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Abstract The previous results describing the generalization ability of Empiri-
cal Risk Minimization (ERM) algorithm are usually based on the assumption
of independent and identically distributed (i.i.d.) samples. In this paper we
go far beyond this classical framework by establishing the first exponential
bound on the rate of uniform convergence of the ERM algorithm with V-
geometrically ergodic Markov chain samples, as the application of the bound
on the rate of uniform convergence, we also obtain the generalization bounds
of the ERM algorithm with V-geometrically ergodic Markov chain samples
and prove that the ERM algorithm with V-geometrically ergodic Markov
chain samples is consistent. The main results obtained in this paper extend the
previously known results of i.i.d. observations to the case of V-geometrically
ergodic Markov chain samples.
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1 Introduction

Quantifying the generalization performance of learning algorithms is one
of the central problems in machine learning theory. The previously known
results on the learning performance of ERM algorithm are usually based
on the assumption that the training samples are independent and identically
distributed (i.i.d.) (see e.g. [1–6, 13, 20, 21]). However, independence is a very
restrictive concept in several ways (see [16–19]). First, it is often an assumption,
rather than a deduction on the basis of observations. Second, it is an all or
nothing property, in the sense that two random variables are either indepen-
dent or they are not− the definition does not permit an intermediate notion
of being nearly independent. As a result, many of the proofs based on the
assumption that the underlying stochastic sequence is i.i.d. are rather “fragile”.
In addition, this i.i.d. assumption can not be strictly justified in real-world
problems and many machine learning applications such as market prediction,
system diagnosis, and speech recognition are inherently temporal in nature,
and consequently not i.i.d. processes (see [16]). Therefore, relaxations of such
i.i.d. assumption have been considered for quite a while in both machine
learning and statistics literatures. For example, Yu [23] established the rates
of convergence for empirical processes of stationary mixing sequences. Modha
and Masry [10] established the minimum complexity regression estimation
with m-dependent observations and strongly mixing observations respectively.
Vidyasagar [19] considered the notions of mixing and proved that most of
the desirable properties (e.g. property of Probably Approximately Correct
(PAC) or property of Uniform Convergence of Empirical Means Uniformly in
Probability (UCEMUP)) of i.i.d. sequence are preserved when the underlying
sequence is mixing sequence. Smale and Zhou [13] considered least-square
regularized regression without the independent assumption for Shannon sam-
pling when the inputs samples were deterministic. Gamarnik [8] extended the
PAC learning from i.i.d. samples to the case of Markov chain with finite and
countably infinite state space by establishing the bounds on the sample sizes
which would guarantee the PAC learning for Markov chain samples. More
recently, Steinwart et al. [16] proved that the SVMs for both classification and
regression are consistent only if the data-generating process satisfies a certain
type of law of large numbers (e.g. Weak Law of Large Numbers for Events
(WLLNE), Strong Law of Large Numbers for Events (SLLNE)). Smale and
Zhou [14] considered online learning algorithm based on Markov sampling.
Zou et al. [26] established the bounds on the generalization performance of
the ERM algorithm with strongly mixing observations. Xu and Chen [22]
considered the learning rates of regularized regression algorithm with strongly
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mixing sequences. Sun and Wu [17] studied the regularized least square
regression with dependent samples. Steinwart and Christmann [15] considered
the fast learning rates of regularized empirical risk minimizing algorithms for
α-mixing process.

In real-world problems, Markov chain samples appear so often and natu-
rally in applications, such as biological (DNA or protein) sequence analysis,
times series prediction content-based web search and marking prediction and
so on (see [16]). We can present an example Markov chain as follows:

Example 1 We usually have the following quantitative example in the models
of random walk and predicting the weather, that is, suppose that {xi} is
a Markov chain consisting of five states 1, 2, 3, 4, 5 and having transition
probability matrix

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.2 0.2 0.2 0.2 0.2
0.1 0.3 0.2 0.2 0.2
0.2 0.1 0.3 0.2 0.2
0.2 0.2 0.1 0.3 0.2
0.2 0.2 0.2 0.1 0.3

⎤
⎥⎥⎥⎥⎥⎥⎦

.

By the matrix P, we can create a sequence with Markov property, for example,
x1 = 1, x2 = 1, x3 = 5, x4 = 3, · · · . Through target function y = f (x) = x2 +
10x + 3, we also can produce the corresponding values of xi, that is, y1 =
14, y2 = 14, y3 = 78, y4 = 42, · · · . Then a problem is posed: how can we learn
the target function f (x) = x2 + 10x + 3 from the Markov chain input samples

{z1 = (1, 14), z2 = (1, 14), z3 = (5, 78), z4 = (3, 42), · · · }.

More importantly, many empirical evidences show that learning algorithms
very often perform well with Markov chain samples (e.g. biological sequence
analysis, speech recognition). Why it is so, however, has been unknown (par-
ticularly, it is unknown how well it performs in terms of consistency and gener-
alization). For these purposes, in this paper we consider the general definition
of Markov chains, V-geometrically ergodic Markov chains. We establish the
first generalization bounds of the ERM algorithm with V-geometrically er-
godic Markov chain samples, and show that the ERM algorithm with V-
geometrically ergodic Markov chain samples is consistent.

This paper is organized as follows: in Section 2 we introduce some notions
and notations used in this paper. In Section 3 we present the main results of
this paper. In Section 4 we present the proofs of the obtained main results.
Finally, we conclude the paper with some useful remarks in Section 5.
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2 Preliminaries

In this section we introduce the definitions and notations used throughout the
paper.

Suppose (X ,S) is a measurable space, where X is a compact subset of
RN(N ≥ 1). A Markov chain is a sequence of random variables {Xt} together
with a set of probability measures Pn(xn+i|xi), xn+i, xi ∈ X . It is assumed that

Pn(xn+i|xi) := Prob{Xn+i = xn+i|X j, j < i, Xi = xi}.
Thus Pn(xn+i|xi) denotes the probability that the state xn+i after n time steps,
starting from the initial state xi at time i. It is common to denote the one-step
transition probability by

P1(xi+1|xi) := Prob{Xi+1 = xi+1|X j, j < i, Xi = xi},
so that P1(xi+1|xi) = P(xi+1|xi). The fact that the transition probability does
not depend on the values of X j prior to time i is the Markov property, that is

Prob{Xn+i = xn+i|X j, j < i, Xi = xi} = Prob{Xn+i = xn+i|Xi = xi}.
This is commonly expressed in words as “given the present state, the future
and past states are independent”. The fact that the transition probability does
not depend on the initial time i means that the Markov chain is stationary (see
[11, 19]), that is, if a Markov chain is started off with the initial state distributed
according to a stationary distribution π , then at all subsequent times the state
continues to be distributed according to the stationary distribution π .

Given two probabilities ν1, ν2 on the measure space (X ,S), we define the
total variation distance between the two measures ν1, ν2 as follows

||ν1 − ν2||TV = sup
A∈S

∣∣ν1(A) − ν2(A)
∣∣.

To extend the PAC learning from i.i.d. samples to the case of Markov chain
with countably infinite state space, Gamarnik [8] considered the Markov chain
with countably infinite state space under two assumptions (see Assumptions A
and B in [8]). Different from these definitions of [8], in this paper we consider
V-geometrically ergodic Markov chains.

Definition 1 ([19]) A Markov chain {Xt}t≥1 is said to be V-geometrically
ergodic with respect to the measurable function V : X → [1, ∞) if there exist
constants γ < ∞ and ρ < 1 such that

||Pn(x j|xi) − π(x j)||TV ≤ γρnV(xi), x j, xi ∈ X , ∀n ≥ 1,

and in addition

E(V, π) =
∫
X

V(x)π(dx) < B < ∞,
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where π is the stationary distribution of Markov chain {Xt}t≥1 and E(V, π) is
the expectation of V with respect to the stationary distribution π .

Remark 1

(i) V-geometrically ergodic is a weaker condition than uniformly ergodic.
The difference between V-geometrically ergodic and uniformly ergodic
is that here the total variation distance between the n-step transition
probability P n(·|xi) and the invariant measure π(·) approaches zero at
a geometric rate multiplied by V(xi). Thus the rate of geometric conver-
gence is independent of xi, but the multiplicative constant is allowed to
depend on xi. Especially, if the state space of a Markov chain is finite,
then all irreducible and aperiodic Markov chains are V-geometrically
(in fact, uniformly) ergodic. And a Markov chain is V-geometrically
ergodic if the condition that V(·) has finite expectation with respect to
the invariant measure π holds. This is the reason why we consider V-
geometrically ergodic Markov chains in this paper.

(ii) In [14], Smale and Zhou researched online learning algorithm based
on Markov sampling. Compared Definition 1 with Definition 1 in [14],
we can find that Definition 1 is a weaker definition than Definition 1
in [14] since in Definition 1, the distance between the n-step transition
probability Pn(·|xi) and the invariant measure π(·) approaches zero at
a geometric rate multiplied by V(xi), which is allowed to depend on
xi, while in [14], the geometric convergence of the distance between
probability measures ρ

(t)
X and ρX is independent of X.

Denote by z the V-geometrically ergodic Markov chain sample set of size m

z = {
z1 = (x1, y1), z2 = (x2, y2), · · · , zm = (xm, ym)

}

drawn from Z = X × Y according to an unknown distribution P̃0. The goal of
learning from the sample set z is to choose a function f : X → Y from a given
function space H such that it has small expected risk

E( f ) = E[�( f, z)] = E[�( f (x), y)],

where �( f, z) is a nonnegative loss function. In this paper, we would like to
establish a general framework which includes classification and regression
problems, so we consider the loss function of general form �( f, z). The
important feature of the regression estimation problem is that the loss function
�( f, z) can take arbitrary non-negative values whereas in pattern recognition
problem it can take only two values {0, 1} (see [4, 20]).

Since one knows only the sample set z, the minimizer of the expected
risk E( f ) can not be computed directly. By the principle of Empirical Risk
Minimization (ERM) (see [20]), we minimize, instead of the expected risk
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E( f ), the so-called empirical risk

Em( f ) = 1
m

m∑
i=1

�( f , zi).

Let f z be the minimizer of empirical risk Em( f ) over the function set H, i.e.,

f z = arg min
f∈H

Em( f ) = arg min
f∈H

1
m

m∑
i=1

�( f , zi). (1)

Let fH be the minimizer of expected risk E( f ) over the function set H, i.e.,
fH = arg min f∈H E( f ). According to the principle of ERM, we then consider
the function fz as an approximation of the target function fH. Thus our
purpose in this paper is to estimate the difference E( fz) − E( fH) between the
value of achieved risk E( fz) and the value of minimal possible risk E( fH) in the
function set H. Since the minimization (1) is taken over the discrete quantity
Em( f ), we have to regulate the capacity of the function set H. Here the capacity
is measured by the covering number.

Definition 2 For a subset F of a metric space (B, d) and ε > 0, the covering
number N (F, ε) of the function set F is the minimal n1 ∈ N such that there
exist n1 disks in F with radius ε covering F .

Now we close this section by giving some basic assumptions on the hypoth-
esis space H and the loss function �( f, z):

(i) Assumption on the hypothesis space: We suppose that H is contained
in a ball B(Cq(X )) of a Hölder space Cq(X ) on a compact subset of a
Euclidean space Rd for some q > 0. Here the Hölder space Cq(X ) is
defined as the space of all continuous functions on X with the following
norm (see [12, 24]):

|| f ||Cq(X ) := || f ||∞ + | f |Cq(X ), | f |Cq(X ) := sup
x1 �=x2,x1,x2∈X

| f (x1) − f (x2)|
(d(x1, x2))q

,

where d(·, ·) is the metric defined on X .
(ii) Assumption on the loss function: We define

M := sup
f∈H

max
z∈Z

�( f, z), L := sup
g1,g2∈H,g1 �=g2

max
z∈Z

|�(g1, z) − �(g2, z)|
||g1 − g2||∞ .

We assume that M and L are finite in this paper.
By the basic assumption (i), there exists a constant C0 > 0 such that for any

ε > 0, the covering number of H with the metric || · ||C (X ) satisfies (see [24])

N (H, ε) ≤ exp
{

C0ε
−2d

q

}
. (2)
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Remark 2 Note that reproducing kernel Hilbert spaces (RKHS) plays an
essential role in the analysis of learning theory (see e.g.[4, 5, 21, 24]). But Zhou
[24] proved that if a Mercer kernel is Cq(X )(q > 0), then the RKHS associated
with this kernel can be embedded into Cq/2(X ). This is the reason why we
consider the function space Cq(X ) in this paper.

3 Main results

To measure the generalization performance of ERM algorithm, Bousquet [2],
Cucker and Smale [4], Vapnik [20], Bartlett and Lugosi [1] first obtained
the bounds on the rate of the empirical risks uniform convergence to their
expected risks in a given function set F (or Q) based on i.i.d. sequences
respectively, that is, for any ε > 0, they bounded the term

Prob

{
sup
f∈H

|E( f ) − Em( f )| > ε

}
. (3)

In addition, Vidyasagar [19] also established the bound on the term (3) based
on α-mixing sequences. Zou and Li [25] established the bound on the term (3)
based on exponentially strongly mixing observations. For more inequalities
on probabilities of uniform deviations, the interested readers can consult
[7] and [18] for the details. To establish the bound on the generalization
ability of the ERM algorithm with V-geometrically ergodic Markov chains,
we should estimate the term (3) for V-geometrically ergodic Markov chains.
For this purpose, we first establish the following concentration inequality for
V-geometrically ergodic Markov chains.

Theorem 1 Let {zi}m
i=1 be a V-geometrically ergodic Markov chain. Set

m(β) =
⌊

m
⌈

{8m/ ln(1/ρ)} 1
2

⌉−1⌋
,

where m denotes the number of observations drawn from Z and 	u
(�u�)
denotes the greatest (least) integer less (greater) than or equal to u. Then for
any ε, 0 < ε ≤ 3M,

Prob
{|E( f ) − Em( f )| ≥ ε

} ≤ 2
(
1 + γ Be−2) exp

{−m(β)ε2

2M2

}
. (4)

Remark 3 Inequality (4) is a Hoeffding’s inequality for V-geometrically er-
godic Markov chains. To establish this inequality, we introduce the quan-
tity m(β), which is called the “effective number of observations” for V-
geometrically ergodic Markov chains. From Theorem 1, we can find that
m(β) plays the same role in our analysis as that played by the number m of
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observations in the i.i.d. case. To our knowledge, this inequality here is the
first inequality for V-geometrically ergodic Markov chains in this topic.

By Theorem 1 and using the similar argument conducted as Theorem B
in [4], we can easily establish the following theorem on the term (3) for V-
geometrically ergodic Markov chains.

Theorem 2 With all notations as in Theorem 1, then for any ε, 0 < ε ≤ 3M,

Prob

{
sup
f∈H

|E( f ) − Em( f )| ≥ ε

}
≤ 2

(
1 + γ Be−2)N

(
H,

ε

4L

)
exp

{−m(β)ε2

8M2

}
.

Remark 4 (i) Since m(β) → ∞ as m → ∞, by Theorem 2, we have that for any
ε, 0 < ε ≤ 3M,

Prob

{
sup
f∈H

|E( f ) − Em( f )| ≥ ε

}
→ 0, as m → ∞.

This shows that as long as the covering number of the hypothesis space H is
finite, the empirical risk Em( f ) will uniformly converge to the expected risk
E( f ), and the convergence speed may be exponential. This assertion is well
known for the ERM algorithm with i.i.d. samples (see e.g. [2, 4, 20]). Thus we
have generalized this classical result of i.i.d. samples in [2, 4] and [20] to the
case of V-geometrically ergodic Markov chain samples.

As an application of Theorems 1 and 2, we establish the following gen-
eralization bounds of the ERM algorithm (1) with V-geometrically ergodic
Markov chain samples.

Proposition 1 With all notations as in Theorem 1, then for any η1 ∈ (0, 1],
provided that

m(β) ≥ max

{
16 ln[(1 + γ Be−2)/η1]

9
,

42+ 2d
q C0 L

2d
q

32+ 2d
q M

2d
q

}
,

(i) with probability at least 1 − η1, the inequality

E( fz) ≤ Em( fz) + M

√
2 ln[(1 + γ Be−2)/η1]

m(β)
(5)

is valid.
(ii) with probability at least 1 − 2η1, the inequality

E( fz) − E( fH) ≤ M

√
2 ln[(1 + γ Be−2)/η1]

m(β)
+ ε(m, η1) (6)
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holds true, where

ε(m, η1) ≤ max

⎧⎨
⎩4M

[
ln[(1 + γ Be−2)/η1]

m(β)

] 1
2

, 4

[
C0 M2 L

2d
q

m(β)

] q
2q+2d

⎫⎬
⎭ .

Remark 5 (i) Bounds (5) and (6) describe the generalization performance
of the ERM algorithm (1) with V-geometrically ergodic Markov chain
samples for the given function set H: Bound (5) evaluates the risk for
the chosen function in the target function set H, and bound (6) evaluates
how close this risk is to the smallest possible risk for the ERM algorithm
(1) with V-geometrically ergodic Markov chain samples over the target
functions set H.

(ii) Since m(β) → ∞, as m → ∞, we have ε(m, η1) → 0. By inequality (6),
we get

E( fz) − E( fH) → 0, as m → ∞.

This shows that the ERM algorithm (1) with V-geometrically erodic Markov
chain samples is consistent. This implies that although the output of the ERM
algorithm (1) is found via minimizing the empirical risk Em( f ), it can eventually
predict as well as the optimal predictor fH, or it can give the best (the lowest
risk) prediction for any unlabeled samples.

By Proposition 1, we can easily establish the following bound on the learning
rate of the ERM algorithm (1) with V-geometrically ergodic Markov chain
samples.

Corollary 1 With all notations as in Theorem 1, then for any η2 ∈ (0, 1], with
probability at least 1 − η2, the inequality

E( fz) − E( fH) ≤ M

√
2 ln[2(1 + γ Be−2)/η2]

m(β)
+ 4

[
C0 M2L

2d
q

m(β)

] q
2q+2d

(7)

holds true, provided that

m(β) ≥ max

⎧⎨
⎩

16 ln[2C1/η2]
9

,
42+ 2d

q C0L
2d
q

32+ 2d
q M

2d
q

,

[
M

2d
q (ln[2C1/η2])2+ 2d

q

C2
0 L

2d
q

] q
2d

⎫⎬
⎭ ,

where C1 = 1 + γ Be−2.
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4 Proofs of main results

In this section, our aim is to prove these main results presented in the last
section. For this purpose, we first present our main tools used in this paper.

In this paper we explore to use the β-mixing property of V-geometrically
ergodic Markov chains to study the generalization of the ERM algorithm
with V-geometrically ergodic Markov chain samples. Thus we present the
definition of β-mixing as follows: let {Xi}∞i=−∞ be a stationary process defined
on a probability space (X∞,S∞, P̃). For −∞ < i < ∞, let Ak−∞ denote the
σ -algebra generated by the random variables Xi, i ≤ k, and similarly let A∞

k

denote the σ -algebra generated by the random variables Xi, i ≥ k. Let P̃k−∞
and P̃∞

k denote the corresponding marginal probability measures, respectively.
Let P̃0 denote the marginal probability of each of the Xi. Let Āk−1

1 denote the
σ -algebra generated by the random variables Xi, i ≤ 0 as well as X j, j ≥ k.

Definition 3 ([19]) The sequence {Xt} is called geometrically β-mixing, if there
exist constants ν and λ1 < 1 such that

sup
C∈Āk−1

1

∣∣∣P̃(C) −
(

P̃0
−∞ × P̃∞

1

)
(C)

∣∣∣ = β(k) ≤ νλk
1, ∀k ≥ 1,

where β(k) is called the β-mixing coefficient.

Lemma 1 ([19]) Suppose Xi is a β-mixing process on a probability space
(X∞,S∞, P̃). Suppose g : X∞ → R is essentially bounded and depends only
on the variables xik, 0 ≤ i ≤ l. Let P̃0 denote the one-dimensional marginal
probability of each of the Xi. Then

∣∣∣E
(

g, P̃
)

− E
(

g, P̃∞
0

)∣∣∣ ≤ lβ(k)|| f ||∞,

where E(g, P̃), E(g, P̃∞
0 ) are the expectations of g with respect to P̃, P̃∞

0 ,
respectively.

Lemma 2 ([9]) Suppose that ζ is a zero-mean random variable assuming values
in the interval [c, d]. Then for any r1 > 0, we have

E[exp(r1ζ )] ≤ exp
(
r2

1(d − c)2/8
)
.

Lemma 3 ([19]) Suppose a Markov chain {ξt} is V-geometrically ergodic. Then
the sequence {ξt} is geometrically β-mixing, and the β-mixing coef f icient β(n) is
given by

β(n) = E
{||Pn(ξ j|ξ) − π(ξ j)||TV, π

} =
∫

||Pn(ξ j|ξ) − π(ξ j)||TVπ(dξ).
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Lemma 4 ([5]) Let c1, c2 > 0, and s1 > s2 > 0. Then the equation

xs1 − c1xs2 − c2 = 0

has a unique positive zero x∗. In addition

x∗ ≤ max
{
(2c1)

1/(s1−s2), (2c2)
(1/s1)

}
.

Proof of Theorem 1 We decompose the proof into three steps.

Step 1 By Lemma 3, we have that a V-geometrically ergodic Markov chain
is geometrically β-mixing. To exploit the β-mixing property, we then
decompose the index set I = {1, 2, · · · , m} into different parts by
following the idea of [19], that is, given an integer m, choose any
integer km ≤ m, and define lm = 	m/km
 to be the integer part of
m/km. For the time being, km and lm are denoted respectively by k
and l, so as to reduce natational clutter. Let r = m − kl, and define

Ii =
{ {i, i + k, · · · , i + lk}, i = 1, 2, · · · , r,

{i, i + k, · · · , i + (l − 1)k}, i = r + 1, · · · , k.

Let pi = |Ii|/m for i = 1, 2, · · · , k, and define

Ti = E[�( f, zi)] − �( f, zi), �m(z) = 1
m

m∑
i=1

Ti, bi(z) = 1
|Ii|

∑
j∈Ii

T j.

Then we have

E( f ) − Em( f ) = �m(z) =
k∑

i=1

pib i(z).

Since exp(·) is convex, we have that for any s > 0,

exp(s�m(z)) = exp

[
k∑

i=1

pisb i(z)

]
≤

m∑
i=1

pi exp[sb i(z)].

It follows that

E
(

es�m(z), P̃
)

≤
k∑

i=1

piE
(

esbi(z), P̃
)

. (8)

Since

exp[sb i(z)] = exp

⎡
⎣ s

|Ii|
∑
j∈Ii

T j

⎤
⎦=

∏
j∈Ii

exp
(

sT j

|Ii|
)

≤
[

exp
(

sM
|Ii|

)]|Ii|
≤ esM,
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where in the last step we use the fact that Ti = E[�( f, zi)] − �

( f, zi) ≤ M.
By Lemma 1, we have

E
(

esbi(z), P̃
)

≤ (|Ii| − 1)β(k)||esbi(z)||∞ + E
(

esbi(z), P̃∞
0

)
.

Since under the measure P̃∞
0 , the various zi are independent, we have

E
(

esbi(z), P̃∞
0

)
=E

⎡
⎣∏

j∈Ii

exp(sT j/|Ii|), P̃∞
0

⎤
⎦=

{
E
[
exp(sT j/|Ii|), P̃0

]}|Ii|
.

Apply Lemma 2 to the function T j, we get E[exp(sT j/|Ii|), P̃0] ≤
exp(s2 M2/2|Ii|2). Thus we have that for any s > 0

E
(

esbi(z), P̃
)

≤ exp
(

s2 M2

2|Ii|
)

+ (|Ii| − 1)β(k)esM.

By inequality (8) and the inequality above, we have that for any s > 0

E
(

es�m(z), P̃
)

≤
k∑

i=1

pi

[
exp

(
s2 M2

2|Ii|
)

+ (|Ii| − 1)β(k)esM
]

. (9)

Step 2 We now bound the second term on the right-hand side of inequality
(9) which is denoted henceforth by φ. By Lemma 3 and Definition 1,
we have

β(k) = E{||Pn(·|x) − π(·)||TV, π} ≤ E
[
γρkV(x), π

] ≤ γ Bρk.

We suppose s ≤ 3|Ii|
M , then we have that

φ = exp
(

s2 M2

2|Ii|
)

+ (|Ii| − 1)β(k)esM

≤ exp
(

s2 M2

2|Ii|
)

+ e|Ii|e−2γ Bρk · esM

≤ exp
(

s2 M2

2|Ii|
)

+ γ Be−2 exp{k ln(ρ) + 4|Ii|}.

We require exp{k ln(ρ) + 4|Ii|} ≤ 1. But |Ii| ≤ (m
k + 1), thus the bound

holds if 4(m
k + 1) ≤ k ln(1/ρ). Since m + k ≤ 2m, then the bound holds

if
{ 8m

ln(1/ρ)

} 1
2 ≤ k. Let

k =
⌈{ 8m

ln(1/ρ)

} 1
2
⌉
.
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Then we have

φ ≤ exp
(

s2 M2

2l

)
+ γ Be−2. (10)

Since inequality (10) is true for all s, 0 < s ≤ 3|Ii|
M . To make the con-

straint uniform over all i, we then require s satisfies 0 < s < 3l
M ≤ 3|Ii|

M .

Since s2 M2

2l > 0, we have

φ ≤ (1 + γ Be−2) exp
(

s2 M2

2l

)
.

Returning to inequality (9), we have that for any s, 0 < s < 3l
M ,

E
(

es�m(z), P̃
)

≤ (
1 + γ Be−2) exp

(
s2 M2

2l

)
. (11)

Step 3 By Markov’s inequality and inequality (11), we have that for any s, 0 <

s ≤ 3l
M ,

Prob
{
E( f ) − Em( f ) ≥ ε

} = Prob
{
es[E( f )−Em( f )] ≥ esε}

≤ E{es[E( f )−Em( f )]}
esε

≤ (
1 + γ Be−2) exp

{
−sε + s2 M2

2l

}
.

Substituting s = lε
M2 , and noting that for any ε ≤ 3M, s satisfies s < 3l

M ,
we obtain

Prob
{
E( f ) − Em( f ) ≥ ε

} ≤ (
1 + γ Be−2) exp

{−lε2

2M2

}
.

By symmetry, we also have

Prob
{
Em( f ) − E( f ) ≥ ε

} ≤ (
1 + γ Be−2) exp

{−lε2

2M2

}
.

Combining these two inequalities above and replacing l by m(β) in
these inequalities, we can complete the proof of Theorem 1. ��

Proof of Proposition 1 For any η1 ∈ (0, 1], let

(
1 + γ Be−2) exp

{−m(β)ε2

2M2

}
= η1.
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Solving the equation with respect to ε, we get

ε = M

√
2 ln[(1 + γ Be−2)/η1]

m(β)
.

Thus by Theorem 1, we have that for any η1 ∈ (0, 1], and for the function fH
that minimizes the expected risk E( f ) over the set H, the inequality

E( fH) > Em( fH) − M

√
2 ln[(1 + γ Be−2)/η1]

m(β)
(12)

holds true with probability 1 − η1 provided that m(β) ≥ 2 ln[(1+γ Be−2)/η1]
9 .

In addition, by the assumption (2), we have

N
(
H,

ε

4L

)
≤ exp

{
C0

( ε

4L

) −2d
q

}
.

Thus by Theorem 2, we have that for any ε, 0 < ε ≤ 3M,

Prob

{
sup
f∈H

|E( f ) − Em( f )| ≥ ε

}
≤ 2

(
1 + γ Be−2) exp

{
C0

( ε

4L

) −2d
q − m(β)ε2

8M2

}
.

Let us rewrite the above inequality in an equivalent form. For the same η1

as above, let

(
1 + γ Be−2) exp

{
C0

( ε

4L

) −2d
q − m(β)ε2

8M2

}
= η1.

It follows that

ε
2+ 2d

q − 8M2 ln
[(

1 + γ Be−2
)
/η1

]

m(β)
· ε 2d

q − 8C0 M2(4L)
2d
q

m(β)
= 0.

By Lemma 4, we can solve this equation with respect to ε. This equation has a
unique positive zero ε∗, and

ε∗ .= ε(m, η1) ≤ max

⎧⎨
⎩4M

[
ln
[(

1 + γ Be−2
)
/η1

]

m(β)

] 1
2

, 4

[
C0 M2 L

2d
q

m(β)

] q
2q+2d

⎫⎬
⎭ .

Then we deduce that with probability at least 1 − η1, for any function f ∈ H,
the inequality

E( f ) ≤ Em( f ) + ε(m, η1)

holds true provided that m(β) ≥ m1, where

m1 = max

{
16 ln

[(
1 + γ Be−2

)
/η1

]
9

,
42+ 2d

q C0 L
2d
q

32+ 2d
q M

2d
q

}
.
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In particular, for the function fz that minimizes the empirical risk Em( f ) over
H, with probability at least 1 − η1 the inequality

E( fz) ≤ Em( fz) + ε(m, η1) (13)

holds true provided that m(β) ≥ m1.

Note that

Em( fz) ≤ Em( fH). (14)

Combining inequalities (13), (14) and (12), we can finish the proof of Proposi-
tion 1. ��

5 Conclusions

Like i.i.d. sampling, the Markov sampling is a naturally and extensively ap-
peared random sampling mechanism, such as time sequence, content-based
pattern recognition and biological sequence analysis and so on. To study
the generalization performance of the ERM algorithm with Markov chain
samples, in this paper we first established the bound on the rate of uniform
convergence of the ERM algorithm with V-geometrically ergodic Markov
chain samples. As the application of the bound on the rate of uniform
convergence, we obtained the generalization bounds of the ERM algorithm
with V-geometrically ergodic Markov chain samples. We proved that the ERM
algorithm with V-geometrically ergodic Markov chain samples is consistent.
The main results obtained in this paper extended the previously known results
(see e.g.[1, 2, 20]) of i.i.d. observations to the case of V-geometrically ergodic
Markov chain samples. To our knowledge, these results here are the first
explicit results on the generalization ability of the ERM algorithm with V-
geometrically ergodic Markov chain samples.

Along the line of the present work, several open problems deserve further
research. For example, establishing the better learning rates of the ERM
algorithm with V-uniformly ergodic markov chains, and establishing the gen-
eralization bounds of regularized algorithms (e.g. regularized regression algo-
rithms) with V-uniformly ergodic Markov chain samples. All these problems
are under our current investigation.
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