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This paper is concerned with a class of dynamic boundary systems with boundary feedback. The well-posedness of the
considered systems is proved under some regularity conditions. Moreover, some spectral properties are derived. As an
application, the well-posedness and the asymptotic behavior of population dynamical systems with unbounded birth
process ‘B.t/ D

R
1

0 ˇ.a/u.t � �, a/da, t � 0’ are solved. Such population dynamical systems were pointed out in
[S. Piazzera, Math. Methods Appl. Sci., 27 (2004), 427-439] to be a current research topic in semigroup theory and still an
open problem. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

Dynamic boundary conditions mean that there exists dynamic on the boundary conditions, which are distinguished from static
boundary conditions. Inspired by the applicability to practical problems, evolution equations with dynamic boundary conditions have
been investigated intensively, via the variational method, the semigroup theory, the cosine operator function theory, or the so-called
B-evolution theory by many authors [1–8], ever since the work of J. L. Lions came out in 1961 [9]. Among those references, we have
to mention that Casarino et al. [3] used semigroup theory to solve linear systems with dynamical boundary conditions and obtained
several sufficient and/or necessary conditions guaranteeing the system well-posedness. Recently, Mugnolo adopted such results to deal
with abstract wave equations with acoustic boundary conditions [6] and damped wave equations with dynamic boundary conditions
[7], respectively.

Observe that, for the boundary dynamic, maybe there exists boundary condition, too. This means that we have to consider double
boundary conditions: the first layer boundary condition is dynamic boundary condition, and the second boundary condition is the
usual static boundary condition for the boundary dynamic. To the best of the authors’ knowledge, few references have considered such
problem. Because it is shown by Salamon [10] that time delay systems can be regarded as one layer boundary system with the boundary
space being the state space, initial-boundary value problem of delay equations can be regarded as double boundary problem. In this
sense, population dynamical systems with delay birth process are typical double boundary problem. In [11], Piazzera considered the
situation that the birth process, namely, the boundary feedback operator, is a bounded linear functional with respect to the history
function. Concretely, he proved the well-posedness of such system by Desch–Schappacher perturbation theorem [12] and discussed
the asymptotic behavior through spectral theory and positive semigroup theory. Simultaneously, Piazzera pointed out that population
dynamical system with unbounded birth process “B.t/ D

R1
0 ˇ.a/u.t � � , a/da, t � 0" is a current research topic in semigroup theory

and still an open problem, and only particular results, for example, for neutral differential equations [13] or analytic semigroups [14], are
known while a general perturbation result is still missing. The main difficulty of population dynamical systems with unbounded birth
process lies in that the unboundedness makes Desch–Schappacher perturbation theorem invalid. On the other hand, we observe that
theory of regular linear system has been effectively used to deal with delay and boundary control system (see, for example, [15, 16]).
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Motivated by such results, in this paper, the authors shall study general results of dynamic boundary systems with boundary feedback
through the tool regular linear system theory. Then, we apply the general results to population dynamical systems with unbounded
birth process.

The arrangement of this paper is as follows. In Section 2, we will introduce the main tool, regular linear system theory. Section 3 is
to find some regularity conditions that guarantee system (3.1) being well-posed; meanwhile, the spectrum relations are obtained. In
Section 4, using the results obtained in Section 3, the open problem, population dynamical system with unbounded birth process, is
considered. The problems of well-posedness and asymptotic behavior are solved.

2. Preliminaries on regular linear systems

As a preparation for the residual sections, in this section, we retrospect some concepts and results related to regular linear system
developed by Salamon [10] and Weiss [17]. Throughout this section, we assume that X , U, and Y are Banach spaces, 1 < p <1.

Definition 2.1
Let� D Lp.RC, U/ and � D Lp.RC, Y/. A well-posed linear system on�, X , and � is a quadruple† D .T ,ˆ,‰, F/, where

(i) T D .T.t//t�0 is a C0-semigroup of bounded linear operators on X .
(ii) ˆ D .ˆ.t//t�0 is a family of bounded linear operators from� to X such that

ˆ.tC �/u D T.t/ˆ.�/uCˆ.t/u.� C �/,

for any u 2 � and any � , t � 0.
(iii) ‰ D .‰.t//t�0 is a family of bounded linear operators from X to � such that

.‰.tC �/x/.�/ D .‰.t/T.�/x/.� � �/ on Œ� , tC ��, (2.1)

for any x 2 X and any � , t � 0, and‰.0/ D 0.
(iv) F D .F.t//t�0 is a family of bounded linear operators from� to � such that

.F.tC �/u/.�/ D .‰.t/ˆ.�/uC F.t/u.� C �//.� � �/ on Œ� , tC ��, (2.2)

for any u 2 � and any � , t � 0, and F.0/ D 0.

Here U, X , and Y are the input space, state space, and output space of †, respectively. The operators ˆ.�/ are called input map. The
operators‰.�/ are called output map. The operators F.�/ are called input/output map.

By [18], there exists a unique operator B 2 L.U, X�1/, called admissible control operator for A, such that for any t � 0 and u 2
Lp

loc.R
C, U/,

ˆ.t/u D

Z t

0
T�1.t � s/Bu.s/ds 2 X .

Here, X�1 is the extrapolation space corresponding to X , which is the completion of X under the norm kR.�0, A/ � k with R.�0, A/ the
resolvent of A at �0; fT�1.t/gt�0 is the extrapolation semigroup of fT.t/gt�0 with generator A�1, which is the continuous extension of
fT.t/gt�0 on X�1. In this case, we say that .A, B/ generates an abstract linear control system on .X , U/ and denoteˆ D ˆA,B for brief.

It follows from [19, 20] that there exist unique continuous linear operators ‰.1/ : X ! L2
loc.R
C, Y/ and F.1/ : Lp

loc.R
C, U/ !

Lp
loc.R
C, Y/ such that, for any � � 0, the operators‰.�/ and F.�/ are derived by truncation:

‰.�/ D P�‰.1/, F.�/.t/ D F.1/.t/, for any t � � .

We call‰.1/ the extended output map of† and F.1/ the extended input/output map of†. It is not difficult to obtain the following
two equations related to the extended output map and the extended input/output map:

‰.1/x D .‰.1/T.�/x/.� � �/ on Œ� ,1/,8x 2 X ,8� � 0, (2.3)

and

F.1/u D .‰.1/ˆ.�/uC F.1/u.� C �//.� � �/ on Œ� ,1/, (2.4)

for any u 2 Lp
loc.R
C, U/ and � � 0. The space D.A/with graph norm is denoted by .D.A/, k � kD.A/. By the representation theorem in [20],

there exists a unique operator C 2 L.D.A/, Y/, called admissible observation operator for A, such that for any t � 0 and x 2 D.A/, CT.t/x D
.‰1x/.t/. In this case, we say that .A, C/ generates an abstract linear observation system on .X , Y/ and denote‰ D ‰A,C for brief.

The well-posed linear system† is called to be regular, if the limit

lim
t!0

1

t

Z t

0
.F1u0/.s/ds D 0 (2.5)

exists in Y for the constant input u0.t/ D z, z 2 U, t � 0. In this case, we also say that the quadruple † D .T ,ˆ,‰, F/ is a regular linear
system on .X , U, Y/ generated by .A, B, C/, and we denote†A,B,C D † and FA,B,C D F.
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Definition 2.2 ([21, 22])
Let † be a regular linear system with family of input/output maps fF.t/gt�0. An operator M 2 L.Y , U/ is called an admissible feedback
for† if IY � F.�/M has uniformly bounded inverse.

3. Dynamic boundary systems with boundary feedback

In this section, we consider the following systems with dynamic boundary conditions and boundary feedback of the boundary dynamic

8̂̂<
ˆ̂:
Px.t/ D Amx.t/, t � 0,
Gx.t/ D w.t/, t � 0,
Pw.t/ D Amw.t/, t � 0,

Pw.t/ D Kx.t/, t � 0,

(3.1)

where x and w take values in Banach spaces X and @X , respectively; Am : D.Am/ � X ! X is called maximal operator, D.Am/ endowed
with graph norm is completed; the boundary operators G 2 L.D.Am/, @X/ and P 2 L.D.Am/, @@X/ with @@X being Banach space and
D.Am/ being endowed with graph norm, D.Am/ is completed; the boundary observation operator K 2 L.D.Am/, @@X/.

Obviously, we can convert system (3.1) to the following boundary system

8̂̂<
ˆ̂:

d
dt

�
x.t/
w.t/

�
D

�
Am 0
0 Am

��
x.t/
w.t/

�
, t � 0�

G 0
0 P

��
x.t/
w.t/

�
D

�
0 I
K 0

��
x.t/
w.t/

�
, t � 0.

We denote AL,K D

�
Am 0
0 Am

�
with domain D.AL,K/ D

��
z
f

�
2 D.Am/ � D.Am/ : Gz D f , Pf D Kz

�
.

Assumption 3.1
As in [23], we make the following two assumptions:

(H1) A :D Am with domain D.A/ :D KerfGg generates a C0-semigroup on X , ImfGg D @X ;
(H2) A :D Am with domain D.A/ :D KerfPg generates a C0-semigroup on @X , ImfPg D @@X .

By [23], under the Assumption 3.1, the direct sums

D.Am/ D D.A/˚ Kerf� � Amg,� 2 �.A/

and

D.Am/ D D.A/˚ Kerf� � Amg,� 2 �.A/

hold. Moreover, the Dirichlet operators,

D�,A :D .GjKerf��Amg/
�1 : @X ! Kerf� � Amg

and

D�,A :D .PjKerf��Amg/
�1 : @@X ! Kerf� � Amg

exist and are bounded.
According to [10, 24], the system operator, control operator, and observation operator of boundary system described by .Am, G, K/

are A,

B :D .� � A�1/D�,A,

and C D KjD.A/, respectively. Similarly, the system operator and control operator of boundary system described by .Am, P/ are A and

B :D .� � A�1/D�,A,

respectively.

Definition 3.2

A pair of continuous functions

�
x
w

�
: Œ0,1/ ! X � @X is called classical solution of (3.1) with initial value

�
z
f

�
2 D.AL,K/ if it is

continuously differentiable on Œ0,1/, x.t/ 2 D.Am/, w.t/ 2 D.Am/, Gx.t/ D w.t/, and Pw.t/ D Kx.t/.

Theorem 3.3

Assume that operator AL,K generates a C0-semigroup on the space X � @X . Then, for each initial value

�
z
f

�
2 D.AL,K/, there is a unique

classical solution of (3.1). Moreover, the classical solution depends continuously on the initial data.

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 38 1642–1651
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Proof

Assume that

�
z
f

�
2 D.AL,K/. Let fTL,K.t/gt�0 be the semigroup generated by AL,K . Then, we can obtain that

�
x.t/
w.t/

�
:D TL,K.t/

�
z
f

�
is the classical solution of (3.1). In fact, by the properties of C0-semigroup,�

x.t/
w.t/

�
2 D.AL,K/

and

d

dt

�
x.t/
w.t/

�
D AL,K

�
x.t/
w.t/

�
D

�
Amx.t/
Amx.t/

�
.

The continuous dependence on the initial data is obtained directly from the properties of C0-semigroup. The proof is completed.

Theorem 3.3 means that if AL,K generates a C0-semigroup, then system (3.1) is well-posed, namely, classical solution exists and
depends continuously on the initial data.

Theorem 3.4
Assume that .Am, G, K/ generates a regular linear system and .Am, P/ generates an abstract linear control system. Then, system (3.1) is
well-posed.

Proof
By assumption, it is obtained that .A, B, C/ generates a regular linear system and .A,B/ generates an abstract linear control system.

Because both G and P are surjections, operator matrix

�
G 0
0 P

�
is a surjection. The restriction of

�
Am 0
0 Am

�
to Ker

��
G 0
0 P

��
equals to�

A 0
0 A

�
. We compute

�
Am 0
0 Am

�
�

�
A�1 0

0 A�1

�
D

�
Am � A�1 0

0 Am � A�1

�

D

�
BG 0
0 BP

�

D

�
B 0
0 B

��
G 0
0 P

�
.

Because

�
G 0
0 P

�
is surjection, we obtain by [24, Theorem 2.3] that the corresponding control operator of system��

Am 0
0 Am

�
,

�
G 0
0 P

��
is

�
B 0
0 B

�
. The combination of .Am, G, K/ generating regular linear system and .Am, P/ generating abstract

linear control system implies that

��
A 0
0 A

�
,

�
B 0
0 B

��
generates abstract linear control system. Moreover,

ˆ0@ A 0
0 A

1
A,

0
@ B 0

0 B

1
A D

�
ˆA,B 0

0 ˆA,B

�
.

Similarly, it is not hard to obtain that

��
A 0
0 A

�
,

�
0 I
K 0

��
generates an abstract linear observation system with

‰0@ A 0
0 A

1
A,

0
@ 0 I

K 0

1
A D

�
0 ‰A,I

‰A,K 0

�
.

We denote F D

�
0 FA,B,I

FA,B,C 0

�
. Then, by definition, it is not hard to test that

0
BB@T ,ˆ0@ A 0

0 A

1
A,

0
@ 0 0

K 0

1
A,‰0@ A 0

0 A

1
A,

0
@ 0 I

K 0

1
A

1
CCA is a regular

linear system generated by

��
A 0
0 A

�
,

�
B 0
0 B

�
,

�
0 0
K 0

��
. We compute

I � F D

�
I �FA,B,I

�FA,B,C I.

�

By the proof of [25, Lemma 3.2], it follows that kFA,B,I.t/k ! 0 as t! 0. Observe that kFA,B,C.t/k is bounded. Thus,

lim
t!0
kFA,B,C.t/FA,B,I.t/k D 0.

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 38 1642–1651
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Hence, I � F has well-posed inverse. Thus, I is an admissible feedback operator. By [16, Theorem 9], it follows that AL,K generates a
C0-semigroup. Hence, system (3.1) is well-posed. This completes the proof.

Theorem 3.5
Assume that .Am, G, K/ generates a regular linear system and .Am, P/ generates an abstract linear control system. Let � 2 �.A/ \ �.A/.
Then,

� 2 �P.AL,K/” 1 2 �P.R.�,A�1/BKR.�, A�1/B//

” 1 2 �P.KR.�, A�1/BR.�,A�1/B/.

Proof

By [16, Proposition 1], it follows that for � 2 �P

��
A 0
0 A

��
, � 2 �P.AL,K/ if and only if

1 2 �P

 �
0 I
K 0

��
� � A�1 0

0 � � A�1

��1 �
B 0
0 B

�!
.

The equivalence relations of this theorem are obtained by [26, Theorem II.2.8]. The proof is therefore completed.

Theorem 3.6
Assume that .Am, G, K/ generates a regular linear system and .Am, P/ generates an abstract linear control system. Let � 2 �.A/ \ �.A/.
Then,

� 2 �.AL,K/(H 1 2 �.R.�,A�1/BKR.�, A�1/B/

” 1 2 �.KR.�, A�1/BR.�,A�1/B/.

Moreover, in the case 1 2 �.R.�,A�1/BKR.�, A�1/B//, denote

Minv.�/ D .I � R.�,A�1/BKR.�, A�1/B/
�1R.�,A�1/,

then,

R.�,AL,K/ D

�
R.�, A/C R.�, A�1/BMinv.�/BKR.�, A/ R.�, A�1/BMinv.�/

Minv.�/BKR.�, A/ Minv.�/

�
. (3.2)

Proof
By [16, Theorem 9], it follows that

AL,K D

�
A�1 0

0 A�1

�
C

�
B 0
0 B

��
0 I
K 0

�
D

�
A�1 B
BK A�1

�

with domain

D.AL,K/ D

��
x
y

�
2 D.Am/ � @X : A�1x C By 2 X ,BKx C A�1y 2 @X

�
.

In order to obtain the condition such that � 2 �.AL,K/. We consider the following operator equation

.� �AL,K/V.�/ D

�
I 0
0 I

�

with V.�/ 2 L.X � @X/. Remark that we can partition the operator V.�/ into a 2 � 2 matrix of operators corresponding to the two
components of its domain space and its range space:

V.�/ D

�
V1.�/ V2.�/

V3.�/ V4.�/

�
.

Then, if 1 2 �.R.�,A�1BKR.�, A�1/B//, we can obtain that

V2.�/ D R.�, A�1/B.I � R.�,A�1/BKR.�, A�1/B/
�1R.�,A/

V3.�/ D .I � R.�,A�1/BKR.�, A�1/B/
�1R.�,A�1/BKR.�, A/

V1.�/ D R.�, A/C R.�, A�1/BV3.�/

V4.�/ D .I � R.�,A�1/BKR.�, A�1/B/
�1R.�,A/,

which implies that � 2 �.AL,K/ and R.�,AL,K/ D V.�/. The relation

1 2 �.R.�,A�1BKR.�, A�1/B//” 1 2 �.KR.�, A�1/BR.�,A�1B//

is obvious. This completes the proof.

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 38 1642–1651
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4. Population dynamical systems with unbounded birth process

In this section, we consider the open problem stated in [11, Remark 6], population dynamical system with unbounded birth process
described as follows. 8̂<

:̂
@w.t,a/
@t D �@w.t,a/

@a � 	.a/w.t, a/

w.t, 0/ D
R1

0 ˇ.a/w.t � r, a/da, t � 0

w.s, a/ D 
.s, a/, s 2 Œ�r, 0� and a � 0.

(4.1)

Here, w.t; a/ represents the density of the population of age a at time t,	 2 L1loc

�
RC
�

is the death rate, and ˇ 2 L1
�

RC
�

is the birth
rate. Denote

lim
a!1

	.a/ D: 	1 > 0.

We denote X D Lp
�
Œ�r, 0�, L1

�
RC
��

, @X D L1
�

RC
�
, and @@X D C. Then, system (4.1) can be transformed to the form of (3.1) with the

operators:

� Am :D d
d� with domain D.Am/ :D W1,p

�
Œ�r, 0�, L1

�
RC
��

;

� GF D F.0/,8F 2 Lp
�
Œ�r, 0�, L1

�
RC
��

;

� Am :D � d
d� � 	.�/with domain D.Am/ D W1,1

�
RC
�
;

� Pf D f .0/,8f 2 L1
�

RC
�
;

� Kg D
R1

0 ˇ.a/g.�r, a/da,8g 2 Lp
�
Œ�r, 0�, L1

�
RC
��

.

Thus, G 2 L
�

W1,p
�
Œ�r, 0�, L1

�
RC
��

, L1
�

RC
��

and P 2 L
�

W1,1
�

RC
�

,C
�
. The equation

w.t; 0/ D: B.t/ D Kwt , t � 0,

is called the birth process, where wt :D w.tC �/ is the history function.
It is well known that A generates a left-shift semigroup on X and A generates a right-shift semigroup on @X . By [27], .A, B/ is an

abstract linear control system satisfying

.� � A�1/
�1B D e�.

It has been shown in [28, Proposition 2.1] that the spectrum �.A/ is

�.A/ D f� 2 C : Re� � �	1g.

Moreover, by [28, (24)], we have

Ker.� � Am/ D

�
< 
� >:D< e�

R �
0.�C�.s//ds >, Re > �	1,

0, otherwise.

Lemma 4.1
The boundary control system �

@
@t w.t, �/ D � @

@�
w.t, �/ � 	.�/w.t, �/, t 2 RC, � 2 RC,

w.t, 0/ D u.t/, t 2 RC.
(4.2)

with w.t, �/ 2 C,8t 2 RC, � 2 RC, is well-posed, that is, the corresponding control operator ˇr,� is admissible for A.

Proof
As in Section 3, the Dirichlet operators corresponding to system (4.2) and system

�
@
@t w.t, �/ D � @

@�
w.t, �/, t 2 RC, � 2 RC,

w.t, 0/ D u.t/, t 2 RC,
(4.3)

are denoted by D�,A and D�,AC�.�/, respectively. The control operator corresponding to system (4.2) and system (4.3) are denoted by
ˇr,� and ˇr , respectively. By [23], for all x 2 C, the Dirichlet operator D�,AC�.�/ satisfies the following equations

� �
�C d

d�

�
D�,AC�.�/x D 0, 8t � 0,

.D�,AC�.�/x/.0/ D x.
(4.4)

This implies

D�,AC�.�/x D e��x.

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 38 1642–1651
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Thus, D�,AC�.�/ D e��. Similarly, we can obtain D�,A D e���
R �

0�.�/d� . We compute

R.�,AC 	.�//
�
	.�/e���

R �
0�.�/d�

	
D e��

Z �
0
	.s/e�

R s
0�.�/d�ds

D e�� � e���
R �

0�.�/d� .

This implies that

ˇr,� D .� � A�1/D�,A D .� � A�1 � 	.�//D�,AC�.�/ D ˇr .

The semigroup generated by AC 	.�/ is denoted by fSr.t/gt�0. For any u 2 Lp.Œ0, �/,C/, we obtain u 2 L1.Œ0, �/,C/ and

Z �
0

Sr.� � s/D�,AC�.�/u.s/ds D

Z �
���

e��.���Cs/u.s/ds.

By simple computation, it is obtained that �Z �
���

e��.���Cs/u.s/ds

�
.0/ D 0

and Z �
���

e��.���Cs/u.s/ds 2 W1,1.RC,C/.

Thus, Z �
0

Sr.t � s/D�,AC�.�//u.s/ds 2 D.A/.

Hence, ˇr D .� � A�1 � 	.�//D�,AC�.�/ is admissible for A C 	.�/. Because operator 	.�/ is bounded, ˇr,� D ˇr is admissible for A.
Here, .A,ˇr,�/ corresponds with system (4.2). The proof is completed.

Theorem 4.2
The triple .A, B, C/ generates a regular linear system.

Proof
For any f 2 W1,p.Œ�r, 0�, L1.RC//, we compute

kKfk D






Z 1

0
ˇ.a/f .�r, a/da






� kˇk1kı�rfk

� kˇk1kı�rkkfkW1,p.Œ�r,0�,X/.

Thus, K 2 L.W1,p.Œ�r, 0�, L1.RC//,C/. The semigroup generated by A is denoted by fS.t/gt�0. Then, we can obtain that

Z r

0
kKS.t/fkpdt D

Z r

0






Z 1

0
ˇ.a/f .t � r, a/da






p

dt

�

Z 0

�r






Z 1

0
ˇ.a/f .� , a/da






p

d�

�

Z 0

�r
kˇkp
1






Z 1

0
f .� , a/da






p

d�

D kˇkp
1

Z 0

�r
kf .� , �/kpd�

D kˇkp
1kfkp,

which implies that K is admissible for A. By [15],ˆA,B : Lp.RC, @X/! X is defined by

.ˆA,B.t/g/.�/ D

�
g.tC �/, tC � � 0,
0, if not.
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Therefore, for any u 2 W1,p
loc

�
RC, L1

�
RC
��

, we obtain

Z r

0
kKˆA,B.t/uk

pdt �

Z r

0






Z 1

0
ˇ.a/u.t � r, a/da






p

dt

�

Z 0

�r






Z 1

0
ˇ.a/u.� , a/da






p

d�

�

Z 0

�r
kˇkp
1






Z 1

0
u.� , a/da






p

d�

D kˇkp
1

Z 1
0
ku.� , �/kpd�

D kˇkp
1kukp.

Hence, .A, B, C/ generates a regular linear system. This completes the proof.

With Theorem 3.4, Lemma 4.1, and Theorem 4.2, we obtain the following theorem.

Theorem 4.3
The population dynamical system (4.1) is well-posed.

Observe that the operator KR.�, A�1/B has one-dimensional range; hence, it is compact. This implies that the operators

R.�,A�1/BKR.�, A�1/B

and

KR.�, A�1/BR.�,A�1/B

are both compact. Thus, in Theorem 3.6, ‘(H’ can be replaced by ‘”’. On the other hand, observe that Re� > �	1 implies � 2
�.A/ \ �.A/. Therefore, we can obtain the following theorem.

Theorem 4.4
Let Re� > �	1. Then,

� 2 �.AL,K/” 1 2 �.R.�,A�1/BKR.�, A�1/B/

” 1 2 �.KR.�, A�1/BR.�,A�1/B//.

Corollary 4.5
Let Re� > �	1. Then,

� 2 �.AL,K/” � 2 �P.AL,K/.

Proof
The result is obtained directly from the combination of Theorems 3.5, 3.6, and 4.4.

Theorem 4.6
Let Re� > �	1. Then,

� 2 �.AL,K/” �.�/ D 0

where

�.�/ D �1C

Z 1
0

ˇ.a/e�
R a

0 .�C�.s//dse��rda

Proof
Similar to the proof of [11, Theorem 12], we obtain that � 2 �P.AL,K / if and only if 1 D K.��e�/, that is, 1 D

R1
0 ˇ.a/e�

R a
0 .�C�.s//dse��r da.

Theorem 4.7
The semigroup generated by .AL,K , D.AL,K// is positive and the following statements hold:

i) w0.AL,K/ < 0, �.0/ < 0,
ii) w0.AL,K/ D 0, �.0/ D 0,

iii) w0.AL,K/ > 0, �.0/ > 0.

Proof
The combination of .A,B/ generating an abstract linear control system and .A, B, C/ generating a regular linear system implies that

kR.�,A�1/BKR.�, A�1/Bk ! 0
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as �!1. It follows that

kR.�,A�1/BKR.�, A�1/Bk < 1

for Re� big enough. Therefore, the operator .I � R.�,A�1/BKR.�, A�1/B/ is invertible and its inverse is given by Neumann series.
Observe that

KR.�, A�1/Bf D Ke�f D

Z 1
0

ˇ.a/e��rf .s/da,8f 2 L1.RC/,

and

R.�,A�1/Bx D e��x,8x 2 C.

Therefore, .I�R.�,A�1/BKR.�, A�1/B/ is positive. Obviously, R.�, A/, R.�, A/B D e� and R.�,A/ are positive. Moreover, we can compute

KR.�, A/w D K

Z 0

�

e�.s��/w.s/ds

D

Z 1
0

ˇ.a/

Z 0

�r
e�.sCr/w.s, a/dsda,8w 2 L1.Œ�r, 0�, L1.RC///,

which implies that KR.�, A/ is positive. Thus, we can obtain from (3.2) that R.�,AL,B/ is positive. By [26, Therem VI.1.15], it follows that
operator AL,K generates a positive C0-semigroup on Banach space X � @X . Because this is an AL-space, it follows from [26, Theorem
VI.1.15] that w0.AL,K/ D s.AL,K/ (spectrum boundness is qual to growth boundness). Note that the function � is continuous and strictly
decreasing with lim�!�1 �.�/ D C1 and lim�!C1 �.�/ D 1. The rest of the proof is the same as the proof of [11, Theorem 13].

The following result is directly obtained from Theorems 4.6 and 4.7.

Corollary 4.8
If

kˇk1

Z 1
0

e�
R a

0 �.s/dsda < 1,

then the growth bound of the semigroup satisfies w0.AL,K/ < 0. In particular, all solutions (classical or mild) of (4.1) are uniformly
exponentially stable.
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