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Abstract The iterative projection methods for solving the multiple-sets split feasibil-
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Hilbert spaces setting. Preliminary numerical experiments show that these iteration
methods are practical and easy to implement.
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1 Introduction

The multiple-sets split feasibility problem (MSSFP) [1] is a general way to char-
acterize various linear inverse problems which arises in many real-world applica-
tion problems, such as medical image reconstruction [2] and intensity-modulated
radiation therapy [3,4]. A point closest to the intersection of a family of closed
convex sets in one space has to be find, such that its image under a linear trans-
formation will be closest to the intersection of another family of closed convex
sets in the image space. Many iterative projection methods have been developed to
solve this problem. See for example [5–14] and references therein. Among these
works, Censor et al. [1] proposed an iterative algorithm to solve the MSSFP which
is based on the gradient projection method. This iterative algorithm used a fixed
step size restricted by the Lipschitz constant of gradient operator, which depends
on the operator norm of the linear transformation. In order to avoid this incon-
venience, Zhao and Yang [12] introduced a self-adaptive projection method by
adopting Armijo-like searches to solve the MSSFP. See also [10] and [11]. How-
ever, these iterative algorithms need an inner iteration numbers to obtain a suit-
able step size. The recent work of Zhao and Yang [13] suggested a new self-
adaptive way to compute directly the step size in each iteration. It need not
estimate the Lipschitz constant or choose the inner iteration numbers. A similar
approach for solving the two-sets split feasibility problem can be found in López
et al. [14].

On the other hand, a fixed-point method for solving the MSSFP was proposed by
Xu [15]. He proved that the MSSFP is equivalent to finding a common fixed point of
finite family of averaged mappings. Consequently, he proposed three iteration meth-
ods to solve the MSSFP: (i) successive iteration method; (ii) simultaneous iteration
method; and (iii) cyclic iteration method. These iteration methods also used a fixed
step size which depend on the Lipschitz constant.

Since the iteration methods introduced by Xu [15] used a fixed step size which
rely on the Lipschitz constant. To overcome this shortage, the purpose of this paper
was to introduce a cyclic iteration method and simultaneous iteration method with
self-adaptive step size for solving the MSSFP. Further, we consider a special case
of the MSSFP where the closed convex sets are level sets of convex functions and
propose a relaxed cyclic iteration method and relaxed simultaneous iteration method
with self-adaptive step size by using projections onto half-spaces instead of the original
convex sets, which are much more practical. For generality, we prove the theoretical
convergence results in an infinite-dimensional Hilbert spaces setting. Some numerical
experiments are reported to verify the efficiency of the proposed methods.

The rest of this paper is organized as follows. In the next section, we introduce some
basic definitions and lemmas which will be used in the following sections. In Sect. 3,
we propose a cyclic iteration scheme and simultaneous iteration scheme with self-
adaptive step size and prove their convergence. A relaxed cyclic iteration scheme and
simultaneous iteration scheme with self-adaptive step size will be given in Sect. 4 with
theoretical convergence proofs. In Sect. 5, we present some numerical experiments
to compare with other methods and show the effectiveness of our proposed iterative
methods. We will give some conclusions in the final.
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2 Preliminaries

In this section, we collect some important definitions and some useful lemmas which
will be used in the following sections. Let H be a real Hilbert space, 〈·, ·〉 and ‖ · ‖
be the inner product and norm, respectively, in H . We adopt the following notations:
(i) Ω denotes the solution set of the MSSFP; (ii) xn → x (xn ⇀ x) represents xn
converges strongly (weakly) to x , respectively; (iii) ωw(xn) means the weak cluster of
the sequence {xn}; and (iv) Fix(T ) denotes the set of fixed points of the mapping T .

Definition 2.1 ([16]) A mapping T : H → H is said to be

(i) nonexpansive, if ‖T x − T y‖ ≤ ‖x − y‖, ∀x, y ∈ H ;
(ii) firmly nonexpansive, if 〈x − y, T x − T y〉 ≥ ‖T x − T y‖2, ∀x, y ∈ H ;
(iii) averaged mapping, if there exist a nonexpansive mapping S : H → H and a
real number t ∈ (0, 1) satisfying T = (1 − t)I + t S, where I represents the identity
mapping.

Recall that the orthogonal projection PC from H onto a nonempty closed convex
subset C ⊂ H is defined by the following

PCx = argmin
y∈C ‖x − y‖.

The orthogonal projection has the following well-known properties (see for exam-
ple [17]).

Lemma 2.1 Let C ⊂ H be nonempty, closed and convex. Then for all x, y ∈ H and
z ∈ C,

(i) 〈x − PCx, z − PCx〉 ≤ 0;
(ii) ‖PCx − PC y‖2 ≤ 〈PCx − PC y, x − y〉;
(iii) ‖PCx − z‖2 ≤ ‖x − z‖2 − ‖PCx − x‖2.

Wegive two examples of projection operators. These results can be found inChapter
4 of Cegielski [18].

(1) If C = {x ∈ R
n : ‖x − u‖ ≤ r} is a closed ball centered at u ∈ R

n with radius
r > 0, then

PCx =
{
u + r x−u

‖x−u‖ , x /∈ C,

x, x ∈ C.

(2) If C = [a,b] ⊂ R
n is a closed rectangle in Rn , where a = (a1, a2, . . . , an)T and

b = (b1, b2, . . . , bn)T with ai ≤ bi , for all i , then for x ∈ R
n ,

(PCx)i =
⎧⎨
⎩
ai , if xi < ai ,
xi , if xi ∈ [ai , bi ],
bi , if xi > bi .

123



J Optim Theory Appl (2015) 166:844–860 847

Remark 2.1 It is easily seen that a firmly nonexpansive mapping is nonexpansive due
to the Cauchy-Schwartz inequality. A projection PC is firmly nonexpansive and hence
nonexpansive.

The mathematical form of the MSSFP can be formulated as finding a point x∗ with
the property

x∗ ∈
t⋂

i=1

Ci , such that Ax∗ ∈
r⋂
j=1

Q j , (1)

where t, r ≥ 1 are nonnegative integers, {Ci }ti=1 ⊆ H1, {Q j }rj=1 ⊆ H2 are closed
convex sets of Hilbert spaces H1 and H2, respectively, and A : H1 → H2 is a bounded
linear operator. Let t = r = 1, then theMSSFP reduces to the two-sets split feasibility
problem (SFP) [19] as follows:

Finding a point x∗ ∈ C, such thatAx∗ ∈ Q, (2)

where C ⊆ H1 and Q ⊆ H2 are nonempty, closed and convex sets, respectively.
Recall the proximity function introduced in Censor et al. [1] that

g(x) := 1

2

t∑
i=1

αi
∥∥x − PCi (x)

∥∥2 + 1

2

r∑
j=1

β j
∥∥Ax − PQ j (Ax)

∥∥2 , (3)

where {αi }ti=1 and {β j }rj=1 are positive real numbers, and PCi and PQ j are the metric
projections onto Ci and Q j , respectively.

Proposition 2.1 ([1]) Suppose that the solution set of the MSSFP is nonempty, then
the following statements hold,

(i) x∗ is a solution of the MSSFP if g(x∗) = 0;
(ii) The proximity function g(x) is convex and differentiable with gradient

∇g(x) =
t∑

i=1

αi
(
x − PCi x

) +
r∑
j=1

β j A
∗ (

I − PQ j

)
(Ax), (4)

and the Lipschitz constant of ∇g(x) is L = ∑t
i=1 αi + ‖A‖2 ∑r

j=1 β j .

Xu [15] introduced a proximity function which is different from the proximity
function (3),

p(x) := 1

2

r∑
j=1

β j
∥∥Ax − PQ j (Ax)

∥∥2 , (5)

where β j > 0 for all 1 ≤ j ≤ r . Consequently, he derived the following results.

Proposition 2.2 ([15]) Suppose that the solution set of the MSSFP is nonempty, then
the following statements hold,
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(i) The function p(x) is convex and differentiable with gradient

∇ p(x) =
r∑
j=1

β j A
∗(I − PQ j )(Ax), (6)

and the Lipschitz constant of ∇ p(x) is L = ‖A‖2 ∑r
j=1 β j ;

(ii) x∗ is a solution of the MSSFP if x∗ is a common fixed point of the averaged
mappings {Ti }ti=1, where Ti := PCi (I − γ∇ p), γ > 0, i = 1, 2, . . . , t .

It is well known that in a real Hilbert space H , the following equality holds:

‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2, (7)

for all x, y ∈ H and α ∈ [0, 1]. We will make use of a more general equality of the
above which can be found in the Lemma 2.13 of Bauschke and Combettes [16].

Lemma 2.2 For all x1, x2, . . . , xn ∈ H, they satisfy the following equality

∥∥∥∥∥
n∑

i=1

λi xi

∥∥∥∥∥
2

=
n∑

i=1

λi‖xi‖2 − 1

2

n∑
i, j=1

λiλ j‖xi − x j‖2, n ≥ 2, (8)

where λi ∈ [0, 1], i = 1, 2, . . . , n,
∑n

i=1 λi = 1.

Definition 2.2 ([20]) Suppose that C is a nonempty, closed and convex set in H and
{xn} is a sequence in H . Then, {xn} is Fejér monotone with respect to C if

‖xn+1 − z‖ ≤ ‖xn − z‖, ∀z ∈ C.

Fejér-monotone sequences are very useful in the analysis of optimization iterative
algorithms. It is easy to see that a Fejér-monotone sequence {xn} is bounded and the
limit ‖xn − z‖ exists when n → ∞.

The demiclosedness principle for nonexpansive mapping is well known in the
Hilbert spaces. See for example Theorem 4.17 of Bauschke and Combettes [16].

Lemma 2.3 (Demiclosedness principle of nonexpansive mappings) Let C be a closed
convex subset of H, T : C → C be a nonexpansive mapping with Fix(T ) �= ∅. If {xn}
is a sequence in C converges weakly to x and {(I − T )xn} converges strongly to y,
then (I − T )x = y. In particular, if y = 0, then x = T x.

The following result is useful when proving weak convergence of a sequence.

Lemma 2.4 ([16]) Let K be a nonempty, closed and convex subset of a Hilbert space
H. Let {xn} be a sequence in H satisfying the properties:

(i) limn→∞ ‖xn − x‖ exists foreach x ∈ K;
(ii) ωw(xn) ⊂ K.

Then, {xn} is converges weakly to a point in K .
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We will use convex functions to define the closed convex sets {Ci }ti=1 and {Q j }rj=1
in Sect. 4. Recall that a function ϕ : H → R is said to be convex if

ϕ(λx + (1 − λ)y) ≤ λϕ(x) + (1 − λ)ϕ(y), (9)

for all λ ∈ [0, 1] and for all x, y ∈ H . Let x0 ∈ H . We say that ϕ is subdifferentiable
at x0 if there exists ξ ∈ H such that

ϕ(y) ≥ ϕ(x0) + 〈ξ, y − x0〉, for all y ∈ H. (10)

The subdifferential of ϕ at x0 denoted by ∂ϕ(x0) which consists of all ξ satisfies the
relation (10).

The following lemma provides an important boundedness property of the subdif-
ferential infinite-dimensional Hilbert spaces.

Lemma 2.5 ([21]) Suppose f : Rn → R is a finite convex function, then it is subdif-
ferentiable everywhere, and its subdifferentials are uniformly bounded on any bounded
subset of Rn.

3 A Cyclic and Simultaneous Iteration Method for Solving the MSSFP

In this section, we propose a cyclic iteration method and a simultaneous iteration
method with self-adaptive step size for solving the MSSFP and prove the theoretical
convergence. In what follows, the functions p(x) and ∇ p(x) are defined in (5) and
(6), respectively. First, we prove the convergence of a cyclic iterative sequence with
self-adaptive step size for solving the MSSFP.

Theorem 3.1 Assume that the MSSFP is consistent (i.e., the solution set Ω is non-
empty). For any x0 ∈ H1, the cyclic iteration scheme {xn} is defined by the following,

xn+1 = PC[n] (xn − λn∇ p(xn)) , n ≥ 0, (11)

where [n] = (n mod t) + 1, the mod function takes values in {0, 1, . . . , t − 1}, and
the step size λn := ρn p(xn)

‖∇ p(xn)‖2 with 0 < ρ ≤ ρn ≤ ρ < 4, then the iterative sequence
{xn} converges weakly to a solution of the MSSFP.

Proof Let p ∈ Ω . Using the nonexpansivity property of projection operator, we have

‖xn+1 − p‖2 = ∥∥PC[n] (xn − λn∇ p(xn)) − p
∥∥2

≤ ‖xn − λn∇ p(xn) − p‖2
= ‖xn − p‖2 − 2λn 〈∇ p(xn), xn − p〉 + ‖λn∇ p(xn)‖2 . (12)
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From Lemma 2.1, we obtain

〈∇ p(xn), xn − p〉 =
〈

r∑
j=1

β j A
∗(I − PQ j )Axn, xn − p

〉

=
r∑
j=1

β j
〈
(I − PQ j )Axn, Axn − PQ j (Axn)

〉

+
r∑
j=1

β j
〈
(I − PQ j )Axn, PQ j (Axn) − Ap

〉

≥
r∑
j=1

β j
∥∥Axn − PQ j (Axn)

∥∥2 = 2p(xn). (13)

Substituting (13) into (12), we get

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − 4λn p(xn) + ‖λn∇ p(xn)‖2

= ‖xn − p‖2 − ρn(4 − ρn)
p2(xn)

‖∇ p(xn)‖2 . (14)

Since 0 < ρn < 4, it follows from (14) that

‖xn+1 − p‖ ≤ ‖xn − p‖, (15)

which implies that {xn} is Fejér-monotone sequence, and limn→∞ ‖xn − p‖ exists.
We can also get from (14) that

ρ (4 − ρ)
p2(xn)

‖∇ p(xn)‖2 ≤ ρn(4 − ρn)
p2(xn)

‖∇ p(xn)‖2
≤ ‖xn − p‖2 − ‖xn+1 − p‖2. (16)

This implies that
∞∑
n=0

p2(xn)

‖∇ p(xn)‖2 < +∞. (17)

Since ∇ p is Lipschitz continuous and {xn} is bounded, so {∇ p(xn)} is also bounded.
Hence, from (17), we can conclude that

lim
n→∞

1

2

r∑
j=1

β j
∥∥Axn − PQ j (Axn)

∥∥2 = 0.

It follows from the above that

lim
n→∞

∥∥Axn − PQ j (Axn)
∥∥ = 0, (18)
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for any j = 1, 2, . . . , r . Since the sequence {xn} is bounded, there exists a subsequence
{xnk } of {xn} such that xnk ⇀ x̂ . Next, we will show that x̂ is a solution of MSSFP.
From (18), for any j = 1, 2, . . . , r , we have

lim
k→∞

∥∥Axnk − PQ j (Axnk )
∥∥ = ∥∥Ax̂ − PQ j (Ax̂)

∥∥ = 0.

Therefore, Ax̂ ∈ ⋂r
j=1 Q j . In the following, we will prove x̂ ∈ ⋂t

i=1 Ci .
Let un = xn − λn∇ p(xn). The subsequence {unk } converges weakly to x̂ . On the

other hand, we have the estimation that

‖xnk+1 − p‖2 ≤ ‖unk − p‖2 ≤ ‖xnk − p‖2 − ρnk (4 − ρnk )
p2(xnk )

‖∇ p(xnk )‖2
. (19)

Then, limk→∞ ‖unk − p‖ has the same limits as the limk→∞ ‖xnk − p‖. ByLemma 2.1,
we have

∥∥∥PC[nk ](unk ) − unk

∥∥∥2 ≤ ‖unk − p‖2 −
∥∥∥PC[nk ](unk ) − p

∥∥∥2
= ‖unk − p‖2 − ‖xnk+1 − p‖2 → 0, as k → ∞. (20)

Notice that the pool {1, 2, . . . , t} is finite, then for any i ∈ {1, 2, . . . , t}, we can choose
a subsequence {nkl } ⊂ {nk} such that [nkl ] = i , then

‖PCi (unkl ) − unkl ‖ → 0, as l → ∞.

Since the projection operator PCi is nonexpansive, by the demiclosedness of nonex-
pansive mappings (Lemma 2.3), we know that x̂ ∈ Ci , i.e., x̂ ∈ ⋂t

i=1 Ci . Therefore,
x̂ ∈ Ω . By Lemma 2.4, we can conclude that the sequence {xn} converges weakly to
a solution of the MSSFP. This completes the proof. ��

Second, we propose a simultaneous iterative sequence with self-adaptive step size
for solving the MSSFP and prove its convergence. The process of proof is similar to
Theorem 3.1, and we give detailed process for the sake of completeness.

Theorem 3.2 Assume that the MSSFP is consistent (i.e., the solution set Ω is non-
empty). For any initial x0 ∈ H1, define the simultaneous iteration scheme as follows,

xn+1 =
t∑

i=1

wi PCi (xn − λn∇ p(xn)) , n ≥ 0, (21)

where {wi }ti=1 ⊆ [0, 1] with ∑t
i=1 wi = 1, and the stepsize {λn} is the same as in

Theorem 3.1, then the iterative sequence {xn} converges weakly to a solution of the
MSSFP.
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Proof Let p ∈ Ω . By the iteration scheme (21), the nonexpansivity property of pro-
jection operator PC and Lemma 2.2, we obtain

‖xn+1 − p‖2 =
∥∥∥∥∥

t∑
i=1

wi PCi (xn − λn∇ p(xn)) − p

∥∥∥∥∥
2

≤ ‖xn − λn∇ p(xn) − p‖2
= ‖xn − p‖2 − 2λn 〈∇ p(xn), xn − p〉 + ‖λn∇ p(xn)‖2. (22)

Notice the inequality (13) and submit it into (22), we get

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − 4λn p(xn) + ‖λn∇ p(xn)‖2

= ‖xn − p‖2 − ρn(4 − ρn)
p2(xn)

‖∇ p(xn)‖2 . (23)

Since 0 < ρn < 4, it follows from (23) that

‖xn+1 − p‖2 ≤ ‖xn − p‖2, (24)

which implies that {xn} is Fejér-monotone sequence, and limn→∞ ‖xn − p‖ exists.
We can also get from (23) that

ρ(4 − ρ)
p2(xn)

‖∇ p(xn)‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2. (25)

Then,
∞∑
n=0

p2(xn)

‖∇ p(xn)‖2 < +∞. (26)

Since ∇ p is Lipschitz continuous and {xn} is bounded, {∇ p(xn)} is bounded. Hence,
we can conclude from (26) that

lim
n→∞ ‖Axn − PQ j (Axn)‖ = 0, for any j = 1, 2, . . . , r. (27)

Since the sequence {xn} is bounded, there exists a subsequence {xnl } of {xn} such that
{xnl } converges weakly to x̃ . Next, we will show that x̃ is a solution of MSSFP. From
(27), for any j = 1, 2, . . . , r , we have

lim
l→∞ ‖Axnl − PQ j (Axnl )‖ = ∥∥Ax̃ − PQ j (Ax̃)

∥∥ = 0.

Therefore, Ax̃ ∈ ⋂r
j=1 Q j . In the following, we will prove that x̃ ∈ ⋂t

i=1 Ci .
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Let un = xn − λn∇ p(xn). The subsequence {unl } converges weakly to x̃ . On the
other hand, we have the estimation

‖xnl+1 − p‖2 ≤ ∥∥unl − p
∥∥2 ≤ ‖xnl − p‖2 − ρnl (4 − ρnl )

p2(xnl )

‖∇ p(xnl )‖2
. (28)

Then, liml→∞ ‖unl − p‖ has the same limits as the liml→∞ ‖xnl − p‖. With the help
of Lemma 2.1(iii), we have

t∑
i=1

wi‖PCi (unl ) − unl‖2 ≤ ‖unl − p‖2 −
t∑

i=1

wi‖PCi (unl ) − p‖2

≤ ‖unl − p‖2 − ‖xnl+1 − p‖2 → 0, as l → ∞. (29)

Thus, for any i ∈ {1, 2, . . . , t}, we have

‖PCi (unl ) − unl‖ → 0, as l → ∞. (30)

So x̃ ∈ Ci , i.e., x̃ ∈ ⋂t
i=1 Ci . Therefore, x̃ ∈ Ω . By Lemma 2.4, we can conclude

that the sequence {xn} converges weakly to a solution of the MSSFP. This completes
the proof. ��
Remark 3.1 The cyclic iterative sequence (11) and the simultaneous iterative sequence
(21) not only extend the iteration methods of Xu[15] from constant step size to self-
adaptive step size, but also generalize the results of López et al. [14] to solve the
MSSFP.

4 A Relaxed Cyclic and Simultaneous Iteration Method for Solving the MSSFP

In the previous section, we have proved that the cyclic iterative sequence (11) and the
simultaneous iterative sequence (21) with self-adaptive step size converge weakly to a
solution of the MSSFP. In this section, we will consider a special case of the MSSFP,
where the closed convex sets {Ci }ti=1 and {Q j }rj=1 are level sets of convex functions.
Before we state our main results, we make the following two assumptions.

(A1) The set Ci is given by

Ci := {x ∈ H1|ci (x) ≤ 0},

where ci : H1 → R, i = 1, 2, . . . , t are convex functions. The set Q j is given by

Q j := {y ∈ H2|q j (y) ≤ 0},

where q j : H2 → R, j = 1, 2, . . . , r are convex functions. Assume that both ci
and q j are subdifferentiable on H1 and H2, respectively, and that ∂ci and ∂q j are
bounded operators (i.e., bounded on bounded sets).
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(A2) For any x ∈ H1 and y ∈ H2, at least one subgradient ξi ∈ ∂ci (x) and
η j ∈ ∂q j (y) can be calculated, where ∂ci (x) and ∂q j (y) are the subdifferentials
of ci (x) and q j (y) at the points x and y, respectively.

∂ci (x) := {ξi ∈ H1|ci (z) ≥ ci (x) + 〈ξi , z − x〉, ∀z ∈ H1} ,

and

∂q j (y) := {
η j ∈ H2|q j (u) ≥ q j (y) + 〈η j , u − y〉, ∀u ∈ H2

}
.

Define Cn
i and Qn

j to be the following halfspaces:

Cn
i := {

x ∈ H1|ci (xn) + 〈
ξni , x − xn

〉 ≤ 0
}
,

where ξni ∈ ∂ci (xn), i = 1, 2, . . . , t and

Qn
j :=

{
y ∈ H2|q j (Axn) +

〈
ηnj , y − Axn

〉
≤ 0

}
,

where ηnj ∈ ∂q j (Axn), j = 1, 2, . . . , r .

By the definition of the subgradient, it is clear that Ci ⊆ Cn
i , Q j ⊆ Qn

j , and the
orthogonal projections onto these half-spaces Cn

i and Qn
j can be directly calculated.

First, we present a relaxed cyclic projection scheme with self-adaptive step size.
Since the projections onto half-spaces Cn

i and Qn
j have closed forms, the following

iteration scheme is easy to be implemented. We define the function pn(x) as follows,

pn(x) := 1

2

r∑
j=1

β j

∥∥∥Ax − PQn
j
(Ax)

∥∥∥2 , (31)

where β j > 0 for all 1 ≤ j ≤ r . The gradient of pn(x) is

∇ pn(x) =
r∑
j=1

β j A
∗ (

I − PQn
j

)
(Ax). (32)

Theorem 4.1 Suppose the MSSFP is consistent (i.e., the solution set Ω is nonempty)
and the condition A1 and A2 hold. For any initial x0 ∈ H1, the relaxed cyclic iteration
scheme is defined by

xn+1 = PCn[n] (xn − λn∇ pn(xn)) , n ≥ 0, (33)

where [n] = (n mod t) + 1, the mod function takes values in {0, 1, . . . , t − 1}, and
the step size {λn} is chosen such that λn := ρn pn(xn)

‖∇ pn(xn)‖2 with 0 < ρ ≤ ρn ≤ ρ < 4.
Then, the iterative sequence {xn} converges weakly to a solution of the MSSFP.
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Proof Let p ∈ Ω . Since the PCn
i
is nonexpansive for each i ∈ {1, 2, . . . , t}, it follows

from the same way of Theorem 3.1 to get the inequality (14), we have

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − ρn(4 − ρn)
p2n(xn)

‖∇ pn(xn)‖2 . (34)

Thus, the sequence {xn} is Fejér-monotone sequence, and limn→∞ ‖xn − p‖ exists. It
follows from (34) and 0 < ρ ≤ ρn ≤ ρ < 4 that

∞∑
n=0

p2n(xn)

‖∇ pn(xn)‖2 < +∞. (35)

Since∇ pn is Lipschitz continuous and {xn} is bounded, {∇ pn(xn)} is bounded. Hence,
from (35), we can conclude that pn(xn) → 0, as n → ∞.

Since ∂q j is bounded on bounded sets, it exists η such that ‖ηnj‖ ≤ η for all j .
Notice that PQn

j
Axn ∈ Qn

j , we get

q j (Axn) ≤
〈
ηnj , Axn − PQn

j
Axn

〉
≤ η

∥∥∥Axn − PQn
j
Axn

∥∥∥ → 0, as n → ∞. (36)

We now prove that ωw(xn) ⊂ Ω . Since {xn} is bounded, there exists a subsequence
{xnk } ⊂ {xn} such that xnk ⇀ x̂ . By the weakly lower semicontinuous of convex
function q j and (36), we obtain

q j (Ax̂) ≤ lim inf
k→∞ q j (Axnk ) ≤ 0.

Then, Ax̂ ∈ Q j , j = 1, 2, . . . , r. i.e., Ax̂ ∈ ⋂r
j=1 Q j .

Next, we show that x̂ ∈ ⋂t
i=1 Ci . Let unk = xnk − λnk∇ pnk (xnk ), we have

‖unk − xnk‖ = λnk‖∇ pnk (xnk )‖ ≤ 4pnk (xnk )

‖∇ pnk (xnk )‖
→ 0, as k → ∞. (37)

Since p ∈ Ci ⊂ Cn
i , for any i = 1, 2, . . . , t . With the help of Lemma 2.1 and observe

that ‖unk − p‖ ≤ ‖xnk − p‖, we have

‖xnk+1 − p‖2 ≤ ‖unk − p‖2 −
∥∥∥∥
(
I − PCnk[nk ]

)
(unk )

∥∥∥∥
2

≤ ‖xnk − p‖2 −
∥∥∥∥
(
I − PCnk[nk ]

)
(unk )

∥∥∥∥
2

. (38)

It turns out that ∥∥∥∥
(
I − PCnk[nk ]

)
(unk )

∥∥∥∥ → 0, as k → ∞. (39)
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Since the pool of convex sets {Ci }ti=1 is finite. For any i = 1, 2, . . . , t , we can choose
a subsequence {nkl } ⊂ {nk} such that [nkl ] = i , then we get

ci (xnkl ) ≤
〈
ξ
nkl
i , xnkl − P

C
nkl
i

(unkl )

〉

≤ ξ

(∥∥∥xnkl − unkl

∥∥∥ +
∥∥∥∥unkl − P

C
nkl
i

(unkl )

∥∥∥∥
)

→ 0, as l → ∞, (40)

where ξ satisfies ‖ξnkli ‖ ≤ ξ . By virtue of the weakly lower semicontinuous of convex
function ci , we obtain

ci (x̂) ≤ lim inf
l→∞ ci (xnkl ) ≤ 0. (41)

Consequently, x̂ ∈ Ci , i = 1, 2, . . . , t . Therefore, x̂ ∈ Ω . Noticing that for any
p ∈ Ω , limn→∞ ‖xn − p‖ exists and ωw(xn) ⊂ Ω . By Lemma 2.4, we can conclude
that the sequence {xn} converges weakly to a solution of the MSSFP. This completes
the proof. ��

Second, we propose a relaxed simultaneous iterative sequence with self-adaptive
step size for solving the MSSFP and establish its convergence.

Theorem 4.2 Assume that the MSSFP is consistent (i.e., the solution set Ω is non-
empty) and the condition A1 and A2 hold. For any initial x0 ∈ H1, the relaxed
simultaneous iterative sequence is defined by

xn+1 =
t∑

i=1

wi PCn
i
(xn − λn∇ pn(xn)) , n ≥ 0, (42)

where {wi }ti=1 ⊆ [0, 1] with ∑t
i=1 wi = 1, and the step size {λn} is chosen the same

as in Theorem 4.1. Then, the iterative sequence {xn} converges weakly to a solution
of the MSSFP.

Proof Themain idea of proofingTheorem4.2 is similar to Theorem4.1. For complete-
ness, we give the detailed below. Let p ∈ Ω . Replace p(xn) and ∇ p(xn) with pn(xn)
and ∇ pn(xn) in (22) of Theorem 3.2, respectively. Then, under the same argument,
we have

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − ρn(4 − ρn)
p2n(xn)

‖∇ pn(xn)‖2 . (43)

Thus, the sequence {xn} is Fejér-monotone sequence, and limn→∞ ‖xn − p‖ exists. It
follows from (43) and 0 < ρ ≤ ρn ≤ ρ < 4 that

∞∑
n=0

p2n(xn)

‖∇ pn(xn)‖2 < +∞. (44)
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Since ∂q j is bounded on bounded sets, for any j = 1, 2, . . . , r , we have

q j (Axn) ≤
〈
ηnj , Axn − PQn

j
Axn

〉
≤

∥∥∥ηnj

∥∥∥ ∥∥∥Axn − PQn
j
Axn

∥∥∥ → 0, as n → ∞.

(45)

Since {xn} is bounded, there exists a subsequence {xnk } ⊂ {xn} such that xnk ⇀ x̂ .
By the weakly lower semicontinuous of convex function q j and (45), we obtain

q j (Ax̂) ≤ lim inf
k→∞ q j (Axnk ) ≤ 0.

Then, Ax̂ ∈ Q j , j = 1, 2, . . . , r . I.e., Ax̂ ∈ ⋂r
j=1 Q j .

Let unk = xnk − λnk∇ pnk (xnk ), we have

‖unk − xnk‖ = λnk‖∇ pnk (xnk )‖ ≤ 4pnk (xnk )

‖∇ pnk (xnk )‖
→ 0, as k → ∞. (46)

Since ‖unk − p‖ ≤ ‖xnk − p‖. By Lemma 2.1, we have

t∑
i=1

wi

∥∥∥PCnk
i

(unk ) − unk

∥∥∥2 ≤ ‖unk − p‖2 −
t∑

i=1

wi

∥∥∥PCnk
i

(unk ) − p
∥∥∥2

≤ ‖xnk − p‖2 − ‖xnk+1 − p‖2. (47)

For any i = 1, 2, . . . , t, we obtain

∥∥∥(
I − PCnk

i

)
(unk )

∥∥∥ → 0, as k → ∞. (48)

Notice that the subdifferentials ∂ci is bounded on bounded sets, by (46) and (48), we
know that

ci (xnk ) ≤
〈
ξ
nk
i , xnk − PCnk

i
(unk )

〉

≤ ∥∥ξ
nk
i

∥∥ (
‖xnk − unk‖ +

∥∥∥unk − PCnk
i

(unk )
∥∥∥)

→ 0, as k → ∞. (49)

By the weakly lower semicontinuous of convex function ci , we obtain

ci (x̂) ≤ lim inf
k→∞ ci (xnk ) ≤ 0. (50)

Consequently, x̂ ∈ Ci , i = 1, 2, . . . , t . Therefore, x̂ ∈ Ω . Now we can apply
Lemma 2.4 to K := Ω to get the full iterative sequence {xn} converges weakly
to a solution of the MSSFP. This completes the proof. ��
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Table 1 Comparing cyclic iterative sequence (11) and simultaneous iterative sequence (21) with Zhao and
Yang’s [13] method to solve Example 5.1 with the problem size of t = r = 20,m = 60, n = 80

Methods Initial point δ = 10−5 δ = 10−6 δ = 10−7 δ = 10−8

k k k k

Cyclic sequence (11) e0 2 2 2 6

100e1 13 16 20 47

−100e1 7 9 13 21

100randn(n, 1) 10 12 15 28

Simultaneous sequence (21) e0 8 8 9 108

100e1 282 362 507 1,080

−100e1 165 219 318 560

100randn(n, 1) 258 334 467 1,069

Zhao and Yang’s [13] e0 8 9 49 450

100e1 99 353 2,899 28,377

−100e1 78 269 2,454 24,394

100randn(n, 1) 142 355 2716 26,505

5 Numerical Experiments

In this section, we present some preliminary numerical results and show the efficiency
of our proposed methods to solve the MSSFP. All the codes are written in MATLAB
and are performed on a personal Lenovo computer with Pentium(R) Dual-Core CPU
@ 2.8GHz and RAM 2.00GB. For the sake of convenience, we use e0 and e1 to
represent a n-dimensional real-valued vector with every elements equal to 0 and 1,
respectively. That is, e0 = {0, 0, . . . , 0}T and e1 = {1, 1, . . . , 1}T. The randn is a
MATLAB command to generate normally distributed random numbers.

We apply our proposed iterationmethods to solve theMSSFP and compare with the
methods proposed byZhao andYang [13]. Throughout the computational experiments,
the parameters ρn = 1 was set in all our iteration schemes and wn = 1 in Zhao and
Yang [13]. To measure the performance of these iterative methods, we report the
stopping iteration numbers when the objection function f (x) (3) satisfying f (x) ≤ δ

for some given small δ.
First, we compare the cyclic iterative sequence (11) and the simultaneous iterative

sequence (21) with Zhao and Yang’s [13] method to solve the Example 5.1. The
numerical results are reported in Table 1.

Example 5.1 The MSSFP with Ci = {x ∈ R
n|‖x − di‖ ≤ ri }, i = 1, 2, . . . , t , and

Q j = {y ∈ R
m |L j ≤ y ≤ Uj }, j = 1, 2, . . . , r . Let A = (ai j )m×n and ai j ∈ [0, 1],

where di ∈ [e0, 10e1], ri ∈ [40, 60], L j ∈ [10e1, 40e1] and Uj ∈ [50e1, 100e1] are
all generated randomly.

Second, we compare the relaxed cyclic projection iterative sequence (33) and the
relaxed simultaneous projection iterative sequence (42) with the relaxed iterative algo-
rithm of Zhao and Yang[13]. The numerical results are reported in Table 2.
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Table 2 Comparing relaxed cyclic iterative sequence (33) and relaxed simultaneous iterative sequence
(42) with Zhao and Yang’s [13] relaxed method to solve Example 5.2 with the problem size of t = r =
30,m = 50, n = 60

Methods Initial point δ = 10−5 δ = 10−6 δ = 10−7 δ = 10−8

k k k k

Relaxed cyclic sequence (33) e1 7 11 19 51

100e1 221 377 845 2,508

−100e1 229 347 706 1,792

100randn(n, 1) 455 784 1,642 4,128

Relaxed simultaneous
sequence (42)

e1 209 277 571 1,543
100e1 4,010 7,014 14,173 40,087

−100e1 2,273 4,838 9,150 29,397

100randn(n, 1) 4,578 7,329 14,669 40,069

Zhao and Yang’s [13] e1 279 529 1,120 4,769

100e1 6,490 11,101 18,880 108,730

−100e1 8,846 15,066 30,218 156,398

100randn(n, 1) 20,208 40,107 92,847 567,583

Example 5.2 The MSSFP with Ci = {x ∈ R
n|‖x − di‖ ≤ ri }, i = 1, 2, . . . , t ,

and Q j = {y ∈ R
m | 12 yT B j y + bTj y + c j ≤ 0}, j = 1, 2, . . . , r , where di ∈

(6e1, 16e1), ri ∈ (100, 120), b j ∈ (−30e1,−20e1), c j ∈ (−50,−60), and all ele-
ments of the matrix Bj [in the interval (2, 10)] are all generated randomly. The matrix
A is the same as Example 5.1.

We can see fromTables 1 and 2 that the (relaxed) cyclic iterative sequence converges
faster than the other two iterative methods. For relative large error δ (e.g., δ = 10−5),
the (relaxed) simultaneous iterative sequence converges slower than the method of
Zhao and Yang [13]. However, if we require to find much accurate of the solution,
the iterative method of Zhao and Yang [13] spend more iteration numbers than the
(relaxed) simultaneous iterative sequence.

6 Conclusions

The multiple-sets split feasibility problem includes the two-sets split feasibility prob-
lem as a special case. Many iterative projection methods have been developed to solve
them. However, to employ these iteration schemes, one needs to know a priori of
the norm of a bounded linear operator. In this paper, we introduced a cyclic itera-
tive sequence (11) and simultaneous iterative sequence (21) for solving the MSSFP
with self-adaptive step size without any prior information about the operator norm.
We also proposed a relaxed cyclic projection scheme (33) and simultaneous projec-
tion scheme (42), respectively. Theoretical convergence results are established in the
infinite-dimensional Hilbert spaces setting. Numerical experiments indicated that our
iterative methods performed better than the methods of Zhao and Yang [13].
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