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In this paper, we are concerned with a class of abstract fractional relaxation equa-
tions. We develop a new notion, named fractional (α, β) resolvent and derive some
of its properties. By virtue of the obtained properties and the properties of general
Mittag-Leffler function, we present some sufficient conditions to guarantee that
the classical solutions of homogeneous and inhomogeneous fractional relaxation
equations exist. An illustrative example is presented.

Keywords: fractional relaxation equation; fractional (α, β) resolvent; classical
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1. Introduction

Recently, fractional differential equations have received increasing attention because the
behavior of many physical systems, such as fluid flows, electrical networks, viscoelasticity,
chemical physics, electron-analytical chemistry, biology, and control theory, can be properly
described by using the fractional order system theory, etc. (see [1–5]). Fractional derivatives
appear in the theory of fractional differential equations; they describe the property of
memory and heredity of materials, and it is the major advantage of fractional derivatives
compared with integer order derivatives.

Many of the references on fractional differential equations were focused on the exis-
tence and/or uniqueness of solutions for fractional differential equations.[1,6–9] Lots of
fractional differential equations contained only one fractional derivative. However, in the
real problems, the equations should be described by more than one fractional derivatives
because of the complexity of models.[10–13] In [14,15], Bagley and Nonnenmacher studied
fractional ordinary relaxation equations. Lizama and Prado [16] studied abstract fractional
relaxation equations described by

u′(t) − AD
α
t u(t) + u(t) = f (t), 0 < α < 1, t ≥ 0, u(0) = 0, (1.1)

on a Banach space X , where A is a closed linear operator, D
α
t is the Caputo derivative of

fractional α-order, and f is an X -valued function. They gave some existence and unique
conditions.
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2398 Z.D. Mei and J.-G. Peng

In this paper, we consider homogeneous abstract fractional relaxation equations
described by

(AF RE)

{
D

α
t u(t) − AD

β
t u(t) + u(t) = 0, t > 0,

u(0) = x,
(1.2)

and nonhomogeneous fractional relaxation equations

(N AF RE)

{
D

α
t u(t) − AD

β
t u(t) + u(t) = ∫ t

0 f (s)ds, t > 0,

u(0) = x,
(1.3)

where 0 < β < α ≤ 1, u(·) is the state, A : D(A) ⊂ X → X is a closed linear
operator, (X, ‖ · ‖) is a Banach space, D(A) is the domain of A endowed with the graph
norm ‖ · ‖D(A) = ‖ · ‖ + ‖A · ‖, D

α
t and D

β
t are, respectively, the α-order and β-order

Caputo fractional derivative operators, f : [0,∞) → X is locally integrable. Such class of
fractional relaxation equations was subsequently generalized in the recent paper,[17] where
the authors studied the characterization of periodic solutions.

The aim of this paper is to develop an operator theory to study abstract fractional
relaxation equations (AF RE) and (N ARE). Besides of the first section, we arrange this
paper as follows. Section 2 is to recall some related definitions and preliminaries. In Section
3, we introduce the notion fractional (α, β) resolvent and derive some properties. The
classical solutions of system (AF RE) and (N AF RE) are considered, some existence
conditions of the classical solutions are obtained, and an illustration example is presented
in Section 4.

2. Preliminaries

Let γ > 0 and denote m = [γ ] the smallest integer greater than or equal to γ . Denote
C by the set consisting of all complex numbers. For z ∈ C, Rez denotes the real part of
z. Let (X, ‖ · ‖) be a Banach space and A linear operator on X . We denote the resolvent
operator of A by R(λ, A) = (λ− A)−1 with λ being in the resolvent set ρ(A). L1((0, T ); X)

denotes the space of X -valued Bochner integrable functions u : (0, T ) → X with the norm
‖u‖L1((0,T );X) = (

∫ T
0 ‖u(t)‖dt). The Banach space of k-times continuously differentiable

functions u : [0, T ] → X with the norm ‖u‖Ck ([0,T ];X) = �k
l=0 supt∈[0,T ] ‖u(l)(t)‖ is

denoted by Ck([0, T ], X). Obviously, L1((0, T ); X) is a Banach space. We denote the
convolution of two functions f and g by f (t) ∗ g(t) = ∫ t

0 f (τ )g(t − τ)dτ, t ≥ 0. The
Laplace transform of a function u ∈ L1

loc(R+, X) is defined by

û(λ) :=
∫ ∞

0
e−λt u(t)dt

for suitable λ such that the integral
∫ ∞

0 e−λt u(t)dt is convergent on X .
Let n ∈ N , 1 ≤ p < ∞. Let I = (0, T ), or I = [0, T ], or I = (0,∞). The Sobolev

spaces W n,p(I ; X) is defined as follows ([18, Appendix]):

W n,p(I ; X) =
{

u| ∃ϕ ∈ L p(I ; X) : u(t) =
n−1∑
k=0

ck
tk

k! + tn−1

(n − 1)! ∗ ϕ(t), t ∈ I

}
.

In this case, we have ϕ(t) = u(n)(t), ck = u(k)(0).
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Applicable Analysis 2399

For β ≥ 0, let

gβ(t) =
⎧⎨
⎩

tβ−1


(β)
, t > 0,

0, t ≤ 0,

(2.1)

where 
(·) is the Gamma function.
For the convenience of the readers, we shall introduce some definitions and some

fundamental properties of fractional calculus theory, which can be found in [2,5,19–23].

Definition 2.1 For any u ∈ L1((0, T ); X), the α-order Riemann-Liouville fractional
integral of u is defined by

Jα
t u(t) = 1


(α)

∫ t

0
(t − τ)α−1u(τ )dτ. (2.2)

We denote J 0
t u(t) = u(t). Obviously, the fractional integral operators {Jα

t }α≥0 satisfies
the semigroup property Jα

t Jβ
t = Jα+β

t , α, β ≥ 0.

Definition 2.2 Let α > 0 and m = [α]. The (modified) α-order the Caputo fractional
derivative of u is defined by

D
α
t u(t) = 1


(m − α)

dm

dtm

∫ t

0
(t − σ)m−α−1

(
u(σ ) − �m−1

k=0
tk

k!u(k)(0)

)
dσ. (2.3)

Obviously, the operator Jα
t as well as D

α
t is linear operator. If u ∈ Cm([0,∞), X), then

we have the following equivalent related to Caputo fractional derivative of u

D
α
t u(t) =

∫ t

0

(t − s)m−α−1


(m − α)
u(m)(s)ds.

In particular, for the function u(t) ≡ c ∈ X , we have D
α
t u(t) = 0.

Definition 2.3 The general Mittag-Leffler function is defined by

Ek
α,β(z) =

∞∑
n=0

(k)n


(αn + β)

zn

n! (z, β, k ∈ C; Re(α) > 0),

where

(k)n := 
(k + n)


(k)
=

{
1, n = 0
k(k + 1) · · · (k + n − 1), n 
= 0.

Remark 2.4 In the special case k = 1, the general Mittag-Leffler function is equal to the
two-parameter Mittag-Leffler function Eα,β(·). If, in addition, β = 1, the general Mittag-
Leffler function is equal to the one-parameter Mittag-Leffler function Eα(·).

Remark 2.5 The one-parameter Mittag-Leffler function was introduced by Mittag-Leffler
[24,25]; Wiman [26,27] defined two-parameter Mittag-Leffler function; while Prabhakar
[22] introduced the general Mittag-Leffler function. For more details of Mittag-Leffler
function, we refer to [19,21,23,28].
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2400 Z.D. Mei and J.-G. Peng

For α, δ, ξ, γ, μ > 0, β > τ > 0 and t > 0, there hold the following three equalities
related to Mittag-Lefller functions [19]:

J ξ
t (tβ−1 Eγ

α,β(wtα)) = tβ+ξ−1 Eγ
α,β+ξ (wtα), (2.4)∫ t

0
(t − s)β−1sμ−1 Eγ

α,β(w(t − s)α)Eδ
α,μ(wsα)ds

= tβ+μ−1 Eγ+δ
α,β+μ(wtα), (2.5)

and

Dτ
t tβ−1 Eγ

α,β(wtα) = tβ−τ−1 Eγ
α,β−τ (wtα). (2.6)

The Mittag-Leffler function Eγ
α,β is related to the Laplace integral

∫ ∞

0
e−λt tβ−1 Eγ

α,β(ωtα)dt = λγα−β

(λα − ω)γ
, Reλ > |ω|1/α. (2.7)

We denote the two-parameter Mittag-Leffler integral operator by

E
α,β
t f (t) =

∫ t

0
(t − s)β−1 Eα,β(−(t − s)α) f (s)ds, t > 0. (2.8)

3. Fractional (α, β) resolvent

In this section, we shall present the notion fractional (α, β) resolvent and deduce its some
properties. In this section, we assume 0 < β < α ≤ 1.

Definition 3.1 A family {T (t)}t≥0 of bounded linear operators is called a fractional (α, β)

resolvent, if it satisfies the following assumptions:
(a) For any x ∈ X , T (·)x ∈ C([0,∞), X), and

lim
t→0+

T (t)x

tα
= x


(α + 1)
, x ∈ X; (3.1)

(b) T (s)T (t) = T (t)T (s), t, s ≥ 0;
(c) there holds

T (s)Eα,α−β,−1
t T (t) − E

α,α−β
s T (s)T (t)

= sα Eα,α+1(−sα)E
α,α−β
t T (t) − tα Eα,α+1(−tα)Eα,α−β

s T (s), t, s ≥ 0. (3.2)

Remark 3.2 The integrals in (3.2) are understood strongly in the sense of Bochner.

Remark 3.3 It is noted that the equality (3.2) is indeed the functional Equation (4.1) of
[29] with k(t) = tα Eα,α+1(−tα) and a(t) = tα−β−1 Eα,α−β(−tα).

Proposition 3.4 Assume that {T (t)}t≥0 be a fractional resolvent. Then, the function t �→
T (t)
tα is bounded in the sense of operator norm over the interval (0, b] with b > 0.
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Applicable Analysis 2401

Proof Define operator (PT )(·): x ∈ X ,

(PT )(t)x �
{


(α+1)T (t)x
tα , t > 0,

x, t = 0.

Then, for any x ∈ X , (a) of Definition 3.1 implies that (PT )x(·) is strongly continuous
on [0,∞). This means that (PT )x(t) is bounded over then interval [0, b]. By uniform
boundedness theorem, the function t �→ (PT )(t) is bounded over the interval [0, b]. The
proof is completed. �

Definition 3.5 The linear operator A defined by

D(A) =
{

x ∈ X : lim
t→0+

t−αT (t)x − Eα,α+1(−tα)x

tα−β
exists

}

and

Ax = 
(2α − β + 1) lim
t→0+

t−αT (t)x − Eα,α+1(−tα)x

tα−β
for x ∈ D(A)

is said to be the generator of the fractional (α, β) resolvent {T (t)}t≥0, where D(A) is the
domain of A.

Remark 3.6 We note that the above defined operator A is the same as B in (4.2) and (4.3)
of [29] with k(t) = tα Eα,α+1(−tα) and a(t) = tα−β−1 Eα,α−β(−tα). In fact, it follows
from (2.5) that

lim
t→0+

T (t)x − k(t)x

(a ∗ k)(t)
= lim

t→0+
t−αT (t)x − Eα,α+1(−tα)x

tα−β

1

limt→0+ E2
α,2α−β+1(−tα)

.

Here the limit limt→0+ E2
α,2α−β+1(−tα) = 1


(2α−β+1)
is used to obtain the result.

Remark 3.7 Suppose that {T (t)}t≥0 is a fractional (α, β) resolvent on Banach space X
with generator A. Let k(t) = tα Eα,α+1(−tα) and a(t) = tα−β−1 Eα,α−β(−tα). Then (a) of
Definition (3.1) implies that

T (0)x = lim
t→0+ tα lim

t→0+
T (t)

tα
x = 0 = k(0)x, x ∈ X.

Moreover, by (2.5), we obtain

lim
t→0+

(a ∗ (a ∗ k))(t)

(a ∗ k)(t)
= lim

t→0+ tα−β lim
t→0+

E3
3α−2β+1(−tα)

E2
2α−β+1(−tα)

= 0.

Therefore, by Theorem 4.3 of [29], it follows that {T (t)}t≥0 is an (a, k)-regularized resolvent
with generator A. This indicates that

• {T (t)}t≥0 commutes with A, that is, T (t)D(A) ⊂ D(A) and AT (t)x = T (t)Ax for
each x ∈ D(A), t ≥ 0;

• For any x ∈ D(A), t ≥ 0,

T (t)x = tα Eα,α+1(−tα)x + E
α,α−β
t T (t)Ax . (3.3)
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2402 Z.D. Mei and J.-G. Peng

However, condition (4.4) of ([29]) does not hold. Indeed,

lim
t→0+

∫ t
0 |a(s)|ds

(a ∗ k)(t)
= lim

t→0+
Eα,α−β+1(−tα)

tα E2
α,2α−β+1(−tα)

= +∞.

Hence, we can’t obtain the closedness of A and density of D(A) directly from Theorem 4.1
of ([29]). In order to prove such properties, (a) of Definition 3.1 shall be used.

Proposition 3.8 Assume that {T (t)}t≥0 is a fractional (α, β) resolvent on Banach space
X with generator A. Then

(a) For any x ∈ X , t ≥ 0,

T (t)x = tα Eα,α+1(−tα)x + AE
α,α−β
t T (t)x . (3.4)

(b) A is closed and densely defined.

Proof (a) For any x ∈ X , we have

∥∥∥∥
(2α − β + 1)
E

α,α−β
s T (s)x

s2α−β
− x

∥∥∥∥
=

∥∥∥∥
(2α − β + 1)

∫ s

0
(s − σ)α−β−1s−2α+β Eα,α−β(−(s − σ)α)T (σ )xdσ − x

∥∥∥∥
=

∥∥∥∥
(2α − β + 1)

∫ 1

0
(1 − σ)α−β−1s−α Eα,α−β(−(s − sσ)α)T (sσ)xdσ − x

∥∥∥∥
=

∥∥∥∥
(2α − β + 1)


(α + 1)

∫ 1

0
(1 − σ)α−β−1σα Eα,α−β(−(s − sσ)α)·


(α + 1)(sσ)−αT (sσ)xdσ − x

∥∥∥∥
=

∥∥∥∥ 
(2α − β + 1)


(α + 1)
(α − β)

∫ 1

0
(1 − σ)α−β−1σα
(α − β)Eα,α−β(−(s − sσ)α)·


(α + 1)(sσ)−αT (sσ)xdσ − 
(2α − β + 1)


(α + 1)
(α − β)

∫ 1

0
(1 − σ)α−β−1σαxdσ

∥∥∥∥
≤ 
(2α − β + 1)


(α + 1)
(α − β)

∫ 1

0
(1 − σ)α−β−1σαdσ ·

sup
σ∈(0,1]

‖
(α − β)Eα,α−β(−(s − sσ)α)
(α + 1)(sσ)−αT (sσ)x − x‖
= sup

σ∈(0,1]
‖
(α − β)Eα,α−β(−(s − sσ)α)
(α + 1)(sσ)−αT (sσ)x − x‖ (3.5)

The combination of (3.5), (a) of Definition 3.1, and Theorem 3.4 implies that

lim
s→0+ 
(2α − β + 1)

E
α,α−β
s T (s)x

s2α−β
= x . (3.6)
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Applicable Analysis 2403

Using (c) of Definition 3.1, we derive

AE
α,α−β
t T (t)x

= 
(2α − β + 1) lim
s→0+

s−αT (s)Eα,α−β
t T (t)x − Eα,α+1(−sα)E

α,α−β
t T (t)x

sα−β

= 
(2α − β + 1) lim
s→0+

E
α,α−β
s T (s)

(
T (t)x − tα Eα,α+1(−tα)x

)
s2α−β

= T (t)x − tα Eα,α+1(−tα)x, (3.7)

which implies that (a) holds.
(b) Let xn ∈ D(A), xn → x and Axn → y as n → ∞. From the equality (3.3), we have

T (t)x − tα Eα,α+1(−tα)x

= lim
n→∞

(
T (t)xn − tα Eα,α+1(−tα)xn

)

= lim
n→∞

∫ t

0
(t − σ)α−β−1 Eα,α−β(−(t − σ)α)T (σ )Axndτ

=
∫ t

0
(t − σ)α−β−1 Eα,α−β(−(t − σ)α)T (σ )ydτ = E

α,α−β
t T (t)y, t ≥ 0. (3.8)

Using (3.6), we have

Ax = 
(2α − β + 1) lim
t→0+

t−αT (t)x − Eα,α+1(−tα)x

tα−β

= 
(2α − β + 1) lim
t→0+

E
α,α−β
t T (t)y

t2α−β
= y. (3.9)

The closeness of A is obtained.
For every x ∈ X , set xt = E

α,α−β
t T (t)x , from (3.7) it follows that xt ∈ D(A), and by

(3.6) we have 
(2α − β + 1)t−2α+β xt → x as t → 0+. Thus D(A) = X. �

Remark 3.9 By Remark 3.7 and [30, Lemma 2.2], it follows that (3.3) holds provided
ρ(A) 
= ∅. Here we don’t know whether ρ(A) is empty or not, hence (a) of Definition 3.1
is essentially important in the proof.

The following theorem indicates that every closed densely defined operator A generates
at most one fractional (α, β) resolvent.

Theorem 3.10 Assume that {T (t)}t≥0 and {S(t)}t≥0 are fractional (α, β) resolvents on
Banach space X generated by A and B, respectively. Then T (t) = S(t) for t ≥ 0, provided
A is equal to B.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

in
co

ln
] 

at
 1

5:
05

 2
8 

Se
pt

em
be

r 
20

15
 



2404 Z.D. Mei and J.-G. Peng

Proof For x ∈ D(A), the combination of property (c) and property (a) of Proposition 3.8
implies that

tα Eα,α+1(−tα) ∗ S(t)x = (T (t) − E
α,α−β
t AT (t)) ∗ S(t)x

= T (t) ∗ S(t)x − tα−β−1 Eα,α−β(−tα) ∗ AT (t) ∗ S(t)x

= T (t) ∗ S(t)x − tα−β−1 Eα,α−β(−tα) ∗ T (t) ∗ AS(t)x

= T (t) ∗ (S(t)x − tα−β−1 Eα,α−β(−tα) ∗ AS(t)x)

= T (t) ∗ tα Eα,α+1(−tα)x

= tα Eα,α+1(−tα) ∗ T (t)x,

by Titchmarsh’s theorem, T (t)x = S(t)x, x ∈ D(A), t ≥ 0. The density of D(A)

indications that T (t) = S(t), t ≥ 0. �

Definition 3.11 Fractional (α, β) resolvent on Banach space {T (t)}t≥0 is called exponen-
tially bounded if there exist constants M ≥ 1, ω ≥ 0 such that

‖T (t)‖ ≤ Meωt , t ≥ 0. (3.10)

An operator A is said to belong Cα,β(M, ω) if it is the generator of a Riemann-Liouville
fractional (α, β) resolvent {T (t)}t≥0 satisfying (3.10). Denote Cα,β(ω) = ⋃{Cα,β(M, ω);
M ≥ 1}.

Now we introduce the following generation theorem of fractional (α, β) resolvent.

Theorem 3.12 A ∈ Cα,β(M, ω) if and only if (ωα,∞) ⊂ ρ(A) and there is a family
{T (t)}t>0 of bounded linear operators satisfying

(1) for any x ∈ X, T (·)x ∈ C([0,∞), X), and

lim
t→0+

T (t)

tα
x = x


(α + 1)
for all x ∈ X; (3.11)

(2) ‖T (t)‖ ≤ Meωt , M ≥ 1, t ≥ 0.
(3) there holds

R(λ−β(λα + 1), A)x = λ1+β

∫ ∞

0
e−λt T (t)xdt, Reλ > ω, x ∈ X. (3.12)

In the case, {T (t)}t≥0 is the fractional (α, β) resolvent generated by A.

Proof Let k(t) = tα Eα,α+1(−tα), a(t) = tα−β−1 Eα,α−β(−tα). Using (2.7), we obtain
â(λ) = λβ

λα+1 , k̂(λ) = λ−1

λα+1 .
(Necessity) By Remark 3.7, A ∈ Cα,β(M, ω) implies that A generates an (a, k)-

regularized resolvent. The necessity is obtained from Proposition 3.1 of [30].
(Sufficiency) By Proposition 3.1 of [30], (3.12) implies that A generates an (a, k)-

regularized resolvent {T (t)}t≥0. The closedness of A is derived from the proof of Proposition
3.8. By Theorem 3.1 of [29], it follows that (b) and (c) of Definition 3.1 hold. The proof is
completed. �
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Applicable Analysis 2405

4. Existence and uniqueness of the classical solutions

This section is devoted to studying the existence and the uniqueness of the classical solution
of the homogeneous and inhomogeneous fractional relaxation equations. The properties of
fractional (α, β) resolvent obtained in Sec. 3 and the properties of general Mittag-Leffler
functions are used. Moreover, the definition of the mild solution of (N AF RE) will be
given. In this section, we assume 0 < β < α ≤ 1.

We firstly consider homogeneous fractional relaxation equation (AF RE). The definition
of classical solution is defined as follows.

Definition 4.1 Assume that X is a Banach space. A function u ∈ C([0,∞), X) is called a
classical solution of (AF RE), if

(i) t �→ ∫ t
0 (t − s)−α[u(s) − x]ds and t �→ ∫ t

0 (t − s)−β [u(s) − x]ds are continuously
differentiable on [0,∞);

(ii) d
dt

∫ t
0 (t − s)−β [u(s) − x]ds ∈ D(A);

(iii) there holds

D
α
t u(t) − AD

β
t u(t) + u(t) = 0, t ≥ 0.

Lemma 4.2 For any t ≥ 0, one has

Eα,1(−tα) + tα Eα,α+1(−tα) = 1. (4.1)

Proof Obviously, for any λ with large real part, there holds

0 = λα−1 + λ−1 − (λα−1 + λ−1)

λα + 1
= λα−1

λα + 1
+ λ−1

λα + 1
− λ−1. (4.2)

Taking inverse Laplace transform on both sides of (4.2), using (2.7), we obtain

0 = Eα,1(−tα) + tα Eα,α+1(−tα) − 1.

The proof is therefore completed. �

Theorem 4.3 Assume operator A to generate a fractional (α, β) resolvent {T (t)}t≥0 on
Banach space X. Let K = [ β

α−β

]
. Then, for any x ∈ D(AK+1), x − T (·)x is a classical

solution of (AF RE).

Proof Assume that x ∈ D(AK+1). Then, x ∈ D(An), n = 1, 2, · · · , K + 1. By Lemma
4.2, it follows that

(
Eα,1(−tα) + tα Eα,α+1(−tα) − 1

)
∗ T (t)x = 0 (4.3)
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2406 Z.D. Mei and J.-G. Peng

The combination of (3.3) and (4.3) implies that∫ t

0
Eα,1(−(t − s)α)T (s)xds +

∫ t

0
(t − s)α Eα,α+1((t − s)α)T (s)xds

=
∫ t

0
T (s)xds

=
∫ t

0
(sα Eα,α+1(−sα)x + E

α,α−β
s T (s)Ax)ds

= tα+1 Eα,α+2(−tα)x +
∫ t

0
(t − s)α−β Eα,α−β+1(−(t − s)α)T (s)Axds.

Using (2.4), we have

∫ t

0
Eα,1(−(t − s)α)

[
T (s)x +

∫ s

0

(s − σ)α−1


(α)
T (σ )xdσ

]
ds

=
∫ t

0
Eα,1(−(t − s)α)

[
sα


(α + 1)
x +

∫ s

0

(s − σ)α−β−1


(α − β)
T (σ )Axdσ

]
ds, t ≥ 0.

By Titchmarsh’s theorem, we obtain

T (t)x +
∫ t

0

(t − σ)α−1


(α)
T (σ )xdσ

= tα


(α + 1)
x +

∫ t

0

(t − σ)α−β−1


(α − β)
T (σ )Axdσ, t ≥ 0.

Taking 1 − α times integral on both sides of the above equality, it follows that

∫ t

0

(t − σ)−α


(1 − α)
T (σ )xdσ +

∫ t

0
T (σ )xdσ = t x +

∫ t

0

(t − σ)−β


(1 − β)
T (σ )Axdσ, t ≥ 0.

The closedness of A implies that

∫ t

0

(t − σ)−α


(1 − α)
T (σ )xdσ +

∫ t

0
T (σ )xdσ = t x + A

∫ t

0

(t − σ)−β


(1 − β)
T (σ )xdσ, t ≥ 0.

Obviously,
∫ t

0 T (σ )xdσ and t x are continuously differentiable on [0,∞). By (3.3), we can
compute

∫ t

0

(t − σ)−β


(1 − β)
T (σ )Axdσ

= J 1−β
t

(
tα Eα,α+1(−tα)Ax + E

α,α−β
t T (t)A2x

)
= tα−β+1 Eα,α+2−β(−tα)Ax + E

α,1−β+(α−β)
t T (t)A2x .

Obviously,

−β + K (α − β) ≥ 0. (4.4)
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Applicable Analysis 2407

By induction, we derive∫ t

0

(t − σ)−β


(1 − β)
T (σ )Axdσ

=
K∑

n=1

tn(α−β)En
α,2+n(α−β)(−tα)An x

+ t K (α−β)−β E K
α,1−β+K (α−β)(−tα) ∗ T (t)AK+1x .

Using the property of general Mittag-Leffler functions, we have that

K∑
n=1

tn(α−β)En
α,1+n(α−β)(−tα)An x

is continuously differentiable on [0,∞). By (4.4), it follows that

t K (α−β)−β E K
α,1−β+K (α−β)(−tα) ∗ T (t)AK+1x

is continuously differentiable and

d

dt
t K (α−β)−β E K

α,1−β+K (α−β)(−tα) ∗ T (t)AK+1x

= t K (α−β)−β d

dt
E K

α,1−β+K (α−β)(−tα) ∗ T (t)AK+1x, t ≥ 0.

This means that
∫ t

0
(t−σ)−β


(1−β)
T (σ )Axdσ is continuously differentiable on [0,∞). Hence∫ t

0
(t−σ)−α


(1−α)
T (σ )xdσ is continuously differentiable on [0,∞). Similarly, we obtain

∫ t

0

(t − σ)−β


(1 − β)
T (σ )xdσ

=
K∑

n=1

tn(α−β)En
α,2+n(α−β)(−tα)An−1x + t K (α−β)−β E K

α,1−β+K (α−β) ∗ T (t)AK x .

and the function t �→ ∫ t
0

(t−σ)−β


(1−β)
T (σ )xdσ is continuously differentiable on [0,∞).

A
∫ t

0

(t − σ)−β


(1 − β)
T (σ )xdσ =

∫ t

0

(t − σ)−α


(1 − α)
T (σ )xdσ +

∫ t

0
T (σ )xdσ − t x

is continuously differentiable on [0,∞). Since A is closed, we have

A
d

dt

∫ t

0

(t − σ)−β


(1 − β)
T (σ )xdσ = d

dt

∫ t

0

(t − σ)−α


(1 − α)
T (σ )xdσ + T (t)x − x, t ≥ 0.

This means that

d

dt

∫ t

0

(t − σ)−α


(1 − α)
[(x − T (σ )x) − x]dσ − A

d

dt

∫ t

0

(t − σ)−β


(1 − β)
[(x − T (σ )x) − x]dσ

+ x − T (t)x = 0, t ≥ 0,
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2408 Z.D. Mei and J.-G. Peng

that is,

D
α
t [x − T (t)x] − AD

β
t [x − T (t)x] + x − T (t)x = 0, t ≥ 0.

The proof is completed. �

Theorem 4.4 Assume A to generate a fractional (α, β) resolvent {T (t)}t≥0 on Banach
space X. Let u be a classical solution of (AF RE). Then, u(t) = x − T (t)x, t ≥ 0.

Proof Suppose that u is a classical solution of (AF RE). Then, u(·) ∈ C([0,∞), X),
u(0) = x,

d

dt

∫ t

0

(t − σ)−β


(1 − β)
[u(σ ) − x]dσ ∈ D(A), t ≥ 0,

and

d

dt

∫ t

0

(t − σ)−α


(1 − α)
[u(σ ) − x]dσ − A

d

dt

∫ t

0

(t − σ)−β


(1 − β)
[u(σ ) − x]dσ + u(t) = 0. (4.5)

The combination of (4.5) and closedness of A implies that tα−1 Eα,α(−tα)∗ d
dt

∫ t
0

(t−σ)−β


(1−β)[u(σ ) − x]dσ ∈ D(A) and

tα−1 Eα,α(−tα) ∗ A
d

dt

∫ t

0

(t − σ)−β


(1 − β)
[u(σ ) − x]dσ

= A

[
tα−1 Eα,α(−tα) ∗ d

dt

∫ t

0

(t − σ)−β


(1 − β)
[u(σ ) − x]dσ

]
.

Then, we have

tα−1 Eα,α(−tα) ∗ d

dt

∫ t

0

(t − σ)−α


(1 − α)
[u(σ ) − x]dσ

= A

[
tα−1 Eα,α(−tα) ∗ d

dt

∫ t

0

(t − σ)−β


(1 − β)
[u(σ ) − x]dσ

]
− tα−1 Eα,α(−tα) ∗ u(t).

(4.6)

Obviously, we have the following two equalities

d

dt

[
tα−1 Eα,α(−tα) ∗

∫ t

0

(t − σ)−α


(1 − α)
[u(σ ) − x]dσ

]

= tα−1 Eα,α(−tα) ∗ d

dt

∫ t

0

(t − σ)−α


(1 − α)
[u(σ ) − x]dσ

+ tα−1 Eα,α(−tα) lim
t→0+

∫ t

0

(t − σ)−α


(1 − α)
[u(σ ) − x]dσ. (4.7)
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Applicable Analysis 2409

and

d

dt

[
tα−1 Eα,α(−tα) ∗

∫ t

0

(t − σ)−β


(1 − β)
[u(σ ) − x]dσ

]

= tα−1 Eα,α(−tα) ∗ d

dt

∫ t

0

(t − σ)−β


(1 − β)
[u(σ ) − x]dσ

+ tα−1 Eα,α(−tα) lim
t→0+

∫ t

0

(t − σ)−β


(1 − β)
[u(σ ) − x]dσ. (4.8)

Using the inequality∥∥∥∥
∫ t

0

(t − σ)−α


(1 − α)
[u(σ ) − x]dσ

∥∥∥∥ ≤
∫ t

0

(t − σ)−α


(1 − α)
‖u(σ ) − x‖dσ

≤ t1−α


(2 − α)
max

0≤σ≤t
‖u(σ ) − x‖

and the fact u ∈ ([0,∞), X) with u(0) = x , we obtain that

lim
t→0+

∫ t

0

(t − σ)−α


(1 − α)
[u(σ ) − x]dσ = 0. (4.9)

Similarly, we have

lim
t→0+

∫ t

0

(t − σ)−β


(1 − β)
[u(σ ) − x]dσ = 0. (4.10)

Put (4.6)–(4.10) to get

d

dt

[
tα−1 Eα,α(−tα) ∗

∫ t

0

(t − σ)−α


(1 − α)
[u(σ ) − x]dσ

]

= A
d

dt

[
tα−1 Eα,α(−tα) ∗

∫ t

0

(t − σ)−β


(1 − β)
[u(σ ) − x]dσ

]
− tα−1 Eα,α(−tα) ∗ u(t).

By virtue of (2.4) and (2.6), there holds

d

dt

[
Eα,1(−tα) ∗ (u(t) − x)

]

= A

[
Eα,α−β(−tα) ∗ (u(t) − x)

]
− tα−1 Eα,α(−tα) ∗ (u(t) − x) − tα Eα,α+1(−tα)x,

that is,

A

[
Eα,α−β(−tα) ∗ (x − u(t))

]
+ tα Eα,α+1(−tα)x

= d

dt

[
Eα,1(−tα) ∗ (x − u(t))

]
+ tα−1 Eα,α(−tα) ∗ (x − u(t))

= d

dt

[(
Eα,1(−tα) + tα Eα,α+1(−tα)

)
∗ (x − u(t))

]
.
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2410 Z.D. Mei and J.-G. Peng

By equality (4.1), it follows that

A

[
Eα,α−β(−tα) ∗ (x − u(t))

]
+ tα Eα,α+1(−tα)x = x − u(t). (4.11)

By (3.4) and (4.11), for any t ≥ 0, we have

tα Eα,α+1(−tα) ∗ [u(t) − x]
=

(
T (t) − tα−β−1 Eα,α−β(−tα) ∗ AT (t)

)
∗ [u(t) − x]

= T (t) ∗ [u(t) − x] − tα−β−1 Eα,α−β(−tα) ∗ AT (t) ∗ [u(t) − x]
= T (t) ∗

(
u(t) − x − tα−β−1 Eα,α−β(−tα) ∗ A[u(t) − x]

)
= −tα Eα,α+1(−tα) ∗ T (t)x .

By Titchmarsh’s theorem, we have u(t) = x − T (t)x, t ≥ 0. �

Remark 4.5 Theorem 4.4 implies that fractional relaxation equation (AF RE) has at most
one classical solution.

Now we consider system (N AF RE). The definition of the classical solution is defined
as follows.

Definition 4.6 Assume that X is a Banach space. A function u ∈ C([0,∞), X) is called a
classical solution of (AF RE), if

(i) t �→ ∫ t
0 (t − s)−α[u(s) − x]ds and t �→ ∫ t

0 (t − s)−β [u(s) − x]ds are continuously
differentiable on [0,∞);

(ii) d
dt

∫ t
0 (t − s)−β [u(s) − x]ds ∈ D(A);

(iii) there holds

D
α
t u(t) − AD

β
t u(t) + u(t) =

∫ t

0
f (s)ds, t ≥ 0.

Theorem 4.7 Let A be the generator of fractional (α, β) resolvent {T (t)}t≥0 on Banach
space X. Let K be defined as in Theorem 4.3. Assume that either of the following two
conditions holds:

(i) f ∈ C([0,∞), D(AK+1)).
(ii) f = ∫ t

0 (t − s)α−1 Eα,α(−(t − s)α)g(s)ds and∫ t
0 Eα(−(t − s)α)g(s)ds ∈ W 1,1([0, T ]; X),

Then for every x ∈ D(AK+1), system (AF RE) has a unique classical solution u
given by

u(t) = x − T (t)x +
∫ t

0
T (t − s) f (s)ds, t ∈ [0, T ]. (4.12)
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Applicable Analysis 2411

Proof Uniqueness: Let u1, u2 be two classical solutions of (N AF RE). Then w :=
u1 − u2, w(0) = 0, and D

α
t w(t) − AD

β
t w(t) + w(t) = 0 for all t ∈ [0, T ]. It follows from

Theorem 4.4 that w ≡ 0.
Existence: By Theorems 4.3 and 4.4, it follows that T (t)x is the unique classical solution

of system (AF RE). Therefore, we only need to verify that v(t) defined by

v(t) =
∫ t

0
T (t − s) f (s)ds, t ∈ [0, T ] (4.13)

is a strong solution of system (N AF RE) with x = 0.
Case (I):Assume (i) holds. By Proposition 1.3.4 in [31], it follows thatv(·) ∈ C([0, T ]; X).

It is easy to obtain that v(0) = 0. The combination of the strong continuousness of T (·)
and uniform boundedness theorem implies that T (·) is bounded over any bounded interval.
For any 0 < s < t , we have∥∥∥∥

∫ t−s

0

(t − s − σ)−α


(1 − α)
T (σ ) f (s)dσ

∥∥∥∥ ≤
∫ t−s

0

(t − s − σ)−α


(1 − α)
‖T (σ )‖‖ f (s)‖dσ

≤ (t − s)1−α


(2 − α)
max

0≤σ≤t
‖T (σ )‖‖ f (s)‖.

Hence,

lim
s→t−

∫ t−s

0

(t − s − σ)−α


(1 − α)
T (σ ) f (s)dσ → 0. (4.14)

Similarly, we obtain that

lim
s→t−

∫ t−s

0

(t − s − σ)−β


(1 − β)
T (σ ) f (s)dσ → 0. (4.15)

Observe that f (t) ∈ D(Ak+1) for t ≥ 0. Since A is closed, combining (4.14), (4.15) and
Theorem 4.3, it follows that

D
α
t v(t) − AD

β
t v(t) + v(t)

= d

dt

∫ t

0

(t − s)−α


(1 − α)
[v(s) − v(0)]ds − A

d

dt

∫ t

0

(t − s)−β


(1 − β)
[v(s) − v(0)]ds + v(t)

= d

dt

∫ t

0

(t − s)−α


(1 − α)
v(s)ds − A

d

dt

∫ t

0

(t − s)−β


(1 − β)
v(s)ds + v(t)

= d

dt
J 1−α

t (T ∗ f )(t) − A
d

dt
J 1−β

t (T ∗ f )(t) + v(t)

=
∫ t

0

d

dt
(g1−α ∗ T )(t − s) f (s)ds − A

∫ t

0

d

dt
(g1−β ∗ T )(t − s) f (s)ds

+ lim
s→t−

(g1−α ∗ T )(t − s) f (s) − lim
s→t−

(g1−β ∗ T )(t − s)A f (s) + v(t)

=
∫ t

0

(
d

dt
(g1−α ∗ T )(t − s) f (s) − A

d

dt
(g1−β ∗ T )(t − s) f (s)

)
ds + v(t)

= −
∫ t

0

(
D

α
r [ f (s) − T (r)|r=t−s f (s)] − AD

β
r [ f (s) − T (r)|r=t−s f (s)]

)
ds

+ v(t)
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2412 Z.D. Mei and J.-G. Peng

=
∫ t

0

(
f (s) − T (t − s) f (s)

)
ds + v(t)

=
∫ t

0
f (s)ds. (4.16)

This indicates that v is a classical solution of (N AF RE) with x = 0.
Case (II): Assume (ii) to hold. Let

v(t) =
∫ t

0
T (t − τ) f (τ )dτ, t ∈ [0, T ]. (4.17)

Since f ∈ L([0, T ]; X) and T (t) is strongly continuous on [0,∞), by Proposition 1.3.4 in
[31], we have v(t) ∈ C([0, T ]; X) with v(0) = 0. It is not difficult to obtain that

lim
t→0+ J 1−α

t f (t) = 0 (4.18)

Using Fubini theorem and (4.18), we derive that

D
α
t v(t) = d

dt

∫ t

0

(t − s)−α


(1 − α)
[(T ∗ f )(s) − v(0)]ds

= d

dt
J 1−α

t (T ∗ f )(t)

= d

dt
(T ∗ J 1−α

t f )(t)

=T (t) ∗ d

dt
J 1−α

t f (t) + T (t) lim
t→0+ J 1−α

t f (t). (4.19)

Combining (2.3), (2.6), (4.18) and (4.19), we obtain

D
β
t v(t) = d

dt

∫ t

0

(t − s)−β


(β)
[(T ∗ f )(s) − v(0)]ds

= d

dt
J 1−β

t (T ∗ f )(t)

=T (t) ∗ d

dt
J 1−β

t f (t) + T (t) lim
t→0+ Jα−β

t J 1−α
t f (t)

=T (t) ∗ Dβ
t

∫ t

0
(t − s)α−1 Eα,α(−(t − s)α)g(s)ds

+ T (t) lim
t→0+ Jα−β

t J 1−α
t f (t)

=T (t) ∗ tα−β−1 Eα,α−β(−tα) ∗ g(t).

The closedness of A and property (a) of Proposition 3.8 imply that D
β
t v(t) ∈ D(A) and

AD
β
t v(t) =AT (t) ∗ tα−β−1 Eα,α−β(−tα) ∗ g(t)

=
(

T (t) − tα Eα,α+1(−tα)

)
∗ g(t)
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=
∫ t

0

[
T (t − s)g(s) − (t − s)α Eα,α+1(−(t − s)α)g(s)

]
ds

=
∫ t

0
T (t − s)g(s)ds −

∫ t

0
f (s)ds. (4.20)

Therefore, by (4.19) and (4.20), we have

D
α
t v(t) − AD

β
t v(t) + v(t)

= T (t) ∗
[

f (t) + d

dt
J 1−α

t f (t) − g(t)

]
+ T (t) lim

t→0+ J 1−α
t f (t) +

∫ t

0
f (s)ds. (4.21)

In order to complete the proof, we only need to show that

T (t) ∗
[

f (t) + d

dt
J 1−α

t f (t) − g(t)

]
+ T (t) lim

t→0+ J 1−α
t f (t) = 0, t ≥ 0.

Denote gb(·) by the truncation of g(·) and Tb(·) by the truncation of T (·), that is,

gb(t) =
{

g(t), t ≤ b,

0, t > b,
and Tb(t) =

{
T (t), t ≤ b,

0, t > b.

Obviously,

ĝb(λ)

λα + 1
+ λα ĝb(λ)

λα + 1
− ĝb(λ) = 0,

which implies that

T̂b(λ)

[
ĝb(λ)

λα + 1
+ λα ĝb(λ)

λα + 1
− lim

t→0+ J 1−α
t f (t) − ĝb(λ) + lim

t→0+ J 1−α
t f (t)

]
= 0.

By virtue of Laplace transform, we derive

T (t) ∗
[

f (t) + d

dt
J 1−α

t f (t) − g(t)

]
+ T (t) lim

t→0+ J 1−α
t f (t) = 0, t ∈ [0, b].

The arbitrariness of b implies that

T (t) ∗
[

f (t) + d

dt
J 1−α

t f (t) − g(t)

]
+ T (t) lim

t→0+ J 1−α
t f (t) = 0, t ≥ 0.

The proof is therefore completed. �

The mild solution of (N AF RE) can be defined as follows.

Definition 4.8 Let A be the generator a fractional (α, β) resolvent {T (t)}t>0 on Banach
space X . For any x ∈ X, f ∈ L1

loc([0,∞), X), the mild solution of (N AF RE) is defined
by
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2414 Z.D. Mei and J.-G. Peng

u(t) = x − T (t)x +
∫ t

0
T (t − s) f (s)ds, t > 0.

Remark 4.9 We can see from the proof of Theorem 4.4 that the mild solution of (N AF RE)

is unique.

Example 4.10 As an application, we consider the following fractional differential equa-
tions⎧⎪⎨

⎪⎩
D

α
t (t, x) = μ2 ∂2

∂x2 D
β
t u(t) − u(t, x) + ∫ t

0 f (s, x)ds, t ∈ (0, T ], x ∈ (0, 1),

u(t, 0) = u(t, 1) = 0,

limt→0+ J 1−α
t u(t, x) = p(x).

(4.22)

Denote X = L2(0, π), and A = μ2 ∂2

∂x2 with domain D(A) = {g ∈ W 2,2(0, 1) : g(0) =
g(1) = 0}. Then, system (4.22) can be convert to abstract fractional relaxation equation of
the form (N AF RE) with p replacing x .

Observe that A is closed, densely defined and has eigenvalues {λn = −μ2n2π2}n∈N

with eigenfunctions {sin(nπx)}n∈N . Moreover, we have ρ(A) = C/{sin(nπx)}n∈N . For
g(x) = ∑∞

n=1 gnsin(nπx), we define the family {T (t)}t≥0 by

(T (t)g)(x) =
∞∑

n=1

( ∞∑
k=0

(−1)k(μnπ)2k t (α−β)k+α Ek+1
α,(α−β)k+1+α(−tα)

)
gn sin(nπx).

We shall show that {T (t)}t≥0 is a fractional (α, β) resolvent by verifying the following
three conditions. (1) Obversely, T (·)g ∈ C([0,∞), X), and

lim
t→0+

T (t)g

tα

= lim
t→0+

∞∑
n=1

( ∞∑
k=0

(−1)k(μnπ)2k t (α−β)k Ek+1
α,(α−β)k+1+α(−tα)

)
gn sin(nπx)

= g


(α + 1)
.

(2) The commutativity of T (t) and T (s), t, s ≥ 0 is obtained directly by the definition of
{T (t)}t≥0.
c) By (2.7), the Laplace transform of {T (t)}t≥0 is obtained by

T̂ (λ)g =
∞∑

n=1

( ∞∑
k=0

(−1)k(μnπ)2k λα(k+1)−[(α−β)k+1+α]

(λα + 1)k+1

)
gn sin(nπ ·)

=
∞∑

n=1

λ−1

λα + 1

( ∞∑
k=0

(−1)k(μnπ)2kλβk

(λα + 1)k

)
gn sin(nπ ·)

=
∞∑

n=1

λ−1

λα + 1

1

1 − −μ2n2π2λβ

λα+1

gn sin(nπ ·)

=
∞∑

n=1

λ−1−β

λ−β(λα + 1) + μ2n2π
gn sin(nπ ·).
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Applicable Analysis 2415

Assume that f ∈ D(A) such that

λ f − A f = g, λ ∈ ρ(A).

Then, f = ∑∞
n=0 fnsin(nπ ·), and

∞∑
n=0

(
λ + μ2n2π2

)
fnsin(nπ ·) =

∞∑
n=0

gnsin(nπ ·), λ ∈ ρ(A).

This indicates that

R(λ, A)g =
∞∑

n=0

gn

λ + μ2n2π2
sin(n·), λ ∈ ρ(A)

and

λ−1−β R(λ−β(λα + 1), A)g =
∞∑

n=0

λ−1−βgn

λ−β(λα + 1) + μ2n2π2
sin(nπ ·), (4.23)

for any λ > 0, x ∈ X. Hence,

λ−1−β R(λ−β(λα + 1), A)g =
∫ ∞

0
e−λt T (t)gdt. (4.24)

Since D(A) is dense in X , by equality (4.24) and Theorem 3.12, it follows that {T (t)}t≥0 is
fractional (α, β) resolvent generated by A. Let K be defined as in Theorem 4.3. Then, for
any p ∈ D(AK+1), the homogeneous equation⎧⎪⎨

⎪⎩
Dα

t u(t, x) = ∂2

∂x2 Dβ
t u(t) − u(t, x), t ∈ (0, T ], x ∈ (0, 1),

u(t, 0) = u(t, 1) = 0,

limt→0+ J 1−α
t u(t, x) = p(x),

has a unique classical solution. Moreover, by Theorem 4.4, for any p ∈ X , (T (t)p)(x) is
the unique solution of (AF RE) with p replacing x .

Below we consider the inhomogeneous Equation (4.22). If p ∈ D(AK+1),

f =
∫ t

0
(t − s)α−1 Eα,α(−(t − s)α)g(s)ds

and ∫ t

0
Eα(−(t − s)α)g(s)ds ∈ W 1,1([0, T ]; X),

then it follows from Theorem 4.7 that

u(t, x) = (T (t)p)(x) +
∫ t

0
T (t − s) f (s, x)ds (4.25)

is the unique mild solution of (N AF RE) with p replacing x . Moreover, for any p ∈ X and
f ∈ L1

loc([0,∞), X), (4.25) is the unique mild solution of (N AF RE) with p replacing x .
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