ HG(t)IILQIIG(t)IILz + 0@ 221101 2

, 1), we have 1 — s5 € (0, ), then form Theorem

Since o > 2

)

we further get

IRa, ul0 (@)l 122 S B(E) + |0(0)| 1202205
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Therefore we further have
d
NGO NGO 20
L=
S (B@) 4+ 10(0)[| g2-2a—s2+<)
BONO@)] gra+s-a-s

Using Young inequality as follows

|A1 A2 As| < Cl|A1|4qu‘5 + o) As¥ + §‘A3|ﬁv for all§ € (0, 1],

GO 2 1G4
GO 2 IG5

For

43%11 > 2, we have

d

FINCOIZ + NGO 20
L2=

S B@) +116(¢ )IIH2 2amszre TGO 5 +BONOON Y-

For other cases, we have

d
7tq tq2
SIGOIL. + GO L,

_2q9
S B) + 100t 2amcase T IGOZ 5 + 100 G450y

Integrating in time yields

t
nmmm+/umﬂwﬁﬁT
0 L2-a

29 _2q
S B() +[0)1"2 + B0 5 ;
Lt4—11 H2—2a—sg+e L:L—qé [Jl+B—a—s3

for 4 5 > 2, and

IG() /HG|WM

ORNIO TG —

L4 qHz 2a—sgto+te

for other cases. In the above calculus we use the conclusion of Theorem 4.2,
so the range of o and [ must satisfy the conditions in Theorem 4.2.

Let g € [2,%)). Ifa € (98qq__182, %], we choose s3 = s = 4= 4a —|— 2 -2
for g€ (1 —a, gg:ja — 2] and for small enough € > 0, we have

4_
0<14+f8—a—s<-—95
2q

4—
0<2+e€—20—8, < —=8.
2q

From Lemma 4.1 and interpolation inequality we find

1O 20 +||9|| 20 S+t
L; 1

1-4q fri4B—a—sy —4q fj2+ote—2a—sg
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Let ¢ € [2,%). If o € (822 1), we choose s3 = 2 — 2 < s3, then

Tq—4°
§ = %(2—20[—1—(1;—2(2—00) ajld for g € (1—a7min{2— ,W})
we can get
0<f-1+a< 4_Q65,
0<pf—-1+a< g
Hence, we have
||9HL:143;75H1+67%53 10l L2 prema-a ST+

The range of o and (8 will monotonously shrink when ¢ increase. Hence
for some g € [2,2?) and for every ¢ € [2, q] we have for every t € R*

IG() /nG N7 oy dr < BO)
O

4.3. Estimation of ||w||p14 for every g € [2, q] and for some g € [2, 2
In this subsection we give the estimate of |lw|[,17s for ¢ € [2,q] for some
€2,%).

Theorem 4.6. Consider (1.1) with o = 0 and v > 0. Assume that (wg,0)
satisfies the conditions in Theorem 1.1. Let (w, 0) be the corresponding solution
of (1.1). For some q € [2,%) and for all ¢ € [2,q], when (o, B) satisfies the
same conditions as in Theorem 4.5, we have

[wllLyza < B(D).

Proof. we choose ¢ as in Theorem 4.5. Since f > 1 — «, there exists a fixed
constant p > 1 such that % > 1 — a. From the explicit formula of G we have
for every q € [2,¢]

lwlizira < IGllLiza + IRafllLy 5o
< B(t) + "7 [Rabl gy po -
g q,

By a high-low frequency decomposition and a continuous embedding
B

Bl < B ® we find
||Ra9HZfBg,1 S A1 Rabllgp o+ 1(1d = A_1)f 7o 1o
SHA-0lppra + 11(Id = A_)6]| s

LP P

tq,00

1 B
Stellollpa +sup 2”7 ||A;0| e pa-
JEN

Inserting the above estimate into the previous one and applying Lemma
2.4 we obtain

1
lollzrra < B(t) + Ot ||wl| 1 s,
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where C' is an absolute constant depending only on g, p and ||6p|L2qpe. If
ot e = % equivalently, ¢ = (%)Tﬁl := Ty, then for every t < Ty

[wllLyza < B(D).

Furthermore, if we evolve the system from the initial data (u(Ty),0(10)),
then using the time translation invariance and the fact that ||0(Tp)| a <
160l za, we have for every t < Ty

La S B(TO + t)

wllzt, vovn

Iterating like this, we finally get for every t € R™

wllpira < B(t).

4.4. Estimation of ||G||11ps
t~q,1
In this subsection, we give the estimation of [|G|| B; - First we give a Lemma

which is proved in [18]

Lemma 4.7. Let p € [2,00) and o € [0,1]. Then there exist two positive con-
stants ¢, and C), such that for any f € S and j € Z, we have

27 A fller < A FIE) 72 < Cp277 1A f -

Theorem 4.8. Consider (1.1) with ¢ = 0 and v > 0. Assume that (wo, )
satisfies the conditions in Theorem 1.1. Let (w, 0) be the corresponding solution
of (1.1). Let G defined as in (4.1). For o € [%, 1), 8 € (1—a,min{2—2a, %a—
2, 2al_c)yy g % <s<2a—1. We have

7 11—-10«
IGllLyBs, < B(1),

where ¢ = %0 — €1 for eg > 0 is arbitrary small. In particular,

Gl Bo, , < B(1).

Proof. Applying the frequency localization operator A; to the Eq. (4.1) we
get

agAjG +u- VAJG + AaAjG = —[Aj,u . V]G — Aj([Ra,u . V]G)
+ A APT20,0
= [;(®).

Multiplying the above equation by |A;G|77?A,G and integrating in the
spatial variable we obtain

1d
Q%HAjG(t)H‘gq - /R A;GIA;GT2AYA ;G dr = /]R fi;G|A;G)72,
Using Lemma 4.7 and Lemma 4.3, we can obtain

/ ADGGIAG|"2 do > 27| A, G L,
R2
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with some positive constant ¢ independent of j. So we can obtain
é%HAJG(t)II%q + A G T < N fillall NGl
Furthermore, we have
%”AjG(t)HLq +2)8;G()Le < [ fjlles,
then

125Gt Lo S 279125 G(0) | Lo + 270720 A6 1y 1

~

t
+2*J‘a/0 18, (Ravs - V18) | 10 d

t
4 Q—ja/O 1A, - V]Gl o dr- (4.6)

Now we deal with the second term on the right hand side of the above
inequality. For every j € N, by Lemma 2.4 we have

18;0] Ly Lo < 2777 B(2).

For the third term on the right hand side of the inequality (4.6). Using
Theorem 3.3 we have

t
z—m/ 1A ([Ras - V)0)| o dr
0

t
< 2J‘(1+572a)/ ||[Rmu.v]9”Bg,l,e dr
0 ,00

oo

t
52j<1+e_2a>/ lullpye (1611mg. . + 6] ) dr
el %

S PO w]l 1y |16l

< 2j(1+e_2a)B(t).

For the fourth term on the right hand side of the inequality (4.6). Using
Lemma 6.1 in the appendix, we have

t
2—ja/ 1Ay, - V]Gl dr
0
t
S Fe2e) / 2(@=1= (A, u - V|G| 1 dr
0

i
20042 (Gl s + G2 + 6ol psrze) Gl . o
i ,

t
S 2](14’67201)/ (”GHLq + HG||L2 + H90||me;z) ||G| B;l dr
0

t
§2j<1+e_za>/ B()|Gp; , dr.
; |
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where s > %. Let ¢ € N be a number chosen later, then we have

Gl B:
= 328Gl + Y 2" 1 AnGllzy 1o
m<q m>gq
S2UBH) + Y 272 ARG O)]|s + 270 B(t)
m>q
+ 2m<1+6*2‘*)B(t) + 2m(1+6*2“)B(t)IIGIILlBs }
< 2qu Z 2m(s a)HA ||L‘1 Z 2m (s+1— 2a)B( )
m>q m>q
+ Z 2m(S+1+672Q)B(t) + Z 2m(8+1+672a)B(t)HG”L%BS,I_
m>q m2>q

If o > 22% and % < s < 2a —1 we can take € > 0 so small in the above

statements such that s < @ and s + 1 + € — 2a < 0. From Theorem 4.5, we
know that for 2 < ¢ < %

99 —12 2
max d ,ﬁ <a<l.
8q¢—8 " 2¢q

Through simple calculations, we easily know that the range of « can be

the largest one when we choose ¢ = @ — €1 for ¢; > 0 is arbitrary small. So,

we have
19
—.1
o€ {20, >

. 8 5a(1—a)
66( a,mln{ a,3a "11-10 })

9
ﬁ<s<2a—1

Hence, we finally obtain

IGllem; , < Bt)2% + 279209 B®)| G 11 s .

Choosing ¢ such that 2792=s=1=) B(¢) ~ 1. Thus we obtain for every
teRT

IGllLy s, < B().
By embedding this immediately leads to

1G] < B(1).

s—15

LiB
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4.5. Estimation of ”"’"”LiBf,’:,‘jl and ||0||L§B§;,f’1

Lemma 4.9. Consider (1.1) with o = 0 and v > 0. Assume that (wo,0p)
satisfies the conditions in Theorem 1.1. Let (w, 0) be the corresponding solution
of (1.1). Take p large enough such that % +1 < a+ B. Then we have

lwllzpre < B(2).

Proof. For a+ [ > 1, we choose p > 1 such that % > 1 —« From the definition
of G as in (4.1), we have

lwllzize < IGllLyBe ;nr2) + IRaOllLi 5o,
_1
< B(t) + tl P ”RQHHEfBg L

Then through the same idea in the proof of Theorem 4.6, we can easily
get the conclusion. O

Now we state the main theorem in this section.

Theorem 4.10. Consider (1.1) witho =0,y > 0 and (a, 8) satisfies conditions
as in Theorem 4.8. Assume that (wo,00) satisfies the conditions in Theorem
1.1. Let (w,0) be the corresponding solution of (1.1). Then we have

el g, < B
101l L2 po., < B(?)-

Proof. Since for s > % where ¢ as in Theorem 4.8, we have

IGllgon, = D 1+ 1) 18,6 1~
j>—1
< 3 (14 1j)1289279°27|| A G s
j>—1

<G|

B: .-
From Theorem 4.8, we obtain

Gl Ly o, < CllGlLis;, < B(D).
Using the definition of G as in (4.1), we have

lwllpypos, < NGl L poy, + 1Rabll Ly 5o,
< B(t) + [[Rafll 11 go, -
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For the second term, we have
IRabll L2 g0,

> AN IARA by 1o

j=—1

SHA RO Ly oo + Y (1 + 1) 18Rl 1 1

Jj=0

SNA Ol + D27 (14 ) 14,0 1 e
j=0

e o a— _2 A .

Stlloll Lo + Y 27T (14 [51)7270)| A 0|1y e
=0

S tl6ollz2 + 160l e + 160l lwll Ly Lo

S B(t),

where % + 1 < a+ {8 and we have used Lemma 2.4 and the estimation of
|wl| 1 r- Hence we obtain

lwllLypon, < B(D).

For 0 we have

o0

10150, = S (L D146l 1

j=—1

e . 42 o .

Stlfollze + > (14 13)727 72775278 A6 1y 1o
=0

S tbollzz + (|0ollLe + [[0oll Lo [wll L e

S B(),

where 127 4+ 1 < a+ (. Thus, the proof is complete. O

4.6. Estimation of ||0||it°°(H1_anB;_’1a+e), |wllLseLe-
The following is the main result of this subsection.
Theorem 4.11. Consider (1.1) witho =0,y > 0 and (a, 8) satisfies conditions
as in Theorem 4.8. Assume that (wo,00) satisfies the conditions in Theorem
1.1. Let (w,0) be the corresponding solution of (1.1). Then for arbitrary small
€ >0 and any p > 2 we have

||6||Z§>°(H1—amBi;§*+f) + ||9||Z%(Hl—awme;j?W“) < B(t)

[wllzgerr < B(?)-

Proof. Our proof can be divided into three steps. Step 1: let us give the esti-
mation of |[ul| 151 . Since for s > % where ¢ as in Theorem 4.8, take € > 0
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such that s — % — e >0, we have

1G]

Be, = Y 204,G 1~
j>-1
< N 299975279593 |A G| e
j>-1
< 30 2709278 G e
j>-1

S(j”GHB;f

From Theorem 4.8, we obtain [|G|[p1pe_ | S |Gllr1p:, S B(t). Using the
definition of G as in (4.1), we have

lwlizipe, , <Gl , +IRabllLipe, , < B(t) + IRabllLi e -

00,1 — 00,1 —

For the second term, we have

IRabllLiBe, , = > 2YA R Ly
j=-1
SIAR L= + 22j6||AjRa9HLgLoc
j=0

SIA0] i + Z 2j(17a)2j6”Aj9||L§Loo

=0

e i _ _2 AE .

Stlfollze + 27T 0B A6 1y
=0

S tlollzz + [|0ollLe + [[0oll Lo [wl L e

S B().

where % 4+ 14+ ¢ < a+ ( and we have used Lemma 2.4 and the estimation of
|wl| 21 »- Hence, we obtain [|w|| 1., < B(t). On the other hand, by Hardy—
Littlewood—Sobolev inequality, we obtain

[A qullpipe S TADA T Wlpipe S IAAT S llwllpize S B(1).

Lir?
From the above statements, we finally get

HUHL%B;Q1 SA-1ullpipe + Z [AqVullp:pe
qgeN

SIA-1ullpipe + HWHL%B;J
< B(1).
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Step 2: estimation of . Using Lemma 2.5 and the result in step 1, we can
obtain

HHHZgO(Hl—amB;?“) + H0||Z,}(H1*a+ﬁmBio_"f+ﬂ+€)
S HHHZLOO(Hl—amB;?“) +|[(Id - A—l)GHZ%(Hl—u+ﬁmBioj§¥+f’+€)
+t[16°|2nzee

< Clulesy
B(t).

Step 3: estimation of w. By the Eq. (4.1) and Lemma 2.3, we have
t
1G(®)[r < [|Gollzr +/ I[Ra,w-V10(7)| Lo dT
0

t
+/ |APRLO(T)|| Lo dr.
0

For the first integral of the RHS, using Theorem 3.3 with s = 0 yields
I[Rau- VIO(T)|[r < [[Rau-V]O(T) 59,

S )l g (100 1gee + 1612 )
< B ()]l

For the second integral of the RHS, we have

[ RS0 dn
05 A0l e + [I(Id — A—l)QHL,}B;;“”’
S0z e + Y N g 1 e
S B(b).
Hence, gathering the upper estimates we obtain
lw®)llzr <NG@lLe + [[Rab ()] L
< B(t) + /Ot B(7)||w(T)|lLe dT.
Gronwall’s inequality yields

lw(®)llzr < B(#).
O

At this stage, we can construct approximation system and use similar
methods in [4] to prove the existence of the solution.
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5. Uniqueness

In this section, we prove the uniqueness. For convenience of the reader, we
clarify some notations. Let (w!,0') and (w?,6?) be two solutions of system
(1.1) with ¢ = 0, v > 0. u! and u? be the corresponding velocity fields,
namely

W =Vl Al = (log(Id — A))w!, j=1,2.
Let v/ = (log(Id — A))~7u?, j =1,2. Denote
u=u®—u, 0=0>-0", v=10—0', p=p*—p.
Then we give two crucial estimates

Lemma 5.1. Assume that 0 satisfies
00 +u-VO' +u?-VO+A9=0 0<pB<2 (5.1)

Then, for any t > 0,
t
106552, < 10O, +C [ o)l s

1
+C [ 1), 10 . (5:2)

Proof. Let j > —1. Applying A; to (5.1), taking the inner product of A;6
with the resulting equation and applying Holder’s inequality, we obtain

%Hﬁﬂllm < 1A (w- V8|2 + (1A, (u? - VO] 2.
To estimate the first term, we write
Aj(u-VOYY = Jy + Jo+ J3,
where Ji, Jo and J3 are given by

J1: Z Aj(SkfluVAkel),

li—k[<2

JQ: Z Aj(AkuVSk,lal),
l7—kl<2

J3: Z A](Akuvﬁwl)
k>j—1

Ji, Jo and J3 can be estimated as follows.
I 1llL2 < C27(|S—qul| 2| A0 || Lo
< 2292073 |jy|| L2 (1 4 |5])7[|A,6" || oo
< OV o] 2 6%] oo
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[ 2]l 22 < CllAjull L2 [|Sj-1 V0| Lo
< OlAoll2(L+17)T Y 27126 |z~

m<j—2
j o 2ma(]‘ + |m|)77 —a)m
< C2%|vlipg Z WQ(l L ) [ A6 oo

m<j—2

< CQjO‘HUHB;{oo ||61||B},;;‘”-

[ Jsll> < €27 > (14 k)Y AR || oo || Ago]| 2
k>j—1

< 020027072 N 9 R (1 g [k|)7 [ Af? || oo 280 A 2

k>5—1

<02 N7 20RO (1 4 k)| AR | 25| A o
E>j—1

< C2 o]l pg_[16' | r-s-

To estimate the second term, we write
Aj(u? V) = Ky + Ky + K3 + Ky + K,
where
Ki= Y [A;,Se_1u® - V]AL0,

li—k|<2

Ky= > (Sk-1u® = Sju?)- VA;AL,

l7—k|<2
K3 = Sju2 . VA]'Q,

K4 = Z AJ(AkUQ . VSk,19)7
li—k|<2

K5 = Z Aj(Ak’U,Q . Vﬁka)

k>ji—1

Since V - u? = 0, we know that
/AjGKg dr =20

By a standard commutator estimate, we obtain

1K1 [lz2 < Clla®;(@)]| 22 [V Sj—1u? [z [V A2
< Clla®; (@) lw? [l go, 1401z

(5.3)
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where ®,(x) is the kernel of the operator A;. For j > jo with jo = 2, we apply
Bernstein’s inequality to obtain

1Kallze < CllA U [V A;0] 2
< C||A;Vu?|| =256 2
< Cllw?l o, 18,6112
Again, for j > jo with jo = 2, we have
[Kallz2 < CllAju?||=Sj-1V)| L2
< O A; VU g Y 20F g mme A G|,

m<j—2

< OV o, 18l 5 -

K52 < C27 Y | AkU?|| o | Ak0) 12

k>j—1

<02 Y 27 RRT )| A VR poo | ARO 2
k>j—1

<02 Y | ApVR|| Lo 27| ARD 2
E>j—1

< 27 2| o 105
From all the above estimates, we obtain
d .
S1ABlze < C2 ol 126" g + Cl?l o 18,611
joup), 2
+ €2 oo, 6115

Integrating in time leads to

t
14,0012 < 14,000)] 2 + C2° / O PO —

t
+ 02 [P0, 1006) | s

Hence, we finally get
t
10655, < 10Oz +C [ o)1 (6) s s

t
+O/O lw?($) Il oo, 10(5) Il o ds.

Lemma 5.2. Assume that v satisfies
2
v +u? - Vu+u- Vol — Z (uiVv; +u;Vo;) + A% = —Vp +fey, (5.4)
j=1
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for a € (0,1]. Then

lo@)llpg . < lv(0)llBg _ + sup [16(s)] gz
' ' 0<s<t »00

t
+C [ I)ls (1! @), + 123, ) .

Proof. Let j > —1. After applying A; to equation (5.4), taking the inner
product with Ajv and integrating by parts, we find

1d

5 g AlEe + 2 Avllie = Ly + Lo+ Ly + La + Ls,

where

L, = f/Ajv - Aj(u? - Vo) da

Ly = —/Ajv “Aj(u- Vo) da

2
L3z =— Z/AJ—U A (uR V) dx

n=1

2
Ly=— Z/AJ—U A (u, Vol da

n=1
L5 = —/Ajvg . Aﬂ

To estimate L;, we decompose A;(u? - Vv) as in (5.3) and bound the
components in a similar fashion as the above Lemma. We obtain after applying
Holder’s inequality

L] < C||Aj”HL2||U||L2Hw2||ngl~
To deal with Lo, similar to the proof in the above Lemma we obtain
|La| < C||AJ‘UHL2||U||L2HW1||32571~

To handle L3, we integrate by part and use the divergence-free condition
to obtain

2
Ly = Z/Ajv A (v, Vud).
n=1
Then using the same idea as in Lemma 5.1 we have
Ll < Cl1 A7) g2llol 2w oy,

We can easily notice that Ly admits the same bound as Ls. Ls can be
bounded by applying Holder’s inequality

|Ls| < 1Al ]| 8500 L2 < 27| Ajv] L2 [10]] pe -
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From all the above statements, we find
d ,
Sl + 27 A

< Cllollza (Il llpos, + 19?10, ) + 27161l e

Integrating in time yields

) t .
1A u(0)le < e[ Az0(0)] 2 + / ¢ 2 D2 (s) | e d

t )
+C / e o(s) 2 (10! ()l o, + I (5)ll o, ) ds.
Therefore,

vl . < lv(0)llpg  + sup [|6(s)]l g o
: ’ 0<s<t :00

t
e / o)z (1)1 o, + [w2()l o, ) ds.

This completes the proof. O
At the end, we give the main theorem of this section.

Theorem 5.3. Assume that (wo,6y) satisfies the conditions stated in Theorem
1.1. Let 0 = 0, v > 0 and q > 2. Let (w*,0%) and (w?,6?) be two solutions of
(1.1) satisfying for any t > 0,

whw? € LIL*NLIBYY, 6'.0% € LIL* N L;BY),.

Then they must coincide.

Proof. Using the notations stated in the beginning of this section, we know
that v, 6, u and p satisfy (5.1) and (5.4). In our deduction, we will use the
following two inequalities

v 1
foll s < Cllolsg _tog [ 14 )
~ Tollss
and
vl < llwt e + lw?[| 2
Combining the inequalities above and setting
Y(t) =100y + lv®)lsg..

we obtain

Y(t) <2Y(0)+C /0 t Dy (s) [Y(s) log (1 + l;ﬁ) + Y(s)} ds,

where

1)1(8)
1)2(8)

16" )= + e (5) o, + 102 (8) o,
o (5)ll 2 + e (3)]] 2
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Using the same idea in the proof of the integrable of ||0HBO,71, we can
prove the that ||91(5)||B17?,'y is integrable. Hence, we know that Dy and Ds

are integrable. By Osgood’s inequality we get Y (¢) = 0. This completes the
proof. O

6. Appendix: Technical Lemmas

Here we give some useful estimates in Besov framework.

Lemma 6.1. Let u be a smooth divergence-free vector field of R and f be a
smooth scalar function. Then
(1) for every a € (0 +¢,1) and p € [2, ]

sup 2971 [[Ag u - V] f| 1o

q=>-1
S (U7 ull gy s + ulz2) 1 flmg,
(2) for a special u = V+AT1A? (log(Id — A))Tw
sup 27 [Ag, u- VIS || 1o

qg>—1
S (1G1 g2 + IGI 22 + 160l zenr=) I Flmg, .
Proof. (1) From Bony’s decomposition we have
Agu-VIf= > [ApSeau-VIAf+ > [Ag Aju-V]S;_af
li—ql<4 li—al<4

+ > (80, AuTAf
i>q-3,1<i<n

= I, + 11, + 111,

Estimation of I,. Since A, := h,(-)* = 299h(29-)x with h € S(R?), then
from Lemma 3.2 we get for every o < 1

Zgllze S Y Ml Bglloa A =778l o2 | A £ o

li—ql<4
SUfllse, Nzl = gl Y 2000 o-agilitero=a)
l7—q|<4
DRl 1 g
k<j—2

g 211(1+6+U—Dé) ||A1—U—eu||%;io Hf”BgO’o(Q
thus we have

sup 2911y S AT w1
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Estimation of I1,. Similar to the estimation of I;, we can obtain

HIle S >0 Ml ™ Gqllor A7 Ajull Lo 1S5 -1 V f || o

l7—q|<4
SIAT T ullga s D [ gl 27| 1 V £ e
l7—q|<4
SIAT T Ul g Y 27907779200 N T M AL f 1
 li—ql<4 k<j—2

< 9¢(1—ato+e) ||A1*”*EU||B;;;.} ||fHBgO o
thus

sup 291910y 1o S A ull g .

Estimation of I11,. We further write
Hig= Y [A0n 88+ ) (805 Aau|ALyf
j>q—3,jeN,1<i<d 1<i<d
= III; + 111
For the first term, we get for every a > 0
[111g]|zr
< > 10: A (Aju") A fll
Jj>q—3,jeN,1<i<d

+ ) 180’ 0,80 A fll o
Jj>q—3,jeN,1<i<d
S2e0teteme) N7 g em e i || A AT 1 || A, £l
Jj=2q=3,j€N

S Qq(lia+g+€)HA1707€U||B;;} ||f||Bgo’oo7
thus

sup 20N | o S A Ul gg s | Il -
o, STBY, o

For the second term, due to IIIg = 0 for every q > 3, we get for p > 2

sup 29(@—1=¢=9) [ T117]| v
qg>—1

= sup 291" |[A,0, A_yu]A_1 | Ls

g=—1

S llullzz [ fllse, -

Hence, the proof is complete.
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(2) Using Bony’s decomposition, we obtain same formula as in the proof
of (1). Estimation of I,. Similar to the proof of (1), we have

gl SHfllpg, . Y 20 9Umomagilitetoa)
l7—ql<4

x Y 20BNk (|A G e + | AR o)
k<j—2

S 2‘1(1+6+‘7_a)||G||B;;O1 I fllBo,

"’Hf”Bgo,m Z 9(i—g)(1—o—c)9j(l+eto—a) Z Q(J‘—k)(a—l)HgHLp

l7—q|<4 k<j—2

S 2D e (G gy + 16112 )
thus

sup 2010 £ (1G] s + 1620 ) 1 Fl1pe, .

For I1,, we have

Hllee S 3 Ml =7 bl | A Al 2o |81V fl| o

li—aql<4

S S 2T ANy 1851 Ve
[i—q|<4

5 Z 27(](1*‘776) (HAJG”LP + ||A]Ra0||LP) Z 2k“Akf||Loo
l[i—ql<4 e

S Z 2—a(1—o—€)gj(l-a) Z 25| A f| oo (||G||Bg,;.} + H9||Lp)
j—ql<4 hem2

$ 210704 (|Gl g 1+ 100120 ) 1l
thus

sup 20710 £ (1G] s + 16020 ) 1 Fl1me, .

For the term 111 ;. We can calculus as follows.

11115120

/S 2q(1704+0‘+6) Z 2(q7j)(a7076)2j(a71) ||AjA170-76u||Lp ”ZJfHLOC

Jj=q—3,J€N

< gd(1-atote) Z Q(qu)(cvfefrf)gj(ocfl)||AJ.GHUJH§].JC||LOo

Jj2q-3,j€N
+ 9a(l—atote) Z 2la=i(a=r=)9i (=D || A R 0| 1o | A, f]| Lo

j=q—3,j€N

S 210704+ (UG ey +16]10 ) [/l .
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For the term IIIg. For every g > 3 we know that III(? = 0. So for p > 2,
we have

sup 29(@—1=¢=9) [ T117]| v
qg>—1

= sup 211" [A,0, A_yu] A f|| e
q=—1

1A _yull e[l £l o, .

1A AT | o fllme

(IA-1GllLe + A1 RaOlLe) [ fll 5o,

S
S
S
S (UIGlze +M16ollz2) [1f1l B, . -

From all the above statements, we can obtain our results. O
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