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ABSTRACT
In comparison with conventional lasers, topological lasers are more robust and can be immune to disorder or defects if lasing occurs in
topologically protected states. Previously reported topological lasers were almost exclusively based on the first-order photonic topological
insulators. Here, we show that lasing can be achieved in the zero-dimensional corner state in a second-order photonic topological insulator,
which is based on the Kagome waveguide array with a rhombic configuration. If gain is present in the corner of the structure, where the
topological corner state resides, stable lasing in this state is achieved, with the lowest possible threshold, in the presence of uniform losses and
two-photon absorption. When gain acts in other corners of the structure, lasing may occur in edge or bulk states, but it requires substantially
larger thresholds, and transition to stable lasing occurs over much larger propagation distances, sometimes due to instabilities, which are
absent for lasing in corner states. We find that increasing two-photon absorption generally plays strong stabilizing action for nonlinear lasing
states. The transition to stable lasing stimulated by noisy inputs is illustrated. Our work demonstrates the realistic setting for corner state
lasers based on higher-order topological insulators realized with waveguide arrays.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0042975

I. INTRODUCTION

Generally, a d-dimensional (dD) topological insulator sup-
ports (dD) bulk states and (d − ℓ)D topological edge states. First-
order TIs correspond to ℓ = 1, while for higher-order topologi-
cal insulators (HOTIs), one has ℓ > 1.1,2 Nowadays, HOTIs attract
considerable attention in diverse areas of physics, as they were
discovered in condensed matter physics,3–10 electrical systems,11
mechanical systems,12,13 acoustics,14–17 microwave systems,18 and
photonics.19–26 Different from first-order topological insulators that
satisfy the bulk–edge correspondence principle,27,28 HOTIs do not
comply with this principle, even though they support topologically
protected states.14,15 The simplest realization of a HOTI is a 2D

insulator supporting 0D topological corner states. As ℓ = 2, such
a system is called second-order topological insulator HOTIs that
were reported not only in conservative systems but also in non-
Hermitian settings.29–32 Only recently HOTIs with nonlinearity-
dependent hopping rates that enter the topological phase at high
enough amplitudes33 have been considered theoretically, while cou-
pling between corner modes in nonlinear HOTIs in polariton sys-
tems has been addressed in Ref. [34].

Nonlinear effects are imperative for implementing laser sys-
tems. Nonlinearity leads to competition between different lasing
modes, as a result of which only a limited set of them survives, lead-
ing to substantial modification of the output spectrum in the stable
lasing regime. Gain saturation, accounted for by nonlinear terms in
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the corresponding governing equations, determines the amplitudes
of lasing modes. These effects were employed for the realization
of so-called topological lasers35–41 representing a novel extension
of the concept of topological insulators. In comparison with con-
ventional lasers, whose stability may be affected by perturbations,
such as defects and disorder, topological lasers may be more sta-
ble when they lase in topologically protected edge states. Topological
lasing has been theoretically proposed and experimentally reported
in the 1D systems representing variants of the Su–Schrieffer–Heeger
(SSH) lattices35–38 and in fully 2D settings based on topologi-
cal photonic crystals42 and lattices of coupled-ring resonators.43,44
Lasers based on the valley Hall effect were reported in Refs. 45–48.
Topological lasing is possible in Floquet topological insulators,49
and it was proposed using the bosonic Harper–Hofstadter model.50
In polariton systems, topological lasing in the 1D and 2D
microresonator arrays has been demonstrated experimentally36,51
and studied theoretically when sufficiently strong pump and,
in some cases an external magnetic field, was provided in the
system.52

Remarkably, in all previous works, even those addressing finite
topological configurations,53 lasing in 2D systems was shown to
occur in the extended edge states, typically along the entire periphery
of the insulator.42–44 In contrast, HOTIs potentially allow the realiza-
tion of a class of higher-order topological lasers, where despite the
fact that the system will still show fully two-dimensional evolution,
lasing will occur in localized 0D corner modes, enabling high spatial
localization of the emission and its constant modal population (in a
sense that only one nonlinear mode will be excited above the lasing
threshold). In addition, corner lasers constructed on topologically
protected edge states should exhibit benefits of topological protec-
tion of lasing. This is because corner states always survive even for
harsh perturbations in the bulk of the photonic lattice because topo-
logical properties are not destroyed unless perturbation-induced
shifts of propagation constants exceed the width of the topological
gap.

The goal of this work is to demonstrate that a corner laser can
be implemented in a new continuous system, which is based on
Kagome14,15,22,54 waveguide arrays, where localized gain can be selec-
tively provided in different waveguides of the array and where uni-
form losses, two-photon absorption, and focusing nonlinear inter-
actions are present. Even though lasing in 0D corner states has been
recently reported in photonic crystal cavities55–57 and a somewhat
similar effect resulting in lasing in vertices of a triangular valley-Hall
laser with a controllable degree of asymmetry in the underlying peri-
odic structure was reported in Ref. 58, our work is different in many
aspects. We provide the illustration of topological corner lasers on
a new platform—shallow waveguide arrays (as opposed to previ-
ous works on microrings or photonic crystal cavities with a 2D SSH
configuration)—the idea that can be extended to polaritonic systems
based on micropillar arrays, where nonlinear interactions of polari-
tons are repulsive36,51,52 (in our case, nonlinearity is attractive). The
continuous model, employed here, takes into account all features
of the refractive index and gain landscapes, as opposed to simpli-
fied discrete models of HOTI lasers introduced before. We employ
localized gain, which, when applied in different corners of our struc-
ture, offers a unique advantage of highly selective excitation of bulk,
edge, or corner nonlinear topological states in HOTIs. The possibil-
ity of such selective excitation in our truly two-dimensional system

is a nontrivial result by itself taking into account the complex spatial
shape of the considered structure. We report on completely stable
corner state lasing and bistability of the edge state lasing in higher-
order topological insulators that can only be observed in the non-
linear medium. The detailed analysis of stability of lasing modes is
provided for different values of linear gain and two-photon absorp-
tion coefficients. It is illustrated how lasing in corner states builds up
from random noisy inputs. The stability of lasing in the presence of
disorder is also illustrated.

Even when 0D corner states supported by our structure are
strongly localized, they always penetrate into neighboring waveg-
uides, where the field typically changes its sign. Importantly, by tun-
ing the separation between waveguides, one can substantially change
the area of the topological corner modes, which is not achievable,
say, with single-element structures. The above-mentioned tunability
of the corner mode area, in the case when lasing occurs in such a
mode, may be used for the enhancement of the light–matter inter-
actions and in the design of nonlinear photonic devices with better
characteristics, as compared to usual topological lasers, where lasing
is usually achieved in extended modes occupying the entire periph-
ery of the structure. In addition, in corner lasers, the appearance of
topological modes is guaranteed by simple deformation of the struc-
ture, allowing miniaturization and increasing performance in the
nonlinear regime.

II. RESULTS AND DISCUSSION
A. Band structure and linear modes
of the conservative system

The propagation dynamics of light beams in our dissipative
system—the Kagome array of waveguides with tunable spacing—can
be described by the nonlinear Schrödinger-like equation that in the
dimensionless units reads as

i
∂ψ
∂z
= −

1
2
(
∂2

∂x2
+

∂2

∂y2
)ψ − (Rre − iRim + iγ)ψ

− (1 + iα)∣ψ∣2ψ. (1)

Here, ψ = (κ2w2n2,re/nre)1/2E is the dimensionless field amplitude;
x, y are the transverse coordinates normalized to the characteris-
tic scale w; z is the propagation distance scaled to the diffraction
length κw2; κ = 2πnre/λ is the wavenumber; nre and nim (nim ≪ nre)
are the real and imaginary parts of the unperturbed linear refrac-
tive index of the material, respectively; n2,re and n2,im are the real
and imaginary parts of the nonlinear refractive index, respectively;
γ = κ2w2nim/nre is the coefficient of linear losses that are assumed to
be uniform; and α = n2,im/n2,re is the scaled coefficient characteriz-
ing nonlinear losses stemming from all sources, including intrinsic
nonlinear losses of the medium and gain saturation in the first
approximation. The refractive index distribution is described by
the function Rre(x, y) = pre∑n,mQ(x − xn, y − ym) that is composed
of Gaussian waveguides Q = exp[−(x2 + y2)3/d6] with normalized
depths of pre = κ

2w2δnre/nre, where (xn, ym) are the coordinates of
the sites of the Kagome lattice and d = 0.5 is the waveguide width.
Here, we choose pre = 10 to make sure that every channel is a
single-mode waveguide. For the definition ofRim, see Sec. II C.
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FIG. 1. First three bands for arrays with r = 0.5a (a) and r = 0.4a (b). The inset
between panels shows the array profile at r = 0.55a. The white triangle illustrates
the unit cell of the array.

Kagome waveguide arrays considered here can be deformed in
a controllable fashion upon fabrication. The controllable deforma-
tion is described by the parameter r defining the shift of each second
waveguide in the structure: see Fig. 1 for the band structure of the
extended Kagome array and its profile with the unit cell indicated in
the inset (also see themiddle-left panel in Fig. 2, where the shift r and
spacing a = 2.5 are indicated on the array profile shown with white
contour lines). When r = a/2, one retrieves the standard Kagome
array, and the band structure exhibits six Dirac cones between the
upper two bands [Fig. 1(a)]. When r < a/2, the bandgap opens, as
shown in Fig. 1(b).

FIG. 2. Spectrum showing corner and edge states of the conservative system.
(Top row) Linear spectrum ε(n) of the array at pim = 0, where n is the eigenvalue
number. Color dots correspond to corner and edge states, while black dots cor-
respond to bulk modes. Green dots indicate modes that lase first in the presence
of localized gain acting in the top-right or top-left sites of the array. Middle row:
Representative profiles of the corner and edge modes supported by the structure
at pim = 0. Array sites are indicated by white lines. Bottom row: Three different
gain configurations that we consider, with the gain profile indicated by the red spot
superimposed on the array profile.

We further truncate the infinite Kagome array such that a
finite rhombic configuration forms (see white contours in panels of
Fig. 2). The resulting system is essentially two-dimensional since it is
obtained by truncation of the truly two-dimensional Kagome array
and it is not equivalent to folded one-dimensional SSH chains. As we
show below, our system possesses a unique spectrum of eigenmodes,
where bulk, edge, and corner modes are present in an appropriate
parameter range. Corner states in this truncated structure appear
when the structure is topologically nontrivial at r < a/2. For the
rhombic configuration in Fig. 2, they form in the top-right corner
of the array. Due to the specific duality of our structure (that for the
case of r > a/2 is equivalent to the structure with r < a/2 rotated by
an angle of π), for the case with r > a/2, such states also emerge in
the bottom-left corner. Notice that this duality is exclusively due to
our choice of truncation of the structure (see below).

First, we consider the spectrum of the linear modes of our trun-
cated array without gain and losses (pim, γ = 0) and by omitting the
last nonlinear term in Eq. (1). We find such modes from Eq. (1)
in the form ψ(x, y, z) = u(x, y) exp(iεz) by solving the resulting lin-
ear eigenvalue problem εu = (1/2)(∂2

x + ∂
2
y)u +Rreu. For the array

with r = 0.4a, the energies ε (propagation constants) of modes are
shown in the top panel of Fig. 2. This spectrum includes one 0D cor-
ner state with eigenvalue number n = 41, a band of 1D edge states at
42 ≤ n ≤ 49 shown by the red dots, and bulk modes (black dots). The
structure of this spectrum remains qualitatively similar for larger
arrays. In the middle row of Fig. 2, we show the real-valued ampli-
tude distributions u(x, y) for the conservative corner (n = 41) and
edge states at n = 45 (green dot) and n = 49 (edge state with the
largest ε value). Notice strong localization of light in the topologi-
cal mode in the top-right corner of our continuous structure14,15,22
for the selected r value. Even in this case, however, the mode pene-
trates into neighboring waveguides, where the field changes its sign.
In fact, localization of corner modes strongly depends on the dif-
ference r − a/2, and such modes may extend far beyond the corner
waveguide, when the above difference is small, demonstrating again
the two-dimensional nature of our system. This possibility to control
localization of topological corner modes will also be very important
in the nonlinear lasing regime considered below, where by tuning
r − a/2, one may control the area of the lasing mode, in contrast
with the case of single waveguides, for example. Edge states that also
appear in our system are characterized by excitations residing in the
vicinity of two edges adjacent to the top-right corner, and they differ
only by the number of nodes (where ψ vanishes) in the state along
these edges.

In contrast to the rhombic configuration, the above-mentioned
duality is absent in the triangular Kagome configuration obtained
from the same infinite Kagome array (Fig. 3). Therefore, uponmodi-
fications of the parameter r controlling the shift of waveguides, topo-
logical corner states in the triangular structure emerge only in the
regime, where r < a/2. To prove this, in Fig. 3(a), we show the spec-
trum of linear modes in the triangular configuration with r = 0.4a.
The waveguide array with a triangular shape is shown in the inset.
Due to the symmetry of the configuration, corner states simultane-
ously emerge in all three equivalent corners of the structure (green
dots), and they have nearly identical propagation constants. Their
field modulus distributions are shown in the panels below the spec-
trum. Notice that these corner states are linear, so an arbitrary linear
superposition of such corner states also generates a correct corner
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FIG. 3. Linear spectrum of modes in the triangular configuration. (a) r = 0.4a.
Green dots are the corner states, red dots are the edge states, while black dots
are the bulk states. The bottom panels show the three degenerated corner states.
(b) r = 0.6a. There are only bulk states.

state of this system. The red dots in the spectrum correspond to the
edge states localized on the sides of the triangle. To prove that in this
structure, corner states emerge only at r < a/2, in Fig. 3(b), we show
the linear spectrum of this triangular structure at r = 0.6a (see also
Fig. S7 in the supplementary material). There are no corner or edge
states in the spectrum. This case is, therefore, topologically trivial.
It should be stressed that the energies of corner states at r < a/2 in
the triangular configuration are the same as the energy of the corner
state in the rhombic configuration in Fig. 2. The only difference is
that in the triangular configuration, corner states are triply degener-
ate and appear simultaneously in all three equivalent corners of the
structure. Consequently, in the presence of gain and losses, lasing
thresholds for corner states in rhombic and triangular configura-
tions are also identical, as further discussed in the supplementary
material. Since there is no degeneracy of corner states in the rhombic
configuration, further throughout this paper, we adopt this structure
for the analysis of the HOTI laser.

It should be mentioned that the topological properties of the
Kagome array can be characterized by the bulk polarization that
can be calculated using the formula pj = −S

−1
∬ Ajd2k, where Aj

= −i⟨u∣∂kj∣u⟩ is the Berry connection and S is the area of the first
Brillouin zone (BZ), with u being the Bloch mode of the struc-
ture. The details of calculation of the bulk polarization are presented
in the supplementary material. The eigenvectors u can be calcu-
lated using the tight-binding Hamiltonian of the system. The system
is in the topological phase when the polarization components are
nonzero and in the trivial phase when the polarization is zero. The

bulk polarizations (p′x, p′y) are calculated in the transformed coordi-
nate system, where BZ is a square, with (p′x, p′y) = (0, 0) for r > a/2
(topologically trivial phase) and (p′x, p′y) = (1/3, 1/3) for r < a/2
(topologically nontrivial phase). Thus, in our case, the appearance
of corner states in the spectrum of the continuous system upon
the variation of r was always correlated with the emergence of the
nontrivial bulk polarization. Thus, further we consider a represen-
tative array with a rhombic configuration and r = 0.4a illustrated in
Fig. 2.

B. Linear modes of the dissipative system
To realize lasing, we provide localized gain in one of the cor-

ner sites of our rhombic structure (labeled case 1, case 2, and case
3, respectively, in the bottom row of Fig. 2). The inhomogeneous
gain landscape is described in Eq. (1) by the function Rim(x, y)
= pimQ(x − xc, y − yc), where xc, yc are the coordinates of the corre-
sponding corner waveguide, while the normalized gain amplitude is
given by pim = κ

2w2δnim/nre(pim ≪ pre).
To understand how inhomogeneous gain and uniform losses

affect linear modes of this structure, we calculate the spectrum of
the system still neglecting the nonlinear effects but setting γ = 0.05
and increasing pim. The corresponding complex eigenvalue problem
can be written as εu = (1/2)(∂2

x + ∂
2
y)u + (Rre − iRim + iγ)u, where

ε = εre + iεim, with εre and εim being the real and imaginary parts
of eigenvalues, respectively. The sign of the imaginary part εim is
determined by the losses γ and gain Rim. If εim < 0, the modes are
amplified, and if εim > 0, they are damped. Figure 4 shows how εre
and εim vary with the increase in the gain amplitude pim for three dif-
ferent gain positions, corresponding to cases 1–3, outlined in Fig. 2.
In Fig. 4, we plot the inverted value −εim for illustrative purposes.
The positive values of εim shown by black dots and lying below the
cyan plane (εim ≡ 0) are, thus, associated with damped modes, while
the negative εim values corresponding to the red dots lying above
the cyan plane are associated with amplified states. Real parts εre are
weakly affected by gain amplitude pim. One can see that in all three
cases, growing modes appear when the gain amplitude pim exceeds
certain threshold, but there are important differences between these
gain arrangements. For case 1, when gain is located in the corner
supporting the topological corner state, only this state is amplified
in the broad range of pim values, while all other states are damped.
Numerical simulations demonstrate that the lasing threshold for the
topological corner state in case 1 takes the lowest possible value
pthim ∼ 0.078 for this structure. The lasing threshold remains the same
in the triangular configuration (see the supplementary material).
For case 2, only bulk states can lase above the highest lasing thresh-
old pthim ∼ 0.255. The number of such states increases with the
increase in pim. In case 3, the edge state with n = 45 (whose counter-
part in the conservative system is depicted in Fig. 2) lases first above
the threshold pthim ∼ 0.225, but a further increase in gain amplitude
results in amplification of some of the bulk modes. The corner state
is always damped in cases 2 and 3 in the interval of pim values consid-
ered here, so one can expect to realize topological lasing only in case
1. This is natural taking into account that amplification efficiency is
determined by the overlap of the corner mode with the gain land-
scape, which is the highest in the latter case, which also explains the
lowest lasing threshold.
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FIG. 4. Energy ε = εre + iεim vs gain amplitude pim for all modes of the system for
three different locations of the channel with gain shown in Fig. 2. The real part εre of
energy and its imaginary part −εim with an inverted sign are shown simultaneously
on two different axes since they may simultaneously change upon the variation
of the gain amplitude pim. For selected pim, the projection of each dot on the
(εre,−εim) plane gives the energy of the corresponding mode in the linear case.
Only those modes that have −εim > 0 may lase. The dots corresponding to each
lasing mode are shown in red, and they are located above the semi-transparent
cyan plane corresponding to εim = 0. From this plot, one can see which modes
from a given band start lasing first.

C. Families of nonlinear lasing modes
Amplification of the corner and edge states at pim > pthim can

be eventually arrested by the nonlinear absorption. To explore the
possibility of the exact and stable balance between diffraction, non-
linearity, gain, and absorption in this system, we now consider a
complete model (1) with all nonlinear terms included and search
for stationary nonlinear corner and edge states with constant power
along the propagation distance. Their profiles are described by the
following equation:

εu =
1
2
(
∂2

∂x2
+

∂2

∂y2
)u + (Rre − iRim + iγ)u + (1 + iα)∣u∣2u, (2)

with the real-valued nonlinear energy shift (or propagation con-
stant) ε determined by the Kerr nonlinearity and two-photon
absorption. On physical grounds, stabilization of the lasing modes
is achieved due to two-photon absorption that prevents the ampli-
tude from unlimited growth above the lasing threshold. Nonlinear
absorption counteracts the tendency for self-localization due to self-
focusing nonlinearity; it leads to the appearance of nontrivial inter-
nal currents in nonlinear solution, which are directed outward the
pump spot, and results in spatial broadening of stable lasing states

for larger values of the α coefficient. Since ε is not an independent
parameter in this dissipative system, we use the Newton method
complemented by the power balance condition to obtain families of
the nonlinear lasing states parameterized by the gain amplitude pim,
which can be written as follows:

∬ [(Rim − γ)∣ψ∣2 − α∣ψ∣4]dxdy = 0. (3)

Notice that standard simulation of evolution does not provide unsta-
ble branches because in such a method, the wave converges only to
dynamically stable attractors. In contrast, our method, based on the
simultaneous solution of Eqs. (2) and (3), allows us to get all solu-
tions, which may be stable or unstable, and even determine bistable
regimes.

To characterize nonlinear families of the corner and edge states
(emerging in cases 1 and 3, respectively) in our system, we plot their
peak amplitude ∣ψ∣max and nonlinear energy shifts ε as functions of
pim in the left panels of Figs. 5(a) and 5(b), respectively, for different
nonlinear absorption coefficients α. The corresponding gain land-
scapes are also presented for each case. In both cases, stationary non-
linear modes appear when the gain amplitude pim exceeds the corre-
sponding lasing threshold (for example, in case 1 it is pthim ∼ 0.078).
These states are characterized by complex internal currents, but for
them, nonlinear absorption exactly integrally compensates inhomo-
geneous gain. The nonlinear energy shift ε increases almost linearly
with pim in the region pim > pthim (all modes are damped in the region

FIG. 5. Nonlinear lasing state families: maximal amplitude ψmax and propagation
constant ε of the nonlinear lasing mode vs gain amplitude pim for two different
locations of the amplifying channel [(a) case 1 and (b) case 3] and nonlinear
absorption coefficients α = 0.1, 0.2, 0.3, and 0.4 (in all plots, the left outermost
curve corresponds to α = 0.1, while the right one to α = 0.4). Stable branches are
shown in black, and unstable branches are shown in red. Red dots correspond to
∣ψ(x, y)∣ distributions shown in the top row. The bottom row schematically shows
the channel with gain in the array.
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pim < pthim). At pim = p
th
im, it naturally coincides with the real part of

the eigenvalue εre of the linear edge state from which the nonlinear
mode bifurcates [as shown by the bottom dotted line in the (pim, ε)
plane in Fig. 5(a)], allowing us to uniquely identify the state giving
rise to the stable lasing mode. Thus, such nonlinear corner states are
of topological origin since they bifurcate from 0D linear topological
corner modes.1,14,15,22 Since we only consider corner lasing modes
forming in the gap, which do not couple to edge or bulk modes,
we show in Fig. 5(a) the curves for ε values below the band occu-
pied by the eigenvalues of the linear edge states (i.e., below red dots
in the spectrum of Fig. 2). In the top two panels in the right col-
umn in Fig. 5(a), we show ∣ψ∣ distributions for corner lasing states
at α = 0.4 for different gain amplitudes, corresponding to the red
dots, one close to lasing threshold (pim = 0.09) and the other rather
far from it (pim = 0.50). One can see that for r = 0.4a, such states
are very well localized and that most of their energy is concentrated
in the top-right corner site. However, when r → a/2, lasing can be
achieved even in weakly localized corner modes, confirming the tun-
ability of this system mentioned in the introduction. Quantitatively
similar results are also obtained in the triangular configuration, as
shown in the supplementary material.

In contrast, when gain is provided in the top-left corner of the
array, which corresponds to case 3 [see the bottom panels in the right
column of Fig. 5(b)], the conditions for the most efficient amplifi-
cation are met for the edge state with n = 45 (upper green dot in
Fig. 2), which starts lasing when the gain amplitude exceeds thresh-
old pthim ∼ 0.225 that, nevertheless, is substantially larger than the
threshold obtained for the corner state in case 1. Still, it is remarkable
that by choosing the gain location in this system, one can selec-
tively excite either 0D corner or 1D edge states. This illustrates a
rich variety of lasing regimes that can be observed in our structure,
which would not be available in single-waveguide geometries, for
example. Nonlinear families corresponding to different absorption
coefficients for case 3 are displayed in the left panel of Fig. 5(b).
The nonlinear lasing edge state bifurcates from the linear edge state
with n = 45, and its energy grows with pim until it reaches the gap
edge, above which coupling with bulk modes occurs. Interestingly,
despite the fact that usual linear amplification is used, rather than
pump with certain energy, the bistability domain is encountered for
edge states in case 3, where three solutions can coexist for the same
pim value. The encountered bistability offers the unique advantage
to achieve lasing in the edge states with different internal structures
and amplitudes for certain pim values. ∣ψ∣ distributions from themid-
dle branch of ε(pim) dependence clearly show strong coupling with
the opposite edge of the rhombic structure. In the top panels in the
right column of Fig. 5(b), we illustrate representative ∣ψ∣ distribu-
tions from the lower and upper branches corresponding to the red
dots at pim = 0.23 and pim = 0.58. With increasing gain amplitude
pim, the nonlinear edge state that was initially strongly extended over
two edges of the rhombus, gradually contracts toward the top-left
corner of the structure. Therefore, the profile of the nonlinear edge
lasing state at sufficiently high pim may strongly differ from its linear
counterpart shown in themiddle panel in the second row (n = 45) in
Fig. 2. From the dependencies shown in Fig. 5, one can see that for a
fixed gain amplitude pim, the peak amplitude of the nonlinear lasing
state decreases with the increase in the nonlinear absorption coeffi-
cient α. The energy interval, where nonlinear states exist, increases
with the increase in the nonlinear absorption.

On physical grounds, one can perform comparison of lasing in
corner states of the Kagome array and in the isolated waveguide.
While there is no fundamental difference in lasing efficiency, the
Kagome array provides tunability that is absent for single waveg-
uides since the structure of the lasing mode in the Kagome array
strongly depends on the dimerization parameter r. The field of cor-
ner lasing modes is localized mostly on one of the sublattices, form-
ing the Kagome array, and it changes its sign between unit cells,
which results in staggered tails, as it is obvious from the profile of
the corner mode (n = 41) from Fig. 2. Thus, the presence of the
array does allow us to control the spatial extent of the lasing pat-
tern and is, therefore, very important (thus, at r values close to a/2,
lasing will occur in the mode strongly penetrating into the depth of
the array, even though gain is provided only in one waveguide). A
detailed comparison between lasing in the Kagome array and in the
isolated waveguide is presented in the supplementary material.

The stability of the nonlinear lasing modes is central from the
point of view of construction of topological lasers because it guaran-
tees that the only one spatial mode will be excited and there will be
no oscillations due to instabilities or beatings between several excited
modes. Stability analysis for nonlinear lasing modes obtained with
the Newton method was performed by adding into their profiles
small-amplitude noise (typically up to 2% in amplitude) and prop-
agating them (by using the split-step Fourier method) over large
distances, z ∼ 104, far exceeding the length of any realistic sample.
In all cases, the amplitude of modes, which are stable, was return-
ing to the unperturbed value, and such modes maintained their
internal structure. This method allows us capturing even weak insta-
bilities and accurately determining stability domains. The regions
where lasing is stable or unstable are identified in Fig. 5, where black
curves correspond to stable lasing states, while red ones to unstable
states. We found that corner lasing states in case 1 are always stable,
even for low nonlinear absorption coefficients [Fig. 5(a)]. Nonlinear
edge states in case 3 can also be stable, but the middle branches in
the encountered bistability regions are always unstable. The bista-
bility illustrated in Fig. 5(b) is a result of nonlinear competition
between several coexisting edge states that all experience amplifi-
cation. Indeed, we have found that the structure of the lasing state
substantially changes in the red unstable region in Fig. 5(b) with the
increase in its peak amplitude, i.e., at low and high peak amplitudes,
the relative weights of different edge states in lasing modes change
because they experience different gains (the overlap of their spatial
profiles with the pump spot is different) and at the same time the
relative weights of modes determine total absorption experienced
by the wave. Due to this competition, several stationary nonlin-
ear configurations can coexist for the same gain amplitude, giving
rise to bistability. The unstable regions gradually disappear with the
increase in the nonlinear absorption, until the entire branch of the
edge states becomes stable [Fig. 5(b)].

D. Noise-stimulated lasing
It is interesting to mention that lasing states in this dissipative

system, being stable attractors, can be excited from the broad range
of the initial conditions. For instance, they emerge from broadband
random noise that initially excites all modes of the system, upon
subsequent nonlinear competition between these modes, some of
which exhibit preferential amplification. This once again confirms
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FIG. 6. Lasing states excited by noisy inputs. Excitation dynamics of nonlinear
lasing modes at pim = 0.3 and α = 0.4 in case 2, when gain is provided in the
corner, which does not support the topological state (a), and case 1, when gain
acts in the corner where the topological mode resides (b), from noisy inputs. In
each case, the dependence of peak amplitude ∣ψ∣max on the distance is shown
together with ∣ψ∣ distributions at selected propagation distances.

the robustness of the nonlinear lasing states. In order to illustrate
this type of laser operation, in Fig. 6, we show different stages of
the evolution dynamics of noisy input excitations for gain land-
scapes corresponding to cases 1 and 2. Figure 6(a) shows the peak
amplitude ∣ψ∣max of the field vs propagation distance z for case 2.
One can see that the peak amplitude ∣ψ∣max exhibits long gradually
decaying oscillations approaching the stationary value only after a
long propagation distance, z ∼ 750. The corresponding ∣ψ∣ distribu-
tions reveal transition from noisy input to a regular but extremely
extended pattern that occupies practically the entire waveguide
array. Even though this pattern features somewhat larger amplitude
in the bottom-left corner due to high localization of the gain profile,
it clearly indicates the excitation of the bulk modes of the structure
in accordance with the spectrum of Fig. 4 (increasing the size of
the waveguide array leads to further expansion of this pattern). In
contrast, for the gain landscape corresponding to case 1, the peak
amplitude of the excitation quickly reaches (at the distance z ∼ 100)
its asymptotic value, as illustrated in Fig. 6(b). The nonlinear mode
quickly concentrates in the top-right corner, supporting the topo-
logical corner state, and then remains strongly localized and stable
at all propagation distances.

E. Discussion
Propagation of light in shallow waveguide arrays adopted in

this work is perfectly described within the frames of the paraxial

approximation, assuming excitation at a single frequency, where
appropriate spatially inhomogeneous gain can be realized with exist-
ing techniques. Nonlinear dissipative states emerging in such arrays
are the result of competition between different spatial modes of the
system, some of which are preferentially amplified, but all nonlin-
ear dissipative states reported here can be traced back to the linear
modes of the structure from which they emerge at threshold gain
amplitude pim = pthim, the fact that allows us to claim single spatial
mode lasing in this system. The competition between modes occurs
due to conservative and dissipative parts of nonlinearity present in
Eq. (1), which determines also the dynamical stability of the emerg-
ing states. The results reported here can be extended to other opti-
cal or optoelectronic systems, such as photonic crystals, photonic
crystal fibers, and structured polariton microcavities, where spatially
inhomogeneous gain and suitable refractive index/potential energy
landscapes can be fabricated or induced optically.

The system based on the waveguide arrays suggested in this
work can be practically implemented with doped (for example,
with Er) chalcogenide glasses (such as GaLaS or AsSe), where
waveguide arrays can be written with tightly focused laser pulses.
The nonlinear coefficient in such materials is about n2,re ∼ 1
× 10−17 m2

/W, while the nonlinear absorption coefficient varies
between n2,im ∼ 10−19and 10−17 m2

/W depending on the compo-
sition of the glass.59–61 In this case, one finds that when trans-
verse coordinates are scaled to 10 μm, the dimensionless propa-
gation distance in Eq. (1) is scaled to the diffraction length of
∼ 1.5mm; the waveguide depth of pre = 10 corresponds to real
refractive index contrast ∼ 1.13 × 10−3, while the gain amplitude
pim = 0.1 corresponds to δnim ∼ 1 × 10

−5 for the unperturbed refrac-
tive index nre ∼ 2.81 at the wavelength λ = 1.08 μm. The structure
proposed here can also be implemented in planar pumped photonic
crystal structures.42,62

It should be stressed that the structure considered here allows
for considerable size of the topological gap, the property that is
important for applications.63 According to the spectrum presented
in Fig. 2, one finds that for r = 0.4a, the bandgap opening in
the spectrum constitutes up to 42.8% according to ratio = (εtop
− εbottom)/εmiddle, where εtop, εmiddle, and εbottom correspond to the
top edge, middle, and bottom edge of the bandgap. Considering that
there are both corner and edge states in the bandgap, the width of the
gap (where the corner state is located) between the edge states and
top of the bulk band is about 26.51% of the whole bandwidth. We
believe that the ratio can be improved if the value of r is decreased
below 0.4a. However, there are some limitations because for too
small values of r, the neighboring sites in the array may start fus-
ing. Large size of the topological gap is beneficial for topological
protection of the lasing regime.

The important property of topological lasers is that lasing in
this structure remains stable as long as variations of eigenvalues of
the modes that it supports due to inevitable disorder upon fabri-
cation of the structure do not lead to closure of the gap so that
corner modes persist and experience the largest gain, when pump
is provided in the corner waveguide. In the supplementary material,
we introduce various types of perturbations (most of them break the
spatial symmetry of the system64) into the Kagome array, includ-
ing random variations of waveguide depths/positions in the bulk,
at the edge, or only in the corner sites. For all these types of
perturbations, the robustness of the corner state was confirmed.

APL Photon. 6, 040802 (2021); doi: 10.1063/5.0042975 6, 040802-7
© Author(s) 2021

https://scitation.org/journal/app
https://www.scitation.org/doi/suppl/10.1063/5.0042975


APL Photonics ARTICLE scitation.org/journal/app

The conclusion is that when disorder is provided in depths of the
bulk and edge waveguides of the array but not in the corner ones,
the gap and corner mode residing in the gap persist even for 10%
perturbations. When disorder is present also in the corner waveg-
uide, its impact on corner modes is stronger and may lead to the
shift of the eigenvalue of the corner mode, but for moderate disorder
amplitudes, corner states also persist in the gap and do not couple to
bulk modes. It should be stressed that for the latter type of disorder,
the energies of the corner states start overlapping with the contin-
uous band only when the actual strength of disorder δ ⋅ pre [here,
we introduce disorder by changing the depth of the waveguide with
indices n,m to pre(1 + δn,m), where δn,m is a random number uni-
formly distributed within the interval [−δ,+δ]] is comparable with
the width of the topological gap, i.e., when disorder is not small.
Shifting the top-right corner site of the structure along the direc-
tion parallel/orthogonal to the line connecting the top-right and
bottom-left corners of rhombus also does not lead to destruction of
the corner state and demonstrates its robustness. A table that illus-
trates all the above-mentioned perturbations, examples of the corre-
sponding robust corner states, and spectra of all modes of the system
(illustrating that no new modes appeared in the gap) can be found
in the supplementary material. Even in the presence of disorder,
when localized gain is provided in the corner channel, corner modes
do lase above the lowest threshold, so in this sense, the robustness
of lasing operation with respect to disorder is obvious. It should
be mentioned that typical uncertainties in the fabrication process
of the structure strongly depend on the particular technology, for
example, for direct laser writing of waveguides, they usually do not
exceed 2%.65

To support the claim of more robust behavior of the topolog-
ical system, we also compare the behavior of the same platform in
topological and nontopological regimes. Thus, in the supplementary
material, we show the spectrum of the trivial array (i.e., the array
with r = a/2) and examples of the corresponding modes that are all
delocalized.We found that when gain is provided in the corner of the
trivial Kagome array with r = a/2, the threshold for lasing is substan-
tially higher than that in the topological phase, at r = 0.4a. The family
of nonlinear lasingmodes now bifurcates from one of the delocalized
linear modes since there is no gap in the spectrum. Due to nonlinear
competition of several bulk modes, they may mix in the lasing state.
This is manifested in the change of the slope of the dependence of
the maximal wave amplitude and nonlinear energy shift on the gain
parameter.

There is an ongoing debate on topological characterization of
modes in Kagome arrays66,67 with many evidences of topological
behavior of this system reported experimentally. The emergence
of corner modes in the spectrum of our continuous system (that
automatically takes into account long-range coupling) was always
correlated with the appearance of nontrivial bulk polarization calcu-
lated in the frames of the simplified discrete model. While this may
not be the case for multilayer topological systems, here we would
like to emphasize that the Kagome array under the action of per-
turbations behaves very similar to the well-established topological
Su–Schrieffer–Heeger (SSH) model, and at the same time, it remains
a truly two-dimensional system. The comparison of the robustness
of corner modes of the Kagome array and topological modes of
the SSH model under the action of different perturbations can be
found in the supplementary material. We find that in both models,

energies of the topological corner states may shift into the band but
only when perturbations are added into the corner (or the edge in
the case of SSH chains) site and when their amplitude is compara-
ble with the width of the whole topological gap. As confirmed by the
calculation of bulk polarization, this supports the conclusion about
topological nature of corner states in the Kagome array.

III. CONCLUSIONS
In summary, we have proposed corner state lasers based on

Kagome waveguide arrays with a rhombic configuration. Stable cor-
ner lasing states with low threshold bifurcate from the topological
corner modes under the balance between diffraction, focusing non-
linearity, uniform loss, two-photon absorption, and gain provided
in the selected corner of the structure, supporting topological states.
Applying gain in the other corners of the array allows us achieving
lasing in edge states or bulk modes but above much higher lasing
thresholds. Excitation of topological and nontopological nonlinear
modes from noisy inputs is also illustrated, and it is found that for-
mation of nontopological modes requires much longer propagation
distances, and they appear to be weakly localized, in contrast to
strongly localized nonlinear corner lasing modes. This work paves
the way for realization of 0D topological corner lasers based on
HOTIs and may inspire research of topological transitions in similar
dissipative systems.

SUPPLEMENTARY MATERIAL

See the supplementary material for the details about the bulk
polarizations, robustness analysis on the corner state, and other
issues mentioned in the main text.
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