
Chapter 1. Basic Concept in Matrix Analysis

This chapter recalls basic facts about matrix, including linear vector spaces, linear trans-

formations, norms and inner products, eigenvalues and eigenvectors.

1 Linear Vector Spaces

1.1 Linear transformation and its matrix representation

Assume that V and W are two linear vector spaces over a field F. Here, most of the time

we will have F = R and sometimes F = C. We will also consider finite dimensional vector

spaces and in such case, when dimV = n, and dimW = m, we have a basis in V composed

of n linearly independent vectors:

V = span{ϕ1, . . . ϕn}.

Recall that a mapping T : V 7→ W is linear if

T (αu+ βv) = αTu+ βTv ∀ u, v ∈ V, α, β ∈ R (or α, β ∈ C)

The set of all linear operators from V to W will be denoted by L(V,W ) and L(V ) = L(V, V ).

It is clear that L(V,W ) is also a linear vector space.

When the bases in V and W (W = span{ψ1, . . . ψn}) are fixed, the linear operator T has

a matrix representation A ∈ Fn×n, which is obtained as follows. Consider T : V 7→ W

and obviously then, the image of Tϕj, j = 1, . . . , n is an element of W . Using the basis {ψk}
in W we can write

Tϕj =
m∑
k=1

αkjψk.

Therefore, for v ∈ V , v =
∑n

j=1 ajϕj we have:

Tv = T

n∑
j=1

ajϕj =
n∑
j=1

ajTϕj

=
n∑
j=1

aj

m∑
k=1

αkjψk =
m∑
k=1


bk︷ ︸︸ ︷

n∑
j=1

αkjaj

ψk

=
m∑
k=1

bkψk.
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The matrix representation of T then is A = (αkj), k = 1, . . . ,m, j = 1, . . . , n and we have

the following relation between the coefficients of v and Tv:

b = Aa, b =

 b1
...

bm

 , a =

a1...
an

 .

It is often convenient to identify the linear transformations with their matrix representations,

when the bases are fixed. When there is no ambiguity, we shall use the same notation A, B,

etc. (without boldface) to denote both the operator and its matrix representation.

A linear mapping f : V 7→ R or f : V 7→ C is called linear functional. The set of all

linear functionals is denoted by V ′ and it becomes a vector space by setting

(f + g)(v) = f(v) + g(v), (αf)(v) = αf(v), α ∈ F.

The dimension of V ′ is the same as the dimension of V ; and for fixed basis in V , {ϕ1, . . . , ϕn},
a basis in V ′, {ϕ′1, . . . , ϕ′n} is defined by

ϕ′k(v) = ak, if v =
n∑
j=1

ajϕj.

or

ϕ′k(ϕj) = δkj.

1.2 Norms and inner products

We introduce the notions of norm and inner product which generalize the length and dot

product for vectors in R3.

Definition 1.1 (Norm) A norm on the vector space V is a function ‖ · ‖ : V 7→ R that

satisfies, for any u, v ∈ V and α ∈ R, the following three properties

1. ‖v‖ = 0, iff v = 0;

2. ‖αv‖ = |α|‖v‖;

3. ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Note that these three properties imply that ‖v‖ ≥ 0. Indeed, by property 3. and 2. above

we have

0 = ‖v − v‖ ≤ ‖v‖+ |(−1)| ‖v‖ = 2‖v‖.

2



Important examples of norms are the `p-norms on Rn. Let V = Rn and p ≥ 1. Define

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

. (1.1)

It can be verified that ‖·‖p satisfies all the three conditions in the above definition and hence

it defines a norm in Rn. The three most important cases are p = 1, p = 2 and p =∞:

‖x‖1 =
n∑
i=1

|xi|, ‖x‖2 =

(
n∑
i=1

|xi|2
) 1

2

, and ‖x‖∞ = max
1≤i≤n

|xi|.

Another example of a norm on a vector space V with a fixed basis {ϕj}nj=1 is as follows:

qp(v) = ‖x‖p, where v =
n∑
j=1

xjϕj, p ≥ 1. (1.2)

We recommend that the reader verifies that all properties of the norm are satisfied by qp(·).

The equivalence of different norms on a vector space V is an important tool in the analysis

when we would like to obtain quantitative results on the rate of convergence of sequences.

We introduce this concept next.

Definition 1.2 We say that two norms ‖ · ‖ and ||| · ||| are equivalent norms on V if there

exist constants c and C such that the following inequalities hold for all v ∈ V :

c‖v‖ ≤ |||v||| ≤ C‖v‖. (1.3)

Next theorem shows the important fact that in finite dimensional space all norms are equiv-

alent.

Theorem 1.3 Any two norms on a finite dimensional linear vector space V are equivalent.

Proof. We fix a basis in V , {ϕj}, j = 1, . . . , n and let ‖ · ‖ be any norm on V . We will show

that ‖ · ‖ is equivalent norm to the norm q∞(·) defined in (1.2). This will prove the result,

because norm-equivalence is a transitive relation. Clearly, the set S defined as

S =
{
y ∈ Rn

∣∣ ‖y‖∞ = 1
}

is closed and bounded as a subset of Rn. Moreover, we have

S =

{
y ∈ Rn

∣∣ q∞(v) = 1, v =
n∑
j=1

yjϕj

}
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Consider the function f : Rn 7→ R+ defined by

x = (x1, . . . xn)T , f(x) :=

∥∥∥∥∥
n∑
j=1

xjϕj

∥∥∥∥∥ .
It is clear that f is continuous, because by the triangle inequality we have that

|f(x)− f(y)| ≤

∥∥∥∥∥
n∑
j=1

(xj − yj)ϕj

∥∥∥∥∥ ≤ ‖x− y‖∞
n∑
j=1

‖ϕj‖

≤ K‖x− y‖∞

where, K =
∑n

j=1 ‖ϕj‖, which is a constant because the basis is fixed. We have that f(x)

is continuous on Rn, and, in particular, on S. By the extreme value theorem from calculus,

because S is a compact set in Rn, it follows that f(x) attains its maximum and minimum

values at some points xmin ∈ S and xmax ∈ S, that is,

0 < f(xmin ) = min
x∈S

f(x), f(xmax ) = max
x∈S

f(x) <∞.

Therefore,

c = f(xmin ) ≤ ‖v‖ ≤ f(xmax ) = C.

Applying the above inequality with 1
q∞(v)

v for general v ∈ V completes the proof.

Operator norms Notice that L(V ) is a linear vector space, hence a norm of an oper-

ator A ∈ L(V ), in general, could be any function which satisfies the conditions stated in

Definition 1.1. Several examples are

Example 1.4 For a matrix A ∈ Rn×m, we can map A to a vector in Rnm and define the

following “entrywise” norm:

‖A‖p =

(
n∑
i=1

m∑
j=1

|aij|p
)1/p

. (1.4)

For p = 2, this is called the Frobenius norm:

‖A‖F =

(
n∑
i=1

m∑
j=1

|aij|2
)1/2

. (1.5)

For p =∞, this is called the max-norm:

‖A‖∞ = max{|aij|}. (1.6)

Operator norm may be defined as a sub-ordinate norm to a vector norm. We have the

following proposition which defines such a norm and proves two important properties.
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Proposition 1.5 Let U , V , and W be linear vector spaces with norms ‖ · ‖U , ‖ · ‖V , and

‖ · ‖W , respectively. Define, for A ∈ L(V,W ),

‖A‖L(V,W) = sup
v∈V

‖Av‖W
‖v‖V

, for all A ∈ L(V,W ) (1.7)

Then, ‖A‖L(V,W) is a norm in L(V,W ) which satisfies, for any v ∈ V ,

‖Av‖W ≤ ‖A‖L(V,W )‖v‖V . (1.8)

In addition, for any B ∈ L(U, V ), we have

‖AB‖L(U,W ) ≤ ‖A‖L(V,W )‖B‖L(U,V ). (1.9)

Proof. The first inequality (1.8) follows from the definition of ‖A‖L(V,W ):

‖Av‖W = ‖v‖V
‖Av‖W
‖v‖V

≤ ‖v‖V sup
y∈V

‖Ay‖W
‖y‖V

= ‖A‖L(V,W )‖v‖V .

The second inequality follows almost immediately. From (1.8) we get

‖ABu‖W ≤ ‖A‖L(V,W )‖Bu‖V ≤ ‖A‖L(V,W )‖B‖L(U,V )‖u‖U .

Dividing both sides by ‖u‖U and taking the sup over all u ∈ U completes the proof.

An operator norm ‖ · ‖ is called sub-multiplicative if it satisfies (1.9). A vector norm

‖ · ‖α and an operator norm ‖ · ‖β are called consistent if

‖Av‖α ≤ ‖A‖β‖v‖α, for all A ∈ L(V ), v ∈ V.

Since the linear functionals are mappings from V to F their norms are also defined as in (1.7)

which relates the norms on V and V ′:

‖f‖V ′ = sup
v∈V

|f(v)|
‖v‖V

. (1.10)

We shall now give the definition of inner (scalar) product.

Definition 1.6 (Inner (or Scalar) Product) An inner product of V is a sesquilinear

form (·, ·) : V × V 7→ C such that for any u ∈ V , v ∈ V , w ∈ V and α ∈ C, β ∈ C,

1. (u, v) = (v, u);

2. (v, v) ≥ 0 and (v, v) = 0, iff v = 0;
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3. (αu+ βv, w) = α(u,w) + β(v, w)

If V is a vector space over the real numbers, the second item in the definition says that the

inner product is symmetric. Note that (v, v) is always real by 1.

Example 1.7 The Euclidean inner product when V = Cn is defined by

(x, y)`2 =
n∑
i=1

xiyi,

and analogously also for V = Rn (actually the same expression as ȳi = yi in this case).

Lemma 1.8 (Cauchy-Schwarz inequality) Assume that (·, ·) is an inner product on V ,

then

|(u, v)|2 ≤ (u, u)(v, v), for all u ∈ V, v ∈ V,

Proof. By the definition of inner product, we have, for any u, v ∈ V and α = (u,v)
(v,v)
∈ C we

have

0 ≤ (u− αv, u− αv) = (u, u)− α(u, v)− α(u, v) + |α|2(v, v)

= (u, u)− |(u, v)|2

(v, v)
,

which completes the proof.

The Cauchy Schwarz inequality shows that ‖v‖ = (v, v)1/2 is a norm. This norm is

sometimes said to be a norm induced by the scalar product. It is immediate to see that

(v, v)1/2 satisfies conditions 1. and 2. in the definition of a norm (Definition 1.1). The

triangle inequality (condition 3.) follows from the Cauchy Schwarz inequality by

‖u+ v‖2 = (u+ v, u+ v) = ‖u‖2 + ‖v‖2 + 2 Re((u, v))

≤ ‖u‖2 + ‖v‖2 + 2|(u, v)| ≤ ‖u‖2 + ‖v‖2 + 2‖u‖‖v‖
= (‖u‖+ ‖v‖)2 .

Example 1.9 Let V = Rn. For the inner product given by Example 1.7, the Cauchy-Schwarz

inequality gives ∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣
2

≤
n∑
i=1

|xi|2
n∑
i=1

|yi|2.
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Example 1.10 V = L2(a, b), the vector space consisting of square integrable functions over

interval (a, b). Define an inner product by

(f, g)L2 =

∫ b

a

f(x)g(x)dx.

The corresponding Cauchy-Schwarz inequality is∣∣∣∣∫ b

a

f(x)g(x)dx

∣∣∣∣2 ≤ ∫ b

a

|f(x)|2dx
∫ b

a

|g(x)|2dx.

2 Eigenvalues, eigenvectors of matrices

In this section, we briefly review some facts related to eigen-decomposition of square matrices.

2.1 Eigenvalues: algebraic and geometric multiplicity

Given A ∈ Cn×n, if λ ∈ C and x 6= 0 are such that

Ax = λx,

then we call λ an eigenvalue of A and x an eigenvector of A corresponding to the eigenvector

x. Note that

Ax = λx ⇐⇒ (λI − A)x = 0. (2.11)

Given A ∈ L(V ) we use the notation σ(A) to denote the set of all eigenvalues of A, or,

equivalently the spectrum of A, namely,

σ(A) = {λ ∈ C
∣∣ det(A− λI) = 0} (2.12)

The characteristic polynomial of A is defined to be PA(z) = det(A − zI). Any polynomial

of degree n with complex coefficients

q(z) = zn + an−1z
n−1 + · · ·+ a1z + a0.

is a characteristic polynomial of a matrix. Indeed, q(z) = PAq(z) where

Aq =


0 0 · · · 0 a0
1 0 · · · 0 a1
...

...
. . .

...
...

0 0 · · · 0 an−2
0 0 · · · 1 an−1

 .
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To find the eigenvalues of A is equivalent to solving PA(z) = 0.

If n ≥ 5, by Abel’s theorem (a.k.a Abel-Ruffini theorem), the eigenvalues of A cannot

be expressed in terms of the algebraic operations +, −, ÷, ×, n
√

. Thus, on a computer, we

can only find eigenvalues iteratively using approximate methods.

“In algebra, the Abel–Ruffini theorem (also known as Abel’s impossibility theorem) states

that there is no algebraic solution, that is, solution in radicals, to the general polynomial

equations of degree five or higher with arbitrary coefficients. The theorem is named after

Paolo Ruffini, who made an incomplete proof in 1799, and Niels Henrik Abel, who provided

a proof in 1824.” – Wiki

Definition 2.1 The algebraic multiplicity Ma(λi) of an eigenvalue λi, is the number of times

that λi appears in the factorization of PA(z):

PA(z) = (z − λ1)γ1(z − λ2)γ2 · · · (z − λr)γr , where γ1 + γ2 + · · ·+ γr = n.

Definition 2.2 The geometric multiplicity of an eigenvalue λi is

Mg(λi) = dimEi, where Ei = ker(λiI − A).

It is immediate to see that Mg(λ) ≤ Ma(λ). In addition, if Mg(λ) < Ma(λ), then the

eigenvalue λ is called defective eigenvalue; if
∑

λ∈σ(A)Mg(λ) <
∑

λ∈σ(A)Ma(λ), then the

matrix A is called defective matrix.

Example 2.3 A =

0 1 0

0 0 1

0 0 0

. Then PA(z) = z3. λ = 0 is the only eigenvalue with

Ma(0) = 3 and Mg(0) = 1.

Definition 2.4 A matrix A ∈ Cn×n is diagonalizable if there exists an invertible matrix

X and a diagonal matrix Λ such that A = XΛX−1.

Theorem 2.5 A is non-defective if and only if it is diagonalizable.

Similar matrices represent the same linear operator under two different bases, with P

being the change of basis matrix. For example, consider a linear operator

T : V 7→ V.
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Under the basis {φi}, we have v =
∑n

i=1 aiφi, Tv =
∑n

i=1 biφi, and the relation b = Aa. If

we consider another basis {ψi}, we have v =
∑n

i=1 ãiψi, Tv =
∑n

i=1 b̃iψi, and the relation

b̃ = Bã. It is easy to check that

B = P−1AP

where

ψi =
n∑
i=1

Pijφj.

2.2 Schur decomposition

The following lemma is used in the proof of the Schur decomposition Theorem 2.7 and also

in constructing QR decompositions later in this course.

Lemma 2.6 Let x ∈ Cn and y ∈ Cn, be such that ‖x‖ = ‖y‖ and (x, y) = y∗x is real. Then,

there exists a unitary transformation Q such that Qx = y.

Proof. We set Q = 1−α(x−y)(x−y)∗. Choosing α = 2
‖x−y‖2 a straightforward computation

shows that Q∗Q = QQ∗ = I, and it follows that Q is unitary. Next we check whether Qx = y.

Note that from the conditions on the norms of x and y, and the fact that their inner product

is real, we have

‖x− y‖2 = ‖x‖2 − y∗x− x∗y + ‖y‖2 = 2(x− y)∗x.

Therefore,

Qx = x− α(x− y)[(x− y)∗x] = x− 2(x− y)∗x

‖x− y‖2
(x− y) = y.

The Schur decomposition theorem, which we prove next, shows that every matrix is

unitarily similar to an upper triangular matrix.

Theorem 2.7 Let A ∈ Cn×n. Then there exists a unitary Q and an upper triangular U

such that A = Q∗UQ.

Proof. The proof is by induction with respect to n. The result is clear for n = 1 with Q = 1

and U = a11. Assume that the Schur decomposition exists for matrices from C(n−1)×(n−1) and

let x ∈ Cn, x =

x1...
xn

, with (x, x) = 1 is an eigenvector of A, corresponding to eigenvalue
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λ. Next, define β ∈ C as follows:

β =

{
1, if x1 = 0
x1
|x1| , if x1 6= 0.

(2.13)

Consider now the vector y = β(1, 0, . . . , 0)∗ = βe1 and note that ‖y‖ = ‖x‖ and that

y∗x = |x1| ∈ R. Therefore, x and y satisfy all conditions of Lemma 2.6 and we can construct

a unitary matrix Q1 such that Q1x = y = βe1. We then have that βQ∗1e1 = x and hence,

Q1AQ
∗
1e1 =

1

β
Q1Ax =

λ

β
Q1x = λe1.

Thus, we obtain

Q1AQ
∗
1 =

(
λ wT2
0 A2

)
where w2 ∈ Cn−1 and A2 ∈ C(n−1)×(n−1). By the induction assumption, there exists a unitary

matrix Q̃2 ∈ C(n−1)×(n−1) such that U2 = Q̃2A2Q̃
∗
2 is upper triangular matrix. We then set

Q2Q1AQ
∗
1Q
∗
2 =

(
λ w∗2
0 U2

)
= U, with Q2 =

(
1 0T

0 Q̃2

)
.

It is also clear that the eigenvalues of U and A coincide (with their multiplicities), and the

proof is complete.

Theorem 2.8 A matrix A ∈ Cn×n can be written as A = Q∗ΛQ, where Q is unitary and Λ

is diagonal, if and only if A is normal, namely A∗A = AA∗.

Proof. By Schur decomposition above, A = Q∗UQ. Obviously

A∗A = AA∗ ⇔ U∗U = UU∗ ⇔ U is diagonal.

2.3 Gershgorin Circle Theorem

Theorem 2.9 If A ∈ Cn×n, then the spectrum of A, σ(A), is contained in the union of the

following disks in the complex plane.

Dk =
{
z ∈ C

∣∣ |z − akk| ≤ n∑
j=1,j 6=k

|akj|
}
.
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Proof. For λ ∈ σ(A), take x such that Ax = λx and ‖x‖∞ = 1. Let k be such that

|xk| = 1. Then (Ax)k = λxk, thus

λxk =
n∑
j=1

akjxj =
∑
j 6=k

akjxj + akkxk =⇒ (λ− akk)xk =
∑
j 6=k

akjxj.

Hence

|λ− akk| = |λ− akk| |xk| =
∣∣∣∣∑
j 6=k

akjxj

∣∣∣∣ ≤∑
j 6=k

|akj||xj| ≤
∑
j 6=k

|akj|.

2.4 Min-Max theorem (Courant-Fischer)

Given A ∈ Rn×n, A = AT . We know that

λmin = min
x∈Rn

(Ax, x)

(x, x)
≤ max

x∈Rn

(Ax, x)

(x, x)
= λmax.

Theorem 2.10 (Courant-Fisher min-max theorem) Suppose λ1 ≤ λ2 ≤ · · · ≤ λn are the

eigenvalues of A ∈ Rn×n, A = AT . Then

λk = min
{S | dimS=k}

max
x∈S

(Ax, x)

(x, x)
.

Proof. Let u1, u2, · · · , uk be the corresponding eigenvectors and Sk = Span{u1, u2, . . . , uk}.
Clearly dimSk = k. So

λk = max
x∈Sk

(Ax, x)

(x, x)
≥ min
{S | dimS=k}

max
x∈S

(Ax, x)

(x, x)
.

Consider S ′k = Span{uk, uk+1, · · · , un}. We have dimS ′k = n− k + 1 and

(Ax, x)

(x, x)
≥ λk, ∀x ∈ S ′k.

Now for any S such that dimS = k, dimS + dimS ′k = n + 1 and thus S ∩ S ′k 6= {0}. Let y

be in S ∩ S ′k and we have

max
x∈S

(Ax, x)

(x, x)
≥ (Ay, y)

(y, y)
≥ λk.

Hence

min
{S | dimS=k}

max
x∈S

(Ax, x)

(x, x)
≥ λk.

The proof is complete.
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Corollary 2.11 (Max-Min Theorem) Using the same setup as above, we have

λk = max
{S |dimS=n−k+1}

min
x∈S

(Ax, x)

(x, x)
.

The proof is similar.

Theorem 2.12 (Interlacing Theorem) Suppose A ∈ Rn×n is symmetric, P ∈ Rn×m is full

rank and P ∗P = I, where m < n. Let B = P ∗AP . Let λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A) and

λ1(B) ≤ λ2(B) ≤ · · · ≤ λm(B) be the eigenvalues of A and B, respectively. Then

λj(A) ≤ λj(B) ≤ λn−m+j(A), j = 1, 2, · · · ,m.

Proof. Let v1, v2, · · · , vm be the eigenvectors ofB. Denote again Sj = Span{v1, v2, · · · , vj}.
Then

λj(B) = max
x∈Sj

(Bx, x)

(x, x)
= max

x∈Sj

(P ∗APx, x)

(x, x)

= max
x∈Sj

(P ∗APx, x)

(P ∗Px, x)
Because P ∗P = I

= max
x∈Sj

(APx, Px)

(Px, Px)
= max

y∈P (Sj)

(Ay, y)

(y, y)
.

Since P is full rank, dimP (Sj) = dimSj = j. So

λj(B) = max
y∈P (Sj)

(Ay, y)

(y, y)
≥ min
{S | dimS=j}

max
x∈S

(Ax, x)

(x, x)
= λj(A).

In the last equality we used the min-max theorem.

We shall now prove λj(B) ≤ λn−m+j(A). Let S̃m−j+1 = Span{vj, vj+1, · · · , vm}, then

λj(B) = min
x∈S̃m−j+1

(Bx, x)

(x, x)
= min

y∈P (S̃m−j+1)

(Ay, y)

(y, y)

≤ max
{S |dimS=n−(n−m+j)+1}

min
x∈S

(Ax, x)

(x, x)
= λn−m+j(A),

where the last equality is due to the corollary of the min-max theorem.
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2.5 Relations between spectral radius and norms

For a matrix A : Rn 7→ Rn, the spectral radius of A, ρ(A) is defined as

ρ(A) = max
λ∈σ(A)

|λ|.

The relations between spectral radius and the norm of a matrix are interesting because they

show connections between algebraic quantity (spectral radius) and geometric quantity (such

as length and norm).

In this subsection, using the Schur decomposition theorem we prove such relations be-

tween spectral radius of a linear transformation and a its sub-ordinate norm. Recall that a

norm is sub-ordinate if it is defined via a vector norm. For a linear transformation A : V 7→ V ,

where V is a vector space equipped with a norm ‖ · ‖:

‖A‖ = sup
v∈V

‖Av‖
‖v‖

.

ρ(A) = ‖A‖2 if A is normal.

‖A‖22 = max
x∈Rn

‖Ax‖22
‖x‖22

= max
x∈Rn

x∗A∗Ax

x∗x
= ρ(A∗A) = ρ(A)2

In the proof of the main result, Theorem 2.14 we need the following lemma.

Lemma 2.13 Let S ∈ L(V ) be an invertible operator and ‖·‖ be a sub-ordinate norm. Then

NS(A) = ‖SAS−1‖ is also a sub-ordinate norm.

Proof. It is easy to verify that MS(v) = ‖Sv‖ is a vector norm on V . Further, by the

definition of a sub-ordinate norm we have:

NS(A) = sup
v∈V

‖SAS−1v‖
‖v‖

= sup
w∈V

‖SAw‖
‖Sw‖

= sup
w∈V

MS(Aw)

MS(w)
,

Here we have changed the variables v = Sw, and the second identity above follows from the

invertibility of S. This concludes the proof.

The following theorem states several important relations between spectral radius and

norms of a linear transformation.

Theorem 2.14 Assume that A ∈ L(V ), V is a vector space, dimV = n. Then the following

equalities hold:

13



1. ρ(A) = inf‖·‖ ‖A‖, where the infimum is taken over all sub-ordinate norms.

2. limk→∞A
k = 0 if and only if ρ(A) < 1.

3. ρ(A) = limk→∞ ‖Ak‖
1
k ;

Proof. To prove 1. we first show that ρ(A) ≤ ‖A‖ for any sub-ordinate norm ‖ · ‖. Let

x ∈ V be such that Ax = λx with |λ| = ρ(A). We then have

‖A‖ = sup
v∈V

‖Av‖
‖v‖

≥ ‖Ax‖
‖x‖

= ρ(A).

Next we show that for any δ > 0 there exists a sub-ordinate norm ‖ · ‖δ such that ‖A‖δ <
ρ(A) + δ. This will conclude the proof of 1. We fix the basis in V and below we will talk

about the matrix representation of A in this fixed basis. From the Schur decomposition

theorem we know that there exists unitary transformation Q such that

Q∗AQ = Λ + U,

where Λ is a diagonal matrix with the eigenvalues of A on the diagonal, and U is a strictly

upper triangular matrix. Note that Un = 0. For 0 < ε < 1, let us introduce a diagonal

matrix D, D = diag(ε, ε2, . . . , εn). As Uij = 0 for all i ≥ j, it is straightforward to verify that

(D−1UD)i,j = εj−iUij for i < j, and (D−1UD)i,j = 0 for i ≥ j. Choosing ε = min{ δ
2‖U‖∞ , 1}

and we have

‖D−1UD‖∞ ≤ ε‖U‖∞ < δ.

Let us set S = D−1Q∗ and from Lemma 2.13 we have that NS(A) = ‖SAS−1‖∞ is a sub-

ordinate norm. Hence,

NS(A) = ‖Λ +D−1UD‖∞ ≤ ρ(A) + ‖D−1UD‖∞ < ρ(A) + δ. (2.14)

Here we have used that D−1ΛD = Λ and ‖Λ‖∞ = ρ(A). This completes the proof of 1.

To show 2.: If ρ(A) < 1, say ρ(A) = 1− ε, for some 0 < ε ≤ 1 and we choose δ = ε
2

and

by 1. we have that there exists a norm ‖ · ‖δ such that

‖A‖δ < ρ(A) + δ = 1− δ < 1.

As the sub-ordinate norms are continuous functions, we have

0 ≤ ‖ lim
k→∞

Ak‖δ = lim
k→∞
‖Ak‖δ < lim

k→∞
(1− δ)k = 0,

which shows one of the implications in 2. To show the other direction, we assume that

limk→∞A
k = 0, and let x be an eigenvector of A, such that Ax = λx with |λ| = ρ(A). As in

the proof of 1.

‖Ak‖ = sup
v∈V

‖Akv‖
‖v‖

≥ ‖A
kx‖
‖x‖

= ρ(A)k ≥ 0.
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Taking the limit on both sides shows that limk→∞ ρ(A)k = 0, and, hence ρ(A) < 1. This

concludes the proof of 2.

Finally to prove 3. Let ε > 0 be arbitrary. We set B = (ρ(A) + ε)−1A. Note that

ρ(B) < 1 and by 2. limk→∞B
k = 0. By the continuity of the norm, this implies that

limk→∞ ‖Bk‖ = 0. By the definition of a limit, this means that there exists an N , such

that ‖Bk‖ < 1 for all k ≥ N . Note that ‖Bk‖ < 1 implies that ‖Ak‖ < (ρ(A) + ε)k, or,

equivalently, ‖Ak‖ 1
k < (ρ(A) + ε), for k ≥ N . Therefore, for any ε > 0 there exists an N ,

such that

ρ(A) ≤ ‖Ak‖
1
k ≤ ρ(A) + ε, k ≥ N.

This concludes the proof of 3. and the proof of the Theorem.

We also state a theorem and a corollary, which are often useful in analysis.

Theorem 2.15 Let A ∈ Cn×n be a given matrix. If ρ(A) < 1, then (I−A) is invertible and

(I − A)−1 =
∞∑
j=0

Aj.

Proof. Let ρ(A) = (1 − γ), where 0 < γ ≤ 1. Let δ = γ
2
. From the previous theorem we

know that there exists a sub-ordinate norm ‖ · ‖δ such that

‖A‖δ ≤ ρ(A) + δ = 1− γ

2
< 1.

Let us denote

SN =
N∑
j=0

Aj.

By the triangle inequality ond the sub-ordinate property of the norm we obtain that

‖SN‖ = ‖
N∑
j=0

Aj‖ ≤
N∑
j=0

‖Aj‖ ≤
N∑
j=0

‖A‖j

≤
N∑
j=0

(
1− γ

2

)j
≤

∞∑
j=0

(
1− γ

2

)j
=

2

γ

This tells us that limN→∞ SN exists and is bounded and we denote S = limN→∞ SN . Next,

we observe that

(I − A)SN = (I − A)(I + A+ . . .+ AN)

= I + A+ . . .+ AN − A− . . .− AN+1 = I − AN+1.
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Taking the limit on both sides and also considering SN(I − A) shows that

S(I − A) = (I − A)S = I,

which is another way to say that (I − A) is invertible and its inverse is S.

The following corollary is immediate and its proof amounts to some small changes in the

proof of Theorem 2.15.

Corollary 2.16 If A ∈ Cn×n and ‖A‖ < 1, where ‖ · ‖ is a subordinate norm, then (I −A)

is invertible and the following bound holds:

‖(I − A)−1‖ ≤ 1

1− ‖A‖

2.6 Special Cases of Eigenvalue Problems

We have the following special cases of eigenvalue problems which are often encountered in

applications.

1. A is diagonalizable if A has n distinct eigenvalues.

2. A is unitarily diagonalizable (there exists unitary Q and diagonal matrix Λ such that

A = QΛQ∗) if and only if AA∗ = A∗A, that is, if and only if A is normal.

3. A is Hermitian (or symmetric, when F = R) matrix A = A∗. Any Hermitian matrix is

unitarily diagonalizable.

4. For any A,B ∈ L(V ), σ(AB) = σ(BA)\{0} and σ(A) = σ(T−1AT ) for any invertible

T ∈ L(V ). A special case is that if A, B ∈ Rn×n and B is invertible, we have

AB = B−1(BA)B. It is obvious that σ(AB) = σ(BA).

3 SVD: Singular Value Decomposition

The singular value decomposition is one of the important and practical tools in numerical

linear algebra. To draw a simple analogy, let us consider a selfadjoint matrix A ∈ Cn×n,

i.e., A∗ = A. It is well known that we can write A as a sum of rank 1 projections on

its eigenvectors. Let Aϕj = λjϕj, j = 1 : n and ‖ϕj‖2 = 1. From Schur Decomposition

Theorem (and many other theorems) we have the following identity

A =
n∑
j=1

λjϕjϕ
∗
j .
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The theorem which we prove next, provides such a decomposition for general matrix

A ∈ Rm×n.

Theorem 3.1 Any matrix A ∈ Rm×n (m ≥ n) can be written as

A = U

(
Σ

0

)
V ∗ =

r∑
j=1

σjujv
∗
j (3.15)

where U ∈ Rm×m, V ∈ Rn×n are orthogonal matricies, and Σ = diag(σi) is diagonal such

that

σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . σn = 0.

There are different ways to prove this important theorem. Here we give two constructive

proofs. Let us first recall a classical result from linear algebra.

Lemma 3.2 Let A ∈ Rm×n and r = rank(A) = dim(Range(A)). Then

dim Ker(A) = n− r, dim Ker(A∗) = m− r.

Recall the concept of rank of a matrix.

The column rank of A is the dimension of the column space of A (number of linearly

independent column vectors), while the row rank of A is the dimension of the row space of

A (number of linearly independent row vectors).

column rank = row rank

A matrix is said to have full rank if its rank equals the largest possible for a matrix of

the same dimensions, which is the lesser of the number of rows and columns. A matrix is

said to be rank deficient if it does not have full rank.

The rank is also the dimension of the image of the linear transformation that is given by

multiplication by A. More generally, if a linear operator on a vector space (possibly infinite-

dimensional) has finite-dimensional image (e.g., a finite-rank operator), then the rank of the

operator is defined as the dimension of the image.

3.1 Low-rank approximation

A matrix A ∈ Rm×n (m ≥ n) has SVD

A = U

(
Σ

0

)
V ∗ =

n∑
j=1

σjujv
∗
j with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. (3.16)
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The best rank k approximation to A in the spectral norm is

Ak =
k∑
j=1

σjujv
∗
j ,

and

‖A− Ak‖2 = σk+1.

3.2 Proof I of Theorem 3.1

Since A∗A ∈ Rn×n is selfadjoint and positive (semi)-definite we can write

A∗A = V ΛV ∗

where V = (v1, . . . , vn) is orthogonal and Λ is diagonal with nonnegative entries λi. Without

loss of generality, we assume that

λ1 ≥ λ2 ≥ . . . ≥ λr > λr+1 = . . . λn = 0. (3.17)

It follows that

(AV )∗(AV ) = V ∗A∗AV = Λ. (3.18)

This means that AV ∈ Rm×n has orthogonal columns. Define

σi = ‖Avi‖ =
√
λi, i = 1 : n. (3.19)

and let

ui = Avi/σi, 1 ≤ i ≤ r.

Note that

Avi = 0, r + 1 ≤ i ≤ n.

Thus, with Ur = (u1, . . . , ur), we have that

AV = (UrΣr, 0), and, hence A = (UrΣr, 0)V ∗ =
r∑
j=1

σjujv
∗
j .

Next, we complete the set of vectors (u1, . . . , ur) to an orthogonal basis in Rm. We set

U = (Ur, Ũm−r), where Ũm−r = (ur+1, . . . um) ∈ Rm,m−r.

Without loss of generality we may assume that the columns of Ũm−r are orthogonal

Ũ∗m−rŨm−r = I(m−r)×(m−r), and, hence, U∗U = I.
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It is then immediate to see that

A = U

(
Σ

0

)
V ∗, Σ =

(
Σr 0

0 0

)
∈ Rn×n

as desired.

The proof given above contains a useful information, summarized as follows:

1. The singular values of A are the square roots of eigenvalues of AA∗.

2. Rank(A) is the number of the nonzero singular values.

Exercise 3.3 Two matrices A,B ∈ Cn×n are unitarily equivalent if A = QBQ∗ for some

unitary Q ∈ Cn×n. Proves that that A and B are unitarily equivalent if and only if they have

the same singular values.

4 Problems

Exercise. Let V be a real finite dimensional vector space with basis (ϕ1, . . . , ϕn). Show

that the functionals (ϕ′1, . . . , ϕ
′
n) defined as

ϕ′k(v) = ak, if v =
n∑
j−1

ajϕj.

are linearly independent and that any f ∈ V ′ can be represented as f =
∑n

j=1 γjϕ
′
j. This

proves that dimV ′ = n.

Exercise. If A = AT and E = ET , show that

λk(A) + λmin(E) ≤ λk(A+ E) ≤ λk(A) + λmax(E).

Hint: rewrite λk(A+ E) using min-max theorem, then split the terms.

Exercise. If S : V 7→ V is invertible, show that MS(v) = ‖Sv‖V is a vector norm on V .

Exercise. Prove that A ∈ Rn×n is self-adjoint if and only if A has all real eigenvalues

and a complete set of eigenvectors (namely these eigenvector form a basis of Rn).

Exercise. Prove that the eigenvalues of the symmetric tri-diagonal matrixA = diag(b, a, b),

for any two real numbers a, b, are given by

λk = a+ 2b cos
kπ

N + 1
, 1 ≤ k ≤ N
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and the eigenvectors vk, 1 ≤ k ≤ N , are given by

vk,j = sin

(
jkπ

N + 1

)
, 1 ≤ j ≤ N

where vk,j is the jth component of the kth vector wk.

Exercise 4.1 If A = UΣV ∗, then(
0 2A∗

2A 0

)
=

(
V V

U −U

)(
Σ 0

0 −Σ

)(
V V

U −U

)∗
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